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Background: Renal cell carcinoma (RCC) is themost common kidney cancer in

adults. According to the histological features, it could be divided into several

subtypes, of which the most common one is kidney renal clear cell carcinoma

(KIRC), which contributed to more than 90% of cases for RCC and usually ends

with a dismal outcome. Previous studies suggested that basement membrane

genes (BMGs) play a pivotal role in tumor development. However, the

significance and prognostic value of BMGs in KIRC still wrap in the mist.

Methods: KIRC data were downloaded from the Gene Expression Omnibus

(GEO) and The Cancer Genome Atlas (TCGA) databases. A prognostic risk score

(PRS) model based on BMGswas established using univariate and least absolute

shrinkage and selection operator (LASSO) and the Cox regression analysis was

performed for prognostic prediction. The Kaplan-Meier analysis, univariate Cox

regression, multivariate Cox regression, receiver operating characteristic (ROC)

curves, nomogram, and calibration curves were utilized to evaluate and validate

the PRSmodel. All KIRC cases were divided into the high-risk score (HRS) group

and the low-risk score (LRS) group according to the median risk scores. In

addition, single-sample gene set enrichment analysis (ssGSEA), immune

analysis, tumor microenvironment (TME) analysis, principal component

analysis (PCA), and half-maximal inhibitory concentration (IC50) were also

applied. Expression levels of BMGs were confirmed by qRT-PCR in both

human renal cancer cell lines and tissues.

Results: We established the BMGs-based prognostic model according to the

following steps. Within the TCGA cohort, patients’ prognosis of the HRS group

was significantly worse than that of the LRS group, which was consistent with

the analysis results of the GEO cohort. PCA patterns were significantly distinct

for LRS and HRS groups and pathological features of the HRS group were more

malignant compared with the LRS group. Correlation analysis of the PRS model
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and TME features, such as immune cell scores, stromal cell scores, and

ESTIMATE values, revealed a higher immune infiltration in the HRS group

compared with the LRS group. The chemotherapeutic response was also

evaluated in KIRC treatment. It showed that the HRS group exhibited

stronger chemoresistance to chemotherapeutics like FR-180204,

GSK1904529A, KIN001-102, and YM201636. The therapeutic reactivity of the

other 27 chemotherapeutic agents was summarized as well. Furthermore, the

FREM2 level was measured in both human kidney tissues and associated cell

lines, which suggested that lower FREM2 expression prompts a severer

pathology and clinical ending.

Conclusions: Our study showed that KIRC is associated with a unique BMG

expression pattern. The risk scores related to the expression levels of 10 BMGs

were assessed by survival status, TME, pathological features, and

chemotherapeutic resistance. All results suggested that FREM2 could be a

potential candidate for KIRC prognosis prediction. In this study, we established

a valid model and presented new therapeutic targets for the KIRC prognosis

prediction as well as the clinical treatment recommendation, and finally,

facilitated precision tumor therapy for every single individual.
KEYWORDS

kidney renal clear cell carcinoma basement membrane, prognosis, tumor
microenvironment, immunotherapy
Background

Renal cell carcinoma (RCC) is a type of urinary cancer

contributing to approximately 2.4% of all types of cancers (1). It

has high mortality and recurs easily. Clear cell renal cell

carcinoma (ccRCC), papillary renal cell carcinoma (pRCC),

and chromophobe renal cell carcinoma (chRCC) occupied

ratios of 90%, 6% to 15%, and 2% to 5% of all renal cancers,

respectively. The mainstream therapies for KIRC contains
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surgical resection, chemotherapy, and radiotherapy, however, all

treatments showed limited effects (2).

Basement membranes (BMs) is a unique form of extracellular

matrix (ECM) and acted just like a barrier for restraining cancer

cells’ propagation to a distant place (3). Dynamic remodeling of

the ECM usually participates in cancer development (4). The

altered tumor microenvironment (TME) promotes tumor growth

by pathologically remodeling ECM (5). BMs contain multiple

components that determine the histological morphology

framework, function in stress adaptation, and selective

permeation (6). A large number of BM genes (BMGs) and their

related mutations have been proved to be involved in multiple

human diseases (7, 8). The TME, including various cellular

components, ECM, and soluble growth factors, is highly related

to tumor progression (9). The BMs is also an important

histological boundary to distinguish the non-invasive

(carcinoma in situ) and invasive tumors (10). BMs damage

exacerbates local metastasis and the invasion of tumor cells (11).

Due to the noticeable function of BMs in tumor

development, exploration of BMs-associated biomarkers and

potential therapeutic targets to inhibit tumor progression has

remarkably attracted researchers’ attention. For instance, the

epithelial-mesenchymal transition of the BMs enables cells with

an epithelial phenotype to transform to a quasi-mesenchymal

phenotype, which could promote tumor metastasis from the
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initial location to distant organs (12). Collagen, laminin, and

integrins are major components of bone marrow that contribute

to tumor cell metastasis, and they are considered important

anticancer targets (12). Also, cell migration could be strictly

regulated by BMs, of which the breakdown is also a crucial step

for allowing tumor progression (13).

In this article, a comprehensive evaluation of 541 KIRC

datasets and 72 normal kidney tissue datasets was performed,

and a BM-dependent prognostic risk score (PRS) model was

developed. The PRS model is capable of independently

predicting KIRC patients’ outcomes, and their chemotherapeutic

resistance to FR-180204, GSK1904529A, KIN001-102, and

YM201636 as well. In addition, we assessed its predictive value,

diagnostic efficacy, chemotherapeutic effect, immunotherapeutic

effect, and tumor immune infiltration in KIRC patients. These

findings provide new insight into the involvement of the BMs in

the therapy of KIRC.
Materials and methods

Microarray datasets

The study flowchart is shown in Figure 1. We extracted

RNA-seq datasets from the TCGA database (14), involving 541

KIRC samples and 72 normal kidney samples, as well as clinical

data of 537 KIRC cases retrieved from the TCGA database. The

GEO database was utilized to access microarray data distribution

for GEO: GSE167573 via the GPL20795 platform (15). Using an

annotation platform, it was attempted to transform the Entrez

gene ID of each sample to the associated gene symbol. In the case

of targeting the same Entrez gene ID via multiple probes, the

average value was used. A combination of individual RNA-seq

data was carried out by sample ID using Perl.
Frontiers in Oncology 03
Acquisition of BMGs

In a recent study, 224 BMGs were identified (7). The

expression levels of 224 BMGs were then extracted from

TCGA and GEO cohorts [FDR< 0.05, log2 (fold-change (FC)]

> 1]. The “limma” R package was used to identify differential

expressed genes (DEGs). Additionally, 106 BMGs with common

differences between TCGA and GEO cohorts were selected.
Identification of genes with differential
expression and functional enrichment

The “limma” R package was utilized for the analysis of the

differential expression of BMGs in cancerous and normal tissue

specimens. It was attempted to consider the statistical

significance of genes with FDR< 0.05. The “org.Hs.eg.db” R

package was utilized, in order to transform each DEG’s gene

symbol into an Entrez Gene ID. Using the “clus-terProfiler” R

package, KEGG pathway enrichment and GO analyses were

carried out on DEGs to figure out the primary biological

characteristics and cell functioning pathways (P< 0.05).

Finally, we employed the “enrichplot” and “ggplot2” R

packages to illustrate the results of the enrichment analyses.
Construction and validation of a PRS
model

Samples attained from TCGA and those samples from

GSE167573 were designated as training datasets and test

datasets, respectively. Using the ID of each sample, it was

attempted to combine the expression levels of differentially

expressed BMGs of each sample with the relevant prognostic
FIGURE 1

The flow diagram of this research.
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outcomes. Prognosis-associated genes (PAGs) were identified

using univariate Cox regression (uni-Cox-reg) on differentially

expressed BMGs from the TCGA (training dataset) and GEO

(test dataset). The “maftools” R package was applied for the

analysis of the mutation and the associated genes in the training

dataset of KIRC samples. The analysis of PAGs was performed

via the “glmnet” R package with the assistance of the least

absolute shrinkage and selection operator (LASSO), which

develop a PRS model that could accurately predict overall

survival rate (OS) of KIRC samples. The estimation of the

penalty parameter of the model was carried out via the 10-fold

cross-validation. The following formula was utilized for

calculating the risk score of each sample: risk scoreon
i=1coef 

(i) � expr (i) , in which “expre” represents the gene

expression levels from the PRS model, and “coef” indicates

non-zero regression coefficients derived by LASSO regression

analysis (Supplementary Table 2). Division of samples into high-

risk score (HRS) group and low-risk score (LRS) group was

carried out using the median value of risk scores. The log-rank

test and Kaplan-Meier analysis were utilized to compare OS-

related differences between the two above-mentioned groups.

The “survivalROC” R package was utilized to plot the time-

dependent ROC curves, which assisted in investigating the

accuracy of predictability of the PRS model. The validity and

accuracy of the PRS model were verified via the test dataset.
Principal component analysis

With the assistance of the “limma” R package, PCA of the

PRS model and differentially expressed BMGs from the TCGA

were conducted to compare the two above-mentioned groups.

First, using PCA, expression patterns of all the differentially

expressed BMGs were assessed. Then, the expression patterns

of BMGs attained from the PRS model were assessed using

PCA. The PCA results were illustrated via the ggplot2

R package.
Association of risk scores with clinical
characteristics

In the TCGA cohort, using the sample ID, we incorporated

clinical features with the risk score of each sample. The

association between risk scores and clinical features was

investigated by the “limma” R package. It was attempted to

collect KIRC-related clinical data from the GEO cohort to

analyze the association between risk scores and clinical

features. Clinical features between two or more groups were

compared via Kruskal-Wallis and Wilcoxon rank-sum tests. P<

0.05 indicated a significant difference.
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Gene set variation analysis

The “GSVA” R package was employed to compare

differences in biological processes between the two above-

mentioned groups. Assessment of pathway changes or

biological processes is feasible via GSVA, owing to its non-

parametric and unsupervised features, via expression matrix

samples (16). The “c2.cp.kegg.v7.4.symbols” was obtained

from the GSEA database (https://www.gsea-msigdb.org/gsea/

msigdb) (17). A statistically significant enrichment pathway

was demonstrated by FDR<0.05.
Predicting potential compounds for the
treatment of KIRC

The pRRophetic R package was employed to predict the

IC50 of common chemotherapeutic drugs (18). IC50 indicates a

substance’s efficacy in terms of inhibiting particular biochemical

or biological functions. We employed Wilcoxon signed-rank test

to assess group differences. Using the “pRRophetic”, “limma”,

“ggpub”, and “ggplot”2 R packages, compounds that could be

used for KIRC treatment were predicted.
GO and KEGG pathway enrichment
assays

Differentially expressed BMGs in cancerous and normal

tissue specimens were screened. Through the “clusterProfiler”

R package, GO and KEGG enrichment analyses of these genes

were performed (19).
Estimation of TME

The ssGSEA was conducted using the “GSEABase” and

“GSVA” R packages to assess immune-associated infiltration

in each TCGA cohort sample. Moreover, the gene sets were

taken from the previous work to evaluate immune-associated

characteristics in TME, including numerous human immune-

associated functions and immune cell subtypes, such as

regulatory T cells (Tregs), NK T cells, CD8+ T cells, etc

(Supplementary Table 3) (16, 20). The difference in the

enrichment scores between the LRS and HRS groups was

analyzed via the ssGSEA algorithm. The association between

immune cells and risk scores was predicted using “TIMER”,

“EPIC”, “MCPcounter”, “QUANTISEQ”, “CIBERSORT”,

“XCELL”, and “CIBERSORT” to assess immune infiltration

status (21). P< 0.05 indicated statistical significance.
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Cox regression analysis and nomogram
development

We constructed nomograms containing clinical features and

PRS models through the “rms” R package to predict the OS of

KIRC specimens on the basis of the TCGA cohort. Prediction of

the accuracy of the nomogram was conducted via time-

dependent calibration curves. Using multivariate Cox

regression (multi-Cox-reg) analysis, we determined whether

the PRS model was an independent indicator of OS in KIRC.

ROC curves were utilized to calculate the AUC value, which

showed the diagnostic value of the nomogram.
Patients’ recruitment and ethical
statement

We recruited 6 patients with kidney cancer who received

partial and radical nephrectomy at Wuhan Third Hospital from

August 2021 to August 2022. The protocol passed the approval

of the Ethics Committee of Wuhan Third Hospital. All patients

were diagnosed with renal cell carcinoma.
Cell culture

HK-2, ACHN, and CAKI cell lines were attained from a

company (BNCC, Henan, China). The culture of HK-2, ACHN,

and CAKI cell lines in DMEM-F12 and RPMI-1640 was

undertaken at 37°C media with 1% streptomycin-penicillin

and 10% FBS (Gibco).
RNA extraction and qRT-PCR

RNA isolation kit (R6934-01, Omega Bio-Tek, USA) was

attempted to extract total RNA from the three above-

mentioned cell lines on the basis of the manufacturer’s

protocol. TOYOBO ReverTra Ace qPCR RT kit was utilized

for reverse transcription. A Bio-Rad CFX Manager system was

employed to carry out real-time PCR. The FREM2 expression

level was calculated using the 2−DDCq method (22). The

primers are presented in Table 1.
Frontiers in Oncology 05
Statistical analysis

Spearman correlation analysis was employed to calculate

correlation coefficients. Using the Kaplan–Meier method, the

Cox regression model, and the log-rank test, the prognostic value

was evaluated. The Wilcoxon rank-sum test was utilized to

compare the two groups. Three or more groups were

compared by the Kruskal-Wallis test. Two-tailed P< 0.05

indicated a significant difference. R 4.2.0 software was utilized

to process data statistically.
Results

Enrichment analysis of samples

The expression levels of BMGs in cancerous and normal

samples were compared. 106 differentially expressed BMGs

in KIRC tissue samples were obtained, involving 67

upregulated and 39 downregulated differentially expressed

BMGs (Figures 2A, B). The differentially expressed

BMGs are listed in Supplementary Table 1. The results of

Gene Ontology (GO) enrichment analysis revealed that

ECM tissues, collagen-containing ECM, and ECM structural

components were highly enriched for GO terms (Figure 2C).

The results of the Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment assay indicated

that ECM receptor interaction terms were highly enriched

(Figure 2D). Collectively, the role of BMGs in the KIRC

progression is noteworthy.
Development and validation of the PRS
model

In the TCGA cohort, uni-Cox-reg analysis was employed for

the analysis of 106 differentially expressed BMGs, of which 16

PAGs were identified (P< 0.05) (Figure 2E). The profile of

somatic mutation of the 16 prognosis-associated BMGs was

analyzed. It was revealed that 34 of 357 KIRC samples had

mutations in BMGs, as indicated in Figure 3A, with a frequency

of 9.52%. FREM2 had a higher frequency of mutations than

COL6A2. P3H1, SERPINF1, and TIMP1 showed no mutations

in KIRC samples. Further analysis revealed a mutation

association between CD44 and FREM2, COL6A2 and FREM2,
TABLE 1 Primers designed for qRT-PCR.

Gene symbol Forward primer (5’-3’) Reverse primer (5’-3’)

FREM2 ACTCAGTTCACACAAGCTGACA TCCATGCCCAATTCAGACGA

b-actin CCTGGCACCCAGCACAAT GGGCCGGACTCGTCATAC
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and COL5A1 and CD44 (Figure 3B). LASSO regression analysis

was employed to reduce the number of genes studied. Ten genes

(COL4A4, FREM2, P3H1, SERPINF1, TLL1, ACHE,

ADAMTS14, CD44, MMP17, and NPNT) were used in the

development of a PRS model (Figures 4A, B). The following

formula was utilized for calculating the risk score: COL4A4 ×

(-0.000332379306699992) + FREM2 × (-0.04532840149

70285) + P3H1 × (0.286241547319786) + SERPINF1 ×
Frontiers in Oncology 06
(0.00925436343813996) + TLL1 × (-0.0039265754833404) +

ACHE × (0 . 104431990160361 ) + ADAMTS14 ×

(0.192192783740491) + CD44 × (0.0481638351937017) +

MMP 1 7 × ( 0 . 0 8 8 0 1 0 7 5 6 9 5 6 3 8 0 3 ) + NPNT ×

(-0.121725611636459) (23), which was exhibited in

Supplemental Table 2. The PRS model developed to

distinguish between high- and low-risk KIRC samples is

illustrated in Figures 4C, D.
A B

D

E

C

FIGURE 2

Differentially expressed BMGs in KIRC cases. (A) Enrichment plot of 106 BMGs in normal and tumor tissues. (B) The volcano plot of 106
differentially expressed BMGs with differential expression. (C, D). Noticeable enrichment of GO terms and KEGG pathways of 106 BMGs. (E) The
forest plot illustrated a uni-Cox-reg analysis of the association of 16 BMGs with prognosis.
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Risk scores and clinical characteristics

On the basis of the median value of the risk scores of the

samples in the training dataset, the division of the risk scores of the

samples into the LRS group (n = 266) and HRS group (n = 266)

was carried out. In the TCGA cohort, a poorer prognosis was

identified in the HRS group compared to the LRS group (P = 0.001;

Figure 4E). Additionally, in TCGA cohort, the progression-free

survival (PFS) was worse in the HRS group than that in the LRS

group (Figure 4F). To validate the accuracy of the PRS model, the

samples from the GSE167573 were divided into the LRS group (n =

15) and the HRS group (n = 40). Based on the median values

achieved from the TCGA. In the GSE167573, since a worse

prognosis was found in the HRS group than that in the LRS

group, it was shown that the PRS model predicted OS in cases with

KIRC (Figure 4G). On the basis of the results of univariate and

multivariate analyses, age, pathological stage, and risk score could

independently predict OS (Figures 5A, B). The PRS model was

verified by plotting 1-, 3-, and 5-year receiver operating

characteristic (ROC) curves (Figure 5C). The results of the area

under the ROC curve indicated that the risk score (AUC=0.741)

had a better prognostic value than the other indicators (Figure 5D).

We further analyzed the correlation of risk scores with gender, age,

grade, American Joint Committee on Cancer (AJCC) TNM stage

and pathological stage in clinical samples (24). However, there was

no statistically significant relationship between risk score and age

(Supplementary Figure 1A). Compared to women, men had higher

risk scores (Figure 5E). Risk scores related to grade and advanced

pathological stages, including AJCC-T (tumor invasion), AJCC-N

(lymphoid metastasis), and AJCC-M (lymphoid metastasis) stages

(distal metastasis) (Figures 5F–J).
Frontiers in Oncology 07
Construction of nomogram

To evaluate the sensitivity and specificity of the model for

prognosis. We performed a nomogram via incorporation of age,

gender, pathological stage, grade, and PRS for the purpose of

predicting OS in KIRC samples (Figures 6A, B). On the basis

of the findings of uni-Cox-reg and multi-Cox-reg analyses,

the nomogram model, age, and pathological stage were

independent prognostic factors (Figures 6C, D). Based on the

1-, 3-, and 5-year calibration curves, the nomogram could

accurately predict OS in cases with KIRC (Figure 6E). The

AUC values indicated that the predictability of nomogram

(AUC= 0.847) was greater compared to age (AUC=0.588),

pathological stage (AUC=0.712), grade (AUC=0.688), and PRS

model (AUC=0.760).
Immune-associated characteristics

The positive association of risk score with NK T cells,

cancer-associated fibroblasts, Tregs, M1 macrophages, CD4 +

T cells, Th1 cells etc. was shown in the resutls. The risk score was

negatively associated with neutrophils, CD4+ T cells, and CD8+

T cells (P< 0.05) (Figure 7A, Supplementary Table 3). The HRS

group showed higher immune cell scores, stromal cell scores,

and ESTIMATE values, indicating a higher immunological

infiltration level in the HRS group (Figures 7B–D). It was

suggested that there was a different TME in the HRS and LRS

groups. The ssGSEA revealed a relatively higher proportion of

immune cells and immune function in the HRS group

(Figures 7E, F). The majority of the immune checkpoints were
A B

FIGURE 3

Mutations in BMGs. (A) The mutation frequency of 16 BMGs in 357 KIRC cases from the TCGA cohort. (B) The analyses of mutational co-
occurrence and exclusion for 16 BMGs.
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significantly activated in the HRS group (Figure 8Q), thus,

individualized immunosuppression was suggested for the

treatment of cases with KIRC (25).
Prediction of patients’ response to
chemotherapy

The association of risk scores with poor prognosis was

confirmed, and we further investigated the correlation between

chemoresistance and risk scores. Half of the maximum

inhibitory concentration (IC50) of the chemotherapy in the
Frontiers in Oncology 08
TCGA cohort was predicted using the “pRRophetic” R

package (26). Samples with a high-risk score were insensitive

to chemotherapeutic drugs, such as FR180204, GSK1904529A,

KIN001102, and YM201636 (Figures 8A–H). Except for four

chemotherapy drugs (FR-180204, GSK1904529A, KIN001-102,

and YM201636) that had higher IC50 values in the HRS group

(Figures 8I–P), the remaining 27 chemotherapy drugs had lower

IC50 values in the HRS group (Supplementary Figure 2) and risk

score negatively correlates with chemotherapy resistance

(Supplementary Figure 3). Therefore, patients’ responses to

most of the chemotherapy drugs in the HRS group were

superior to those in the LRS group.
A B

D

E F G

C

FIGURE 4

Developing a PRS model using 10 BMGs. (A) Identification of 10 BMGs for a PRS model. (B) The LASSO coefficients of the 10 BMGs. (C) PCA on
the basis of BMGs in KIRC. (D) PCA on the basis of risk scores to discriminate low- and high-risk score patients in the TCGA cohort. (E) Kaplan–
Meier survival curves of OS in LRS and HRS groups in the GEO cohort. (F) Kaplan–Meier survival curves of OS in LRS and HRS groups in the
TCGA cohort. (G) The comparison of PFS between LRS and HRS groups in the TCGA cohort.
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GSVA

To investigate the differences in biological functions between

low- and high-risk groups, we performed GSVA enrichment

analysis. The “c2.cp.kegg.v7.4” gene sets were available in

the Molecular Signatures Data Base (MSigDB), and they

were utilized in GSVA for the analysis of the biological

behaviors in the two above-mentioned groups. Most metabolic

pathways, e.g, fatty acid metabolism and propanoate

metabolism, would be remarkably enriched in the LRS group
Frontiers in Oncology 09
(Supplementary Figure 1B). A negative correlation of risk scores

with metabolic pathways was confirmed. There was no

significant enrichment of pathways in the HRS group.
Verification of prognostic BMGs in the
GEO and TCGA cohorts

To investigate target genes in basement membrane genes that

can be used as predictors of clinicopathology and prognosis. We
A B

D

E F G

IH J

C

FIGURE 5

The prognostic value of the basement membrane score combined with pathological features in the TCGA cohort. (A, B). The multi-Cox-reg and
uni-Cox-reg analyses of the risk score and clinical variables in association with overall survival. (C, D). The 1-, 3-, and 5-year ROC curves were
plotted to indicate the association of the risk scores with clinical characteristics. (E–G). The relationship of pathological features [that’s gender
(E), grade (F), TNM stage (G), tumor invasion (H), lymphoid metastasis (I), and distal metastasis (J)] with risk scores.
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analyzed prognostic BMGs in the TCGA and GEO cohorts by

univariate cox regression (Figure 2E; Supplementary Figure 4), and

plotted the Venn diagram to obtain the intersected BMGs

(Figure 9A). The FREM2 expression level was reduced in

cancerous tissues compared to normal tissues (Figure 9B).

FREM2 expression levels remarkably differed between the HRS

and LRS groups (P< 0.001). A noticeably higher survival rate was

found in the HRS group, which was compatible with the

expression level in the normal and cancerous tissues (Figure 9C).

To further figure out the accuracy of the FREM2 gene in predicting

renal cancer, the ROC curve of the FREM2 gene was plotted and

AUC was 0.941, indicating that FREM2 could be utilized as a
Frontiers in Oncology 10
potential prognostic indicator for KIRC (Figure 9D). We obtained

immunohistochemical data on FREM2 expression level in kidney

cancer from the Human Protein Atlas database (27), We further

verified the expression level of FREM2 in human kidney cancer

and normal tissues by qRT-PCR (Figures 9E, F). In addition, we

verified the FREM2 expression level in kidney cells by qRT-PCR,

and the FREM2 expression level was higher in HK-2 normal

kidney cells and lower in kidney tumor cells (ACHN and CAKI cell

lines), which was basically consistent with the human tissue

verification results (Figure 9G). In addition, FREM2 expression

decreased as the tumor stage advanced (Figures 10A–G). FREM2

expression decreased and was associated with poor prognosis.
A B

D
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C

FIGURE 6

The predictive value of nomogram design and nomogram scores when combined with pathological features in the TCGA cohort. (A)
Nomogram predicting 1-, 3-, and 5-year OS in the TCGA cohort. (B) The calibration curves for 1-, 3-, and 5-year OS. (C, D). The multi-Cox-reg
and uni-Cox-reg analyses of the nomogram and pathological features. (E) ROC curves for BM scores, nomogram, and pathological features.
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TME immune cell infiltration differences between high and low

FREM2 expression patients were explored using the FREM2

median expression value as the cutoff value. Tumors with low

FREM2 expressions had significantly increased infiltration in Tregs

than patients with high expressions (Figure 10H). Collectively,

FREM2 may be a therapeutic target or biomarker for KIRC.
Discussion

The BMs are necessary for the development of epithelial

tissues and organs. Moreover, changes in the structural integrity

and composition of the BMs are noticeably associated with the
Frontiers in Oncology 11
tumor development (28). In clinical practice, tumors located on

the epithelial side of the BMs are considered as benign, while

tumors penetrating the BMs are malignant, and thus, they may

acquire the potential for metastasis (29). In order to metastasize,

tumor cells invade via penetrating BMs, however, the precise

mechanism indicating which tumor cells can penetrate BMs

remains obscure. The two most abundantly expressed proteins

in the BMs are collagen IV and laminin, of which collagen IV is

the main structural backbone of BMs, while laminin facilitates

cell signaling (30). It has been suggested that invasion of BMs is

due to the action of proteases, and in particular, chemical

degradation of BMs by matrix metalloproteinases (MMPs)

occurs, while clinical trials on MMP inhibitors have failed to
A

B D

E F

C

FIGURE 7

The role of basement membrane model in the immunotherapy. (A) The immune cell bubble of risk groups. (B–D). Immune-related scores in
LRS and HRS groups. (E, F). The relative proportions of immune cells and immunological activities were assessed using ssGSEA in the HRS and
LRS groups. *p< 0.05, **p< 0.01, and ***p< 0.001.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1024956
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xiong et al. 10.3389/fonc.2022.1024956
A B D

E F G

I

H

J K L

M N

C

O P

Q

FIGURE 8

The immunotherapeutic prognosis for risk-dependent groups. (A–D). The negative association of patients’ risk scores with IC50 values for
chemotherapeutics. (E–H). IC50 values for chemotherapeutics in the HRS group were higher compared to the LRS group. (I–L). The negative
association of patients’ risk scores with the IC50 values of chemotherapeutics. (M–P). The IC50 values of chemotherapeutic agents were lower
in the HRS group compared to the LRS group. (Q). The expression levels of 18 checkpoints in various risk categories. *p< 0.05, **p< 0.01, and
***p< 0.001.
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achieve outstanding results (31, 32). It has also been

demonstrated that the stiffness of BMs is a critical determinant

of tumor cells’ ability to penetrate BMs (3). Studies have

noticeably concentrated on the function of a single BM

component in tumors, whereas the exact role of BMGs in

tumors is worthy of exploration. The function of BMGs in

KIRC should be essentially unveiled to provide guidance for

its clinical treatment. This is the first study to explore the

association of BMGs with KIRC.

We first extracted 106 differentially expressed BMGs in the

cancerous and normal kidney tissues, and these BMGs were

utilized to estimate the PRSs in TCGA and GEO cohorts. We

developed a PRS model for the prediction of OS in renal cancer
Frontiers in Oncology 13
in the TCGA cohort that would be advantageous to better

figure out the significance of the BMGs. A difference was

identified in survival between the HRS and LRS groups. The

test dataset showed identical results, indicating the accurate

prognostic function of the PRS model. On the basis of the

results of the multivariate analysis, the PRS model and

nomogram can be used as independent prognostic tools. In

addition, ROC curves could be plotted the via incorporation of

pathological features with the PRS model and the nomogram.

The results revealed that the nomogram could more accurately

predict patient survival.

To further find out the role of prognostic risk scoring models

in KIRC, patients’ response to chemotherapeutic agents in the
A
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C

FIGURE 9

The prognostic BMGs were verified by uni-Cox-reg analysis. (A) Uni-Cox-reg analysis and the intersection of BMGs in the TCGA and GEO
cohorts. (B) Paired differentiation analysis of FREM2 expression in cancerous and normal specimens from the same patient (P =
0.00000000000048, by the WRS test). (C) Various FREM2 expression levels were utilized to carry out survival analysis. Patients were clarified
into high or low expression levels on the basis of the median expression level (P< 0.001 by the log-rank test). (D) ROC curves were plotted to
evaluate the FREM2’s most accurate predicting ability. (E) Immunohistochemistry of FREM2 in normal and tumor tissues of the kidney. (F) The
qRT-PCR findings of FREM2 in cancerous and normal kidney specimens (P< 0.01). (G) The qRT-PCR findings of FREM2 in renal cell lines.
**p< 0.01 and ***p< 0.001.
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LRS and HRS groups was evaluated. A positive association of

patients’ response to chemotherapeutic agents (FR−180204,

GSK1904529A, KIN001−102, and YM201636) with risk scores

was confirmed, and the remaining risk scores were negatively

associated with 27 chemotherapeutic agents. Thus, cases in the

HRS group were sensitive to most chemotherapeutic drugs and

were chemo-resistant to a small number of chemotherapeutic

drugs. A higher immune infiltration was also identified in the

HRS group compared to the LRS group. The majority of

immune checkpoint inhibitors (ICIs) were also more activated

in the HRS group. Therefore, it is feasible to select appropriate

ICIs for KIRC patients regrouped by risk patterns. In clinical
Frontiers in Oncology 14
practice, ICIs are an effective treatment for KIRC and other

malignancies. However, only a few cases have a durable response

to ICI therapy, indicating the necessity of providing

individualized immunotherapy for such patients. In the

present study, a higher proportion of suppressor T cells was

identified in the HRS group, including Tregs and immune and

inflammatory cells. CD8+ T cells are the immune cells that could

be utilized for targeted cancer therapy. An immune checkpoint

blocker, CTLA4, was significantly activated in the HRS group.

CTLA4 is limited to the activated T cells and Tregs, and CTLA4

impedes tumor progression by depleting Tregs and modulating

Treg suppressive activity (33), and therefore, anti-CTLA4
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C

FIGURE 10

The relationship between FREM2 expression level and pathological features, as well as immune cell in patients with high and low FREM2 mRNA
expression. (A–G). The relationship of FREM2 expression level and clinicopathological features. (H) The relative proportion of immune cells
using ssGSEA in patients with high and low FREM2 mRNA expression. *p< 0.05, **p< 0.01, and ***p< 0.001.
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antibodies are indicated in patients with high risk scores. BMGs

in KIRC significantly differed between the LRS and HRS groups.

To further explore the DEGs in the two above-mentioned

groups, we identified the prognosis-related risk difference

genes by the uni-Cox-reg model , and mapped the

intersection of TCGA prognosis risk difference genes and

GEO-related risk prognosis difference genes by the Venn

diagram, and FREM2 was found to be essential. In this study,

FREM2 has the highest mutation frequency among

differentially expressed BMGs. FREM2 encodes a protein that

is primarily localized to the BMs. This protein is critical for

skin and renal epithelial integrity. It was previously shown that

the high FREM2 expression in tumor tissues, and mutations in

FREM2 exhibited an association with poorer prognosis of

cancer patients (34). We further validated FREM2 expression

level in human kidney tissues and cells, and found that the

staging of pathological features was negatively correlated with

the level of FEM2 expression. However, the present study also

has some limitations. Our risk assessment data for basement

membrane genes were obtained from public databases,

and there is a lack of additional external transcriptomic

information to validate the role of basement membrane genes

in KIRC. the specific molecular mechanisms of basement

membrane genes in KIRC are unknown, so further molecular

experiments are needed. On the other hand, there were 72

normal samples and 541 tumor samples in our kidney samples.

The heterogeneity of the samples may affect the accuracy of the

data analysis.
Conclusions

In summary, PRS for BMGs were positively correlated with

clinical characteristics (age, gender, grade, and pathological

stage). In addition, risk scores can predict patients’ sensitivity

to chemotherapy. Therefore, risk scores and clinical stages

directly guide the clinical management of patients. This study

provided a valid model for predicting the prognosis of KIRC, as

well as the clinical treatment, thus facilitating the development

of individualized tumor therapy. According to human samples

and in vitro research, FREM2 can be utilized as a prognostic

biomarker for KIRC. However, it is advised to conduct

additional research to figure out the role and mechanism of

BMGs in KIRC patients and to develop new treatments.
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