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Background: The role of ferroptosis in tumor progression and immune

microenvironment is extensively investigated. However, the potential value of

ferroptosis regulators in predicting prognosis and therapeutic strategies for

osteosarcoma (OS) patients remains to be elucidated.

Methods: Here, we extracted transcriptomic and survival data from

Therapeutically Applicable Research to Generate Effective Treatments

(TARGET) and Gene Expression Omnibus (GEO) to investigate the expression

and prognostic value of ferroptosis regulators in OS patients. After

comprehensive analyses, including Gene set variation analysis (GSVA), single-

sample gene-set enrichment analysis (ssGSEA), Estimated Stromal and Immune

cells in Malignant Tumor tissues using Expression (ESTIMATE), single-cell RNA

sequencing, and biological experiments, our constructed 8-ferroptosis-

regulators prognostic signature effectively predicted the immune landscape,

prognosis, and chemoradiotherapy strategies for OS patients.

Results: We constructed an 8-ferroptosis-regulators signature that could predict

the survival outcome of OS. The signature algorithm scored samples, and high-

scoring patients were more prone to worse prognoses. The tumor immune

landscape suggested the positive relevance between risk score and

immunosuppression. Interfering HILPDA and MUC1 expression would inhibit

tumor cell proliferation and migration, and MUC1 might improve the ferroptosis

resistance of OS cells. Moreover, we predicted chemoradiotherapy strategies of

cancer patients following ferroptosis-risk-score groups.

Conclusion: Dysregulated ferroptosis gene expression can affect OS

progression by affecting the tumor immune landscape and ferroptosis

resistance. Our risk model can predict OS survival outcomes, and we

propose that HILPDA and MUC1 are potential targets for cancer therapy.
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Introduction

Osteosarcoma (OS), the most common bone tumor, is a

highly aggressive malignancy that frequently occurs in

childhood and adolescence and has a worldwide annual

incidence rate of 1~3 cases per million (1). OS originates from

primitive mesenchymal cells in bone and rarely in soft tissue and

progresses to pulmonary metastasis, whose subsequent relapse

remains the primary cause of OS-related death (2). The current

treatment strategy for OS patients includes neoadjuvant

chemotherapy combined with surgical removal of the primary

lesions and evidenced metastatic lesions, followed by additional

adjuvant chemotherapy (3). Compared with management

regimens before 1970, multiagent chemotherapy has

considerably improved the long-term survival of localized OS

patients from 20% to 70%. However, metastatic and recurrent

OS patients still have a significantly low survival rate (4).

Unfortunately, since the mid-1970s, little progress has been

made in improving standard management strategies and

increasing the survival rate of OS patients (3). The therapeutic

outcome of OS is significantly impacted by intrinsic cellular

heterogeneity and complex immunogenic mechanisms (5).

Immune checkpoint inhibitors have made breakthroughs in

the immunotherapy of various cancers (6, 7), whereas the

therapeutical effect of targeting TILs and PD-L1 in managing

OS is inconsistent (8–11). These suggest that OS might have a

complex immune status that helps cancer cells evade the

immune surveillance-mediated cell death. Therefore,

identifying novel effective immune therapeutic targets to

benefit treatment for OS is needed. Recently, three newly

identified types of cell death, including ferroptosis, necroptosis,

and pyroptosis, have been suggested to have crosstalk with
Abbreviations: OS, osteosarcoma; TARGET, Therapeutically Applicable

Research to Generate Effective Treatments; GEO, Gene Expression

Omnibus; NMF, Non-negative matrix factorization; MAD, Median absolute

deviation; PCA, Principal component analysis; GSVA, Gene set variation

analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and

Genomes; TME, tumor microenvironment; ssGSEA, single-sample gene-set

enrichment analysis; ESTIMATE, Estimated Stromal and Immune cells in

Malignant Tumor tissues using Expression; LASSO, least absolute shrinkage

and selection operator; HR, Hazard ratio; UMAP, Uniform Manifold

Approximation and Projection for Dimension Reduction; siRNA, Small

interfering RNA; RT-qPCR, Real-time quantitative polymerase chain

reaction; GSDC, Genomics of Drug Sensitivity in Cancer; IC50, half-

maximal inhibitory concentration; ROC, Receiver operating characteristic;

AUC, area under the curve; DEGs, differentially expressed genes; GAPDH,

glyceraldehyde-3-phosphate dehydrogenase; ATF4, activating transcription

factor 4; HILPDA, hypoxia inducible lipid droplet associated; ATM, ATM

serine/threonine kinase; CBS, cystathionine beta-synthase; MUC1, mucin 1,

cell surface associated; MT1G, metallothionein 1G; PML, PML nuclear body

scaffold; ARNTL, aryl hydrocarbon receptor nuclear translocator like.
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antitumor immunity (12). As a research hotspot, ferroptosis

was involved in multiple antitumor mechanisms. However, the

re la t ionship between ferroptos i s and OS immune

microenvironment remains to be elucidated.

Ferroptosis, distinguished from traditional cell death-like

apoptosis, cell autophagy, or necroptosis, is a novel

programmed cell death characterized by iron-dependent lipid

peroxidation (13). Previous studies have suggested that

ferroptosis regulators, including GPX4 (14), FANCD2 (15),

P53 (16), and HSPB1 (17), are related to oncogenesis and

progression. Increasing evidence has identified the pivotal role

of ferroptosis in tumor therapies (18–20), in addition to the

sensitivity of various tumors to ferroptosis, such as ovarian

cancer (21), hepatocellular carcinoma (22), and adrenocortical

carcinomas (23). Notably, the anti-tumorigenesis effect of

ferroptosis is likely propelled by the immune system. Wang

et al. (24) reported that CD8+ T cells released interferon-

gamma (IFNg) could induce ferroptosis activity in cancer cells.

On the contrary, ferroptosis-induced regulatory factors

and the release of micromolecules may contribute to

immunosuppression and tumor growth (25). Hence, the

regulatory network between immune responses and

ferroptosis as it relates to tumor immunotherapy remains

unclear. In attempts to address this gap, several studies have

suggested a correlation between ferroptosis regulators and

antitumor drug sensitivity in treating OS (26–29).

In this study, we collected data from Therapeutically

Applicable Research to Generate Effective Treatments

(TARGET) and Gene Expression Omnibus (GEO) to

investigate the expression and prognostic value of ferroptosis

regulators in OS patients. Risk signatures were constructed based

on selected ferroptosis genes to evaluate the prognostic value of

ferroptosis in risk stratification. Single-cell sequencing analysis

was performed to explore the interaction between ferroptosis

regulators and the immune microenvironment. Additionally, we

investigated the predictive value of ferroptosis signature in

anticancer chemotherapy. We further verified the cancer

promotion function of pivotal genes HILPDA and MUC1 and

revealed the probable association between them and ferroptosis.

Therefore, this study aimed to comprehensively assess the effect

of ferroptosis regulators on the immune microenvironment,

prognosis, and therapeutic efficacy in OS.
Materials and methods

This study protocol was approved by the institutional review

board (IRB) of the Third Xiangya Hospital, Central South

University (No: 2020-S221). All experiments involving human

tissues were performed based on guidelines approved by the IRB.

Each sample was processed only after receiving a signed

informed consent form.
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Data collection

Expression array profiling of 9 normal cell lines (5 normal

osteoblast cells and 4 normal bone cells) and 103 patient-derived

OS cell lines were extracted from GSE42352 (30) and GSE36001

on the GEO (https://www.ncbi.nlm.nih.gov/geo/). The batch

effect was eliminated using the “removeBatchEffect” function

in the R package “limma.” Expression heatmaps were visualized

with the “pheatmap” R package, while boxplot was constructed

using the “ggpubr” R package. TARGET-OS RNA-seq data of 84

OS patients with available clinical characteristics extracted from

the UCSC Xena website (https://xenabrowser.net/) were

analyzed as the training cohort (Table S1). Furthermore, 53

OS samples extracted from GSE21257 (31) in the GEO database

were validation cohorts (Table S2). In each cohort, we used the

following criteria to exclude unqualified samples: (a) follow-up

time < 1 month; (b) lack of survival data; (c) histopathological

type is not OS. These count matrixes were standardized using the

“DEseq2” package. Single-cell RNA sequencing datasets

containing two primary OS lesions, “BC21” and “BC22”, two

metastatic OS lesions “BC10” and “BC17”, and two recurrent OS

lesions “BC11” and “BC20” were collected from GSE152048 (32)

in GEO database. Ferroptosis regulators, including 108 driver

genes and 69 suppressor genes, were obtained from the FerrDb

website (Table S3) (http://www.zhounan.org/ferrdb) (33).
Non-negative matrix factorization
clustering for ferroptosis regulators

One hundred seventy-three ferroptosis-related genes were

extracted and analyzed in the TARGET-OS training cohort.

Candidate regulators with a high median absolute deviation

(MAD > 0.5) value across the OS patients were selected for

subsequent NMF clustering analysis. Unsupervised NMF

clustering was performed using the “NMF” R package based

on the 132 candidate genes (34). When the coexistence

correlation coefficient k = 2, we observed the clearest

boundary and most appropriate consistency; thus, 84 patients

were clustered into two subclusters. In addition, principal

component analysis (PCA) was used to validate the subcluster

d i s t r i b u t i o n w i t h t h e e x p r e s s i o n o f c a nd i d a t e

ferroptosis regulators.
Gene set variation analysis and
functional annotation

To explore the difference between ferroptosis-related

subclusters in biological processes, we conducted a GSVA

enrichment analysis using the “GSVA” R package (35). Two

gene sets, “c2.cp.kegg.v7.4.symbols” and “c5.go.bp.v7.4.symbols”
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were obtained from MSigDB database for performing GSVA

enrichment. Moreover, Gene Ontology (GO) term enrichment,

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

analysis, and annotation were also conducted with

“clusterProfiler” and “org.Hs.eg.db” R packages. Finally,

histograms were developed with the “ggplot2” R package.
Assessment of tumor microenvironment
cell infiltration

We conducted a single-sample gene-set enrichment analysis

(ssGSEA) algorithm to assess the expression abundance of 28

specific infiltrating immune cell types in the OS TME. Marker

gene sets for these TME infiltrating immune cells were collected

from previous studies, covering multiple immune cell types,

including activated B cell, CD8+ T cell, macrophage, natural

killer T cell, and others (36, 37). Estimated Stromal and Immune

cells in Malignant Tumor tissues using Expression (ESTIMATE)

analysis was performed using the “estimate” R package to

evaluate the infiltration of stromal cells and immune cells. The

ESTIMATE score based on stromal and immune scores was used

to evaluate tumor purity (38), and Scatter diagrams were

developed using the “ggplot2” R package.
Construction of ferroptosis risk signature

Based on the 132 ferroptosis regulators for NMF clustering,

we identified 22 independent prognosis-related genes with

univariate Cox regression analysis (P < 0.05). Then, the least

absolute shrinkage and selection operator (LASSO) algorithm

filtered out 11 ferroptosis regulators that met the minimum

lambda value. Finally, stepwise multivariate Cox regression

analysis confirmed 8 genes with optimal collinearity, and a

risk signature was constructed. A risk score of each OS patient

in the TARGET training cohort and GEO validation cohort was

calculated with the following algorithm:

Risk score = 0.705×ATF4 + 0.503×ATM + 0.616×HILPDA +

0.323×MUC1 + 0.417×CBS + 0.238×MT1G + (-0.969)×ARNTL

+ (-0.553)×PML.

Hazard ratios (HRs) were used to distinguish protective (HR

< 1) and risky elements (HR > 1). Forest plots were developed

using the “ggplot2” R package.
Single-cell RNA sequencing analysis

scRNA-seq analysis was conducted as previously described

(39, 40). All single-cell expression matrixes of primary,

metastatic, and occurrent OS patients from GSE152048 were

processed by the “Seurat” R package. Firstly, “NormalizedData”
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was applied to normalize these expression data, then we

performed “FindVariableFeatures” to identify the 1,000 most

variable genes. After PCA with “RunPCA,” we conducted a K-

nearest neighbor graph via “FindNeighbors,” while cells were

combined with the “FindClusters” function. Subsequently,

Uniform Manifold Approximation and Projection for

Dimension Reduction (UMAP) (41) was used for visualization.

Moreover, we performed a “Single R” R package to annotate cells

when feature genes for all concerned cell categories were

obtained from reported studies (32). Then, the “FindMarkers”

function was performed to find differentially expressed genes for

identified risk clusters.
Immunohistochemistry

Five pairs of formalin-fixed paraffin-embedded OS tissue and

para-carcinoma tissue blocks (all post-chemotherapy) from 5

patients with OS were made into 5 µm paraffin sections. IHC was

performed following the Mouse/rabbit enhanced polymer

method detection system (ZSGB-BIO, PV-9000, China). The

slides were deparaffinized and rehydrated using xylene and

gradient-concentration ethyl alcohol, followed by antigen

retrieval with sodium citrate at 95°C. At room temperature,

the slides were blocked using an endogenous peroxidase blocker

for 10 min. Samples were incubated with primary antibodies

against HILPDA (Proteintech, China) and MUC1 (Proteintech,

China) overnight at 4°C, reaction enhancer for 20 min at 37°C,

and enhanced enzyme-conjugated sheep anti-mouse/rabbit IgG

polymer for 20 min at 37°C. Then the slides were stained with 3,

30-diaminobenzidine tetrahydrochloride (DAB) and

counterstained with hematoxylin. Images were captured with a

magnification of 20x.
Cells culture

Two osteosarcoma cell lines (U2OS and MNNG/HOS) were

kindly provided by Procell Life Science & Technology Co., Ltd.

U2OS and MNNG/HOS were correspondingly cultured in

McCoy’s 5A (Procell, China), and MEM (Procell, China), both

supplemented with 10% fetal bovine serum (Gibco, USA) and

1% penicillin-streptomycin solution (Biosharp, China) at 37°C

with saturated humidity and 5% CO2. The average time of

culture medium exchange was 24-48h. The cells were digested

with trypsin-EDTA (Gibco, USA) and passaged when cell

adhesion exceeded 80% confluency.
Small interfering RNA transfection

Human HILPDA siRNA (si-HILPDA), MUC1 siRNA (si-

MUC1), and their nonspecific control siRNA (si-NC) were
Frontiers in Oncology 04
synthesized by JTSBio (Wuhan, China). The siRNAs were

transfected into cells using jetPRIME transfection reagent

(Polyplus, France) following the manufacturer’s protocol. The

siRNAs sequences were listed in Table S4. RNA extraction and

cell proliferation assay were performed 48h after transfection.
Western blot

A mixture of RIPA (Beyotime, China) and a final

concentration of 1mM PMSF (Beyotime, China) was used to

lyse cells for protein extraction. Loading Buffer (Biosharp,

China) was added to the protein supernatant, and then the

sample was boiled to denature the protein. Then proteins were

separated using SDS–PAGE gel (Biosharp, China), transferred to

PVDF membranes (Millipore, USA), and blocked in 5%

skimmed milk for 1h. Then membranes were incubated

overnight at 4°C with primary antibodies, including HILPDA

(Proteintech, China), MUC1 (Proteintech, China), ASCL4

(Affinity, China), GPX4 (Affinity, China), xCT (Affinity,

China) and GAPDH. The membranes were incubated with

fluorophore-conjugated secondary antibody (LI-COR Corp,

NE) the following day. Protein bands were captured with an

enhanced LI-COR Odyssey infrared imaging system (LI-COR

Corp, NE), and the protein levels were normalized to the

GAPDH levels.
Real-time quantitative polymerase chain
reaction

RT-qPCR primers are listed in Table S4. Total RNA from

cultured cells was extracted using Rnafast200 (Fastagen, Japan),

and cDNA was synthesized using HiScript II Q RT SuperMix for

qPCR (Vazyme, China). ChamQ Universal SYBR qPCR Master

Mix (Vazyme, China) was used to conduct RT-qPCR based on

the manufacturer’s protocol. All steps for RT-qPCR reaction

were conducted as follows: initial denaturation at 95°C for 30s,

one cycle; denaturation at 95°C for 10s, 40 cycles; dissolution

curve at 95°C for 15s, 60°C for 60s, 95°C for 15s, one cycle. Gene

expression levels were normalized to those of GAPDH and

calculated using lg2–△△Ct method.
EdU incorporation assay

Proliferating OS cells were identified using the Click-iT Plus

EdU Alexa Fluor 488 Imaging Kit (Invitrogen, USA), and cell

nuclei were stained using Hoechst (Invitrogen, USA). Image

Pro-Plus version 6.0 (Media Cybernetics, USA) was applied to

calculate the counts and percentage of EdU-positive cells.
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Cell migration assay

OS cell migration was assayed using a Transwell chamber

(Corning, USA) with polycarbonic membranes (6.5 mm in

diameter and 8 mm pore size). Cells in a serum-free medium

were added into the upper chamber at the density of 5 × 105

cells/ml (200 ml/well), and an OS-conditioned medium with 10%

FBS was added to the lower chamber. After incubating for 48h at

37°C, non-migrated cells on the membrane were removed with a

cotton swab. Cells that penetrated to the lower surface were

stained with 0.1% crystal violet. Then cells in five random fields

per well were counted under 200×magnification as n=1 for the

assay in triplicate.
Cell viability detection

The cells were seeded into 96-well plates at a density of 5,000

cells/well with specific-concentration RSL3 (Selleck, China).

After 24h, 1/10 volume of CCK-8 reagent (Proteintech, USA)

was added to the wells, and the absorbance value was detected at

450nm after 1h incubation at 37°C. The experiment was

repeated three times.
Lipid reactive oxygen species detection

BODIPY 581/591 C11(Invitrogen, D3861, USA) with a final

concentration of 2mM was used to detect intracellular and lipid

cell membrane ROS. After incubation for 30min at dark 37°C,

cells were digested with trypsin and resuspended by PBS to

prepare a 300 ml cell suspension to determine lipid oxidation by

Flow Cytometry. The fluorescence intensity of the FITC channel

was measured by BD FACS Canto II (BODIPY 581/591 C11 at

590 nm in the non-oxidized state and 510 nm in the oxidized

state). At least 10,000 cells were analyzed per sample, and data

were analyzed using FlwoJo V10.
Potential therapeutic prediction value of
ferroptosis signature

We extracted expression matrix and drug response data of

over 1,000 cancer cell lines from the Genomics of Drug

Sensitivity in Cancer (GDSC, http://www.cancerrxgene.org/)

database (42). Afterward, each cell line’s risk scores were

calculated by conducting a ferroptosis signature. Then, we

performed the Spearman method to evaluate the correlation

(Cor) between risk scores and half-maximal inhibitory

concentration (IC50) of each cell line. | Cor | > 0.2 and P <

0.05 were considered statistically significant.
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Statistical analysis

All bioinformatics statistical analyses and visualization were

performed using R version 4.0.3 (https://www.r-project.org/),

and the R script was listed in Supplementary “R_script”.

Kaplan–Meier and log-rank analysis using “survival” and

“survminer” packages were applied to evaluate the survival

comparison. Receiver operating characteristic (ROC) and the

area under the curve (AUC) were conducted with the “Time

ROC” R package. Spearman correlation analysis was applied to

evaluate correlations among continuous variables. Wilcoxon and

One-way Anova tests were used to compare the difference

among groups. A Chi-square test was used to identify the

significance of ferroptosis DEGs (differentially expressed

genes) among all detected genes. Values in cell experiment are

mean ± SD unless otherwise noted and analyzed using Graphpad

Prism version 8.0.2.263. Furthermore, the Benjamini-Hochberg

method was utilized to adjust p values in functional annotation.

P.adjust < 0.05 was considered statistically significant.

Results

Expression of ferroptosis genes was
disordered in OS cells

A flow diagram was generated to systematically describe our

study (Figure 1A). We collected 108 driver genes and 69

suppressor genes from FerrDb (http://www.zhounan.org/ferrdb),

among which four genes were intersected, then 173 ferroptosis

regulators were selected. Of the merged expression matrix

containing 9 normal and 103 OS cell lines from GSE42352 and

GSE36001, 143 of 173 ferroptosis regulators were detected.

Subsequently, the expression of the 143 detected regulators were

evaluated and visualized in heatmap, while 21 significant DEGs

were identified (P < 0.05, |logFC| > 0.5) (Figure 1B). CBS, SCD,

CDKN2A, SNX4, FANCD2, and HMGB1 were upregulated in

OS, and 15 regulators, including PML, ACO1, MYB, NCOA4,

ATG3, CDO1, SQSTM1, TNFAIP3, CDKN1A, CAV1, NQO1,

TF, EPAS1, ZFP36, and AKR1C3 were downregulated. The Chi-

square test indicated that the ratio of significant ferroptosis-related

DEGs was statistically higher than that of other genes (Figure 1C).

Therefore, these results indicated that the expression of ferroptosis

regulators was dysregulated in OS.
Ferroptosis regulators-based
classification correlated with
steosarcoma prognosis and immune
microenvironment

We downloaded TARGET-OS gene expression profiles from

UCSC Xena (https://xenabrowser.net/) and screened out 84
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patients with analyzable prognostic information as a training

cohort. Based on the previously mentioned 173 ferroptosis-

regulated genes, a total of 132 genes selected with MAD value

> 0.5 (43–45) were applied for NMF clustering analysis. Then,

unsupervised NMF clustering was performed to assess potential

gene expression features by dividing the original matrix into

subclusters. A comprehensive correlation coefficient determined

the most appropriate k value. Compared with heatmaps at k

values of 3, 4, and 5 (Supplementary Figure 1A), k = 2 generated

a heatmap that displayed the clearest boundary and best

consistency in every subcluster (Figure 2A and Supplementary

Figure 1B). Thus 84 patients were clustered into two subclusters,

50 patients in cluster one and 34 patients in cluster two. The

heatmap displays 132 selected ferroptosis regulators’ expression

levels in clusters one and two (Figure 2B). PCA analysis was

performed to verify the consistency of subcluster distribution

(Figure 2C), which is highly consistent. Based on the clinical

information of these patients in the TARGET cohort, survival

analysis (Figure 2D) was constructed and revealed that cluster

two OS patients exhibited poor survival outcomes compared

with cluster one patients (p < 0.001). To investigate the 28

specific infiltrating immune cell types in tumor progression,

ssGSEA was conducted (Figure 2E) and showed that cluster one
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was more positively correlated with immune cell infiltration

than cluster two. The specific immune cells in this ssGSEA

analysis included activated B cells, activated CD8 T cells,

regulatory T cells, macrophages, NK cells, and others.

Furthermore, based on the KEGG and GO databases, gene set

variation analysis (GSVA) was performed to investigate the

activation level of immune-related biological pathways in two

subclusters (Supplementary Figures 2A, B). Our results

demonstrated that cluster one is more relevant to various

immune-related processes and pathways, such as NK cell-

mediated cytotoxicity, primary immunodeficiency, T cell

receptor signaling pathway, and regulation of macrophage

fusion. Additionally, GO enrichment analysis was performed

to comprehensively evaluate the biological characteristics in two

ferroptosis-related subclusters and indicated that cluster one was

c lose ly corre la ted wi th immune-re la ted ac t iv i t i e s

(Supplementary Figure 2C), and cluster two was relevant to

ion transmembrane channel activity and intercellular adhesion

(Supplementary Figure 2D). In summary, these results suggest a

significant difference in prognostic outcomes and biological

characteristics within ferroptosis-related subclusters, and the

difference in prognosis is highly correlated with the

immune microenvironment.
A B

C

FIGURE 1

Expression of ferroptosis regulators in normal and OS cell lines. (A) Flow diagram of the study. (B) Heatmaps of the expression of 143 detected
ferroptosis regulators (up) and 21 significant DEGs (|LogFC| > 0.5, P <0.05) (down). Red represents high expression level and blue represents low
expression. The darker the color, the greater the significance. (C) Chi-square test for the significance of ferroptosis DEGs. * P < 0.05; ** P <
0.01; *** P < 0.001; **** P < 0.0001.
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Construction of prognostic signature
based on ferroptosis regulators in
osteosarcoma cohort
Cox regression analysis and the LASSO regression algorithm

were conducted to determine the prognostic value of ferroptosis

regulators in OS. Among the OS patients in the TARGET cohort,

initially, 22 independent prognosis-related genes were confirmed
Frontiers in Oncology 07
by univariate Cox regression analysis (P < 0.05) (Figure 3A).

Then, the LASSO algorithm filtered 11 ferroptosis regulators

that met the minimum lambda value from the 22 genes

(Figure 3B). Based on the LASSO results, stepwise multivariate

Cox regression analysis was performed to construct a prognostic

signature model (Figure 3C), which selected an optimal model

containing eight genes: ATF4, HILPDA, ATM, CBS, MUC1,

MT1G, PML, and ARNTL. Subsequently, every patient obtained

a risk score calculated based on the eight regulators’ regression
A B

D

E

C

FIGURE 2

Identification of OS subclusters by unsupervised NMF clustering with ferroptosis regulators in TARGET OS cohort. (A) NMF clustering heatmap
based on 132 ferroptosis genes (MAD > 0.5). NMF clustering divided 84 OS patients into two subclusters (we observed clearest boundary and
most appropriate consistency when the coexistence correlation coefficient k = 2). (B) Heatmap of expression of the 132 ferroptosis regulators in
two subclusters. Red represents high expression level and blue represents low expression. The darker the color, the greater the significance. (C)
PCA scatter diagram supporting that NMF clustering algorithm divided OS patients into two subclusters. (D) Kaplan-Meier analysis for overall
survival of OS patients in two subclusters. (E) Box diagram of ssGSEA analysis revealing expression of 28 immune cells in two subclusters.
Kruskal test * P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001; ns, no significance.
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coefficients and expression levels. Patients were classified into

high-risk and low-risk groups using the median risk score (46,

47). The Kaplan-Meier analysis revealed that patients in the

high-risk group exhibit poor overall survival compared with

low-risk group patients (P < 0.0001) (Figure 3D). The expression

of the eight risk genes is shown in the heatmap (Figure 3E). The

Scatter diagram displayed that the high-risk group correlated

more with death incidents (Figure 3E). Time-dependent ROC

(Figure 3F) indicated that the area under the curve (AUC) of 1-

year, 2-year, 3-year, and 5-year survival was 0.881, 0.945, 0.886,

and 0.858, respectively. Notably, it was most accurate for the risk

score to predict 2-year survival. Additionally, Kaplan-Meier

analyses based on these 8 genes respectively verified their

potential to serve as independent prognosis factors

(Supplementary Figures 3A–H). These results suggest the

potential value of the constructed risk signature in predicting

the prognosis of OS patients.
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Moreover, ssGSEA analysis revealed that the high-risk group

was likely to have less expression of immune cells, including

activated B cells, macrophages, and NK cells (Figure 3G). In

ESTIMATE analysis, Stroma, Immune, and ESTIMATE scores

were prominently lower (T-test P < 0.05) in the high-risk group

than those in the low-risk group (Figure 4A). Correlation

analysis revealed that risk score was negatively correlated with

Stromal, Immune, and ESTIMATE scores (Figure 4B). Relative

expression of immune checkpoints in two risk groups was also

visualized (Figure 4C), in which checkpoints PDCD1LG2,

CD274, TIGIT, and CD40LG were observed at relatively low

levels in a high-risk group. These results suggest that the risk

score based on the ferroptosis prognostic signature was

associated with immunosuppression and tumor progression.

In the validation set from GSE21257, a prognostic signature

was executed to calculate risk scores. Then, 53 OS patients were

divided into high-risk and low-risk groups using the median risk
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FIGURE 3

Construction and analysis of prognostic signature based on ferroptosis gene expression in TARGET OS cohort. (A) Forest plot of 22 independent
prognostic genes identified by univariate Cox regression analysis (P < 0.05). Blue represents statistical significance. The deeper the blue, the
greater the significance. (B) LASSO algorithm confirming minimum lambda value. (C) Forest plot of 8 regulators in optimal prognostic model
selected by stepwise multivariate Cox regression analysis. (D) Kaplan-Meier analysis exhibiting the overall survival of OS patients in high-risk
group and low-risk group graded by the optimal prognostic model. Red represents high risk group and blue represents low risk group. (E)
Distribution plots of risk scores and heatmap of signature genes expression in TARGET OS patients. (F) Time dependent receiver operating
characteristic (ROC) curve of the ferroptosis signature model in predicting prognosis of OS patients. (G) Box plot of ssGSEA analysis revealing 28
immune cells expression in two risk subgroups. Kruskal test * P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001; ns, no significance.
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score. The heatmap demonstrated expression of the eight risk

genes (Supplementary Figure 4A), and the scatter diagram

indicated increased death incidents in the high-risk group

(Supplementary Figure 4A). The Kaplan-Meier analysis

revealed that high-risk patients possessed poor overall survival

compared with low-risk patients (P < 0.05) (Supplementary

Figure 4B). Additionally, time-dependent ROC (Supplementary

Figure 4C) indicated that the area under the curve (AUC) of

1-year, 2-year, 3-year, 5-year, and 8-year survival was 0.658,

0.694, 0.754, 0.718, and 0.689, respectively.
Single cell sequencing investigated the
relevance between risk stratification and
immunity

To further investigate the correlation between ferroptosis

risk signature and immune infiltration in OS, we collected

scRNA-seq expression profile from GSE152048 on the GEO

database, containing primary, lung metastatic, and recurrent OS

lesions. Firstly, 16 cell subclusters were identified by “UMAP”

dimension reduction in primary OS lesions expression profile

(Supplementary Figures 5A, B). Expression proportions of the

eight signature genes among all detected cells in primary OS

samples were also visualized (Supplementary Figures 5C, 4D), in

which we observed a relatively high proportion in the expression
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of ATF4, HILPDA, and ATM. All subclusters were annotated

with feature genes and visualized into 12 cell clusters, including

chondroblastic OS cells, endothelial cells, fibroblasts, M2

macrophages, myeloid cells, NK cells, osteoblastic OS cells,

proliferating osteoblastic OS cells, T cells, and novel 1 and

novel 2 (Figure 5A). Then, the prognostic signature was

applied to calculate the risk scores of all cells and divided into

high-risk and low-risk cells by median risk score. We found that

chondroblastic OS cells, osteoblastic OS cells, proliferating

osteoblastic OS cells, a subset of M2 macrophages, and

myeloid cells were identified as high-risk cells, and immune

cells, including T cells and NK cells, were identified as low-risk

cells (Figure 5B). Subsequently, marker genes in high-risk cells

and low-risk cells were distinguished by the “FindMarkers”

function of the “Seurat” R package. KEGG enrichment analysis

based on these markers indicated that high-risk cells were

correlated with several cancer-related pathways, including

oxidative phosphorylation, HIF-1 signaling pathway, and

glycolysis/gluconeogenesis (Figure 5C). In contrast, low-risk

cells were associated with immune-related pathways, including

the T cell receptor signaling pathway, PD-L1 expression and PD-

1 checkpoint pathway in cancer, NF-kB signaling pathway, NK

cell-mediated cytotoxicity, and others (Figure 5D). Moreover,

the low-risk group was correlated with ferroptosis and apoptosis

(Figure 5D). Notably, these results support a risk score based on

constructed prognostic signatures positively associated with

tumor progression and negatively associated with immune
A
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FIGURE 4

Association between ESTIMATE scores and risk scores in TARGET OS cohort. (A) Box plot of Stromal score, immune score and ESTIMATE score
and in high-risk group and low-risk group. Red represents high risk group and blue represents low risk group. (B) Scatter plot shows correlation
between risk score and stromal score, immune score and ESTIMATE score. (C) Box plot of relative expression of immune checkpoints in risk
groups. * P < 0.05; ** P < 0.01; ns, no significance.
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infiltration and programmed cell death like ferroptosis and

apoptosis in primary OS lesions.

Additionally, 13 cell subclusters were identified in metastatic

OS lesions expression profile (Supplementary Figures 6A, B).

The proportion diagram exhibited a markedly elevated

expression level of MT1G compared with primary OS lesions

(Supplementary Figures 6C, D). Moreover, all subclusters were

annotated and visualized into 10 cell clusters, including

chondroblastic OS cells, endothelial cells, fibroblasts, M2

macrophages, myoblast, NKT/T cells, osteoblastic OS cells,

osteoclasts, proliferating osteoblastic OS cells and B cells

(Supplementary Figure 6E). Then the prognostic signature was

performed to calculate risk scores and divided all cells into high-

risk and low-risk groups. Chondroblastic OS cells, osteoblastic

OS cells, and proliferating osteoblastic OS cells were defined as

high-risk cells, and B cells, NK T cells, and T cells were low-risk

cells (Supplementary Figure 6F). Six-cell clusters were annotated

and visualized in recurrence OS lesions, including

chondroblastic OS cells, fibroblasts, myeloid cells, NKT/T cells,
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and novel cells. Prognostic signature classified all recurrence

cells into high-risk and low-risk groups, indicating that

chondroblastic OS cells, osteoblastic OS cells, and a part of

fibroblasts were high-risk cells, and NKT/T cells were low-risk

cells (Supplementary Figures 7A–F). The proportion diagram

exhibited the up-regulation of HILPDA, MUC1, and MT1G in

recurrence OS lesions. Therefore, these findings suggest a vital

role of five cancer-promoting genes: ATF4, HILPDA, ATM,

MUC1, and MT1G in affecting the OS progression, metastasis,

and recurrence.
Knocking down of HILPDA or MUC1
significantly inhibited the proliferation of
OS cells

We further analyzed the five cancer-promoting prognostic

genes and found that ATF4 (48), ATM (49), and MT1G (50)

have been reported in OS, while the functions of HILPDA and
A B
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FIGURE 5

Single-cell sequencing investigating the correlation between risk signature and tumor microenvironment in primary OS samples. (A) UMAP
visualization exhibits 12 annotated cell clusters based on primary OS single cell sequencing. (B) Risk cell clustering by ferroptosis signature
clusters all cells into high-risk cells and low-risk cells. Red represents high-risk cells and blue represents low-risk cells. NA represents partial
signature genes were not expressed in the single-cell sparse matrix. (C) KEGG enrichment analysis based on marker genes of high-risk cells.
(D) KEGG enrichment analysis based on marker genes of low-risk cells. Color represents adjusted p value (Benjamini-Hochberg), the darker the
red, the higher the significance; the darker the blue, the lower the significance.
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MUC1 remained unclear. We then chose HILPDA and MUC1

as the following research subjects to illustrate their functions in

OS. The expression levels of HILPDA (Figure 6A) and MUC1

(Figure 6B) were upregulated in OS tissues compared with

paracancerous normal tissues. Then we used small interfering

RNA to silence the expression of HILPDA and MUC1 in two OS

cell lines. In U2OS cells, si-HILPDA sequence-2 and si-MUC1

sequence-3 had the best interference effect, while in MNNG/

HOS cells, si-HILPDA sequence-3 and si-MUC1 sequence-1

were the optimal (Figures 6C, D). Correspondingly, compared to

normal control groups, the percentages of Edu-positive OS cells

and migrated cell numbers were significantly reduced in si-

HILPDA and si-MUC1 groups (Figures 6E, F). The proliferation
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and migration of OS cells were inhibited considerably after

interfering with HILPDA or MUC1 expression.
HILPDA and MUC1 influenced ferroptosis
resistance of OS cells

Both HILPDA and MUC1 were reported ferroptosis-related

regulators, but mechanisms of how they affect ferroptosis remain

to be further investigated. In our subsequent experiments, we

used gradient concentration of ferroptosis inducer RSL3 to treat

U2OS and MNNG/HOS, and 24h later, the CCK-8 method was
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FIGURE 6

Expression of HILPDA or MUC1 influenced the proliferation of OS cells. Representative immunohistochemical images of expressions of HILPDA
(A) and MUC1 (B) in OS and para-carcinoma tissues. (C) Relative protein levels of HILPDA and MUC1 after si-RNA transfection (n=3) in U2OS and
MNNG/HOS. (D) Relative mRNA expression levels of HILPDA and MUC1 using the optimal si-RNA (E, F) Representative images of EdU (red),
Hoechst staining (blue) and transwell (purple) in U2OS and MNNG/HOS cells after si-RNA transfection.The ratios of EdU-positive (red) cells and
migration cell numbers were calculated (n=3) after si-RNA transfection. Student t test ** P < 0.01; *** P < 0.001; **** P < 0.0001; ns, no
significance.
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used to detect the cell viability. Compared with the control

group, the si-MUC1 group exhibited poor cell viability. The si-

HILPDA group had a higher survival rate, with the greatest

difference when RSL3 concentration was 4mM in U2OS

(Figure 7A) and 8mM in MNNG/HOS (Figure 7B). Thus,

U2OS with 4mM RSL3 and MNNG/HOS with 8mM treatment

were used for subsequent experiments. Based on Flow

Cytometry, the lipid ROS level was increased in the si-MUC1

group and decreased in the si-HILPDA group (Figures 7C, D),
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indicating RSL3-induced activity was correlated with lipid

peroxidation, the marker of ferroptosis. We further assessed

the levels of several ferroptosis-related proteins (Figures 7E, F).

Among the control, si-HILPDA, and si-MUC1 groups, ASCL4

exhibited no significant difference, and xCT was decreased in the

si-MUC1 groups. Intriguingly, GPX4 seemed to decrease in the

si-MUC1 group of U2OS cells while slightly upregulated in the

si-HILPDA group of MNNG/HOS cells. This finding might

explain the earlier appearance of RSL3-induced ferroptosis in
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FIGURE 7

The effects HILPDA or MUC1 on ferroptosis resistance in OS cells. CCK-8 method detected the cell viability of U2OS (A) and MNNG/HOS
(B) after treatment by different concerntrations of RSL3 for 24h. One-way Anova test *P< 0.05; **P< 0.01; ***P< 0.001. Lipid ROS levels of RSL3
induced U2OS (C) and MNNG/HOS (D) after C11 BODIPY incubation based on flow cytometry. Levels of ferroptosis-related proteins including
ASCL4, GPX4 and xCT in RSL3 induced U2OS (E) and MNNG/HOS (F).
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si-MUC1 U2OS cells and the enhanced ferroptosis resistance in

si-HILPDA MNNG/HOS cells.
Predictive value on therapeutic strategies
of the prognostic signature

To explore the potential value of risk signature in predicting

therapeutic strategies, based on the Genomics of Drug Sensitivity

in Cancer (GSDC) database, spearman analysis was performed

to investigate the correlation between half-maximal inhibitory

concentration (IC50) of drugs and risk scores in cancer cell lines.

A total of 32 drugs were identified to be significantly associated

with the prognostic signature score (|cor| > 0.15, P < 0.05)

(Figure 8A). Among them, drug sensitivity of 10 drugs were

determined relevant to the score, including RTK signaling

inhibitor BIBF 1120 (cor = -0.22, P = 0.012), PI3K/mTOR

signaling inhibitor YM201636 (cor = -0.22, P = 0.019) and

IGF1R signaling inhibitor Linsitinib (cor = -0.16, P = 0.002).

However, drug resistance of 22 drugs were correlated with risk

score, including cell cycle inhibitor CGP-60474 (cor = 0.31, P =

0.003), RTK signaling inhibitor Sunitinib (cor = 0.26, P = 0.013),
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and DNA replication inhibitor Bleomycin (cor = 0.23, P =

0.003). Additionally, targeted signaling pathways of these

drugs were exhibited (Figures 8B, C) and indicated that drugs

whose sensitivity was positively related to risk scores mostly

target RTK signaling, kinases, IGF1R signaling, and ERK MAPK

signaling. However, drugs whose resistance was positively

related to risk scores targeted PI3K/mTOR signaling, ERK

MAPK signaling, DNA replication, and cell cycle signaling.

Therefore, established risk signatures might serve as potential

guidance for establishing therapeutic strategies.
Discussion

Therapeutic schedules and outcomes of OS patients have

remained significantly unimproved since the 1970s (3). Despite

decades of research, molecular exploration still needs to

diagnose the disease early, predict the progression and

improve the prognosis for OS, especially for lung metastasis

and chemotherapy resistance patients (51). Yanlong et al. found

that focally amplified long noncoding RNA (lncRNA)

expression on chromosome 1 (FAL1) was positively related to
A
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FIGURE 8

Influence of the risk signature on drug sensitivity and resistance in GSDC pan-cancer cell lines. (A) Bar diagram of correlation between IC50 of
anti-cancer drugs and risk scores in pan-cancer. Altitude represents the correlation, higher the altitude, higher the correlation. Color represents
statistical significance (p value), the more purple the color, the greater the significance. (B) Scatter diagram of correlation between targeted
signaling pathways and IC50 of significant anti-cancer drugs. Size of plots represents statistical significance (p value), the larger the size, the
greater the significance. Color of plots represents the correlation between targeted pathways and anti-cancer drugs. Red represents positive
correlation and blue represents negative correlation. Purple represents little correlation. (C) Bar diagram shows the counts of sensitive drugs and
resistant drugs regarding the targeted pathways.
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the distance metastasis, tumor stage, and negatively

prognosticate outcomes in OS patients (52). Wei et al. also

showed that cyclin E1 was a promising prognostic and

chemotherapeutic target for OS (53). These studies promoted

the potential and significance of exploring molecular biomarkers

for the onset and development of OS. In addition to these

molecular biomarkers, ferroptosis has been considered a

promising antitumor target mechanism in the occurrence and

progression of numerous cancers (13, 54, 55). Evidence suggests

multiple risk signatures based on ferroptosis genes could

effectively predict the diagnosis, prognosis, immune

microenvironment, and therapeutic strategies for cancers (56–

58). However, few studies reported the correlation between

ferroptosis mechanisms and OS progression.

Our study initially showed the dysregulation of ferroptosis

regulators with normal and patient-derived OS cell lines, which

was statistically significant by the Chi-square test (Figure 1).

Whereas biological deviations existed between specific DEGs in

cell lines and RNA sequencing results from OS patients, we set

MAD > 0.5 as gene screening criteria for following NMF

clustering analysis instead of using DEGs from OS cell lines.

In doing so, two distinct subclusters were identified with

different biological characteristics (Figure 2). OS patients in

cluster1 exhibited a more favorable prognosis than those in

cluster2, indicating that identified subclusters had significant

clinical implications. Meanwhile, ssGSEA and GSVA for

immune pathways and GO enrichment analyses suggested a

higher degree of immune cell expression and immune response

activity in cluster1 (Supplementary Figure 2). Existing studies

indicate an association between immune response and tumor

progression. Chi et al. (59) revealed that NK T cells promoted

antitumor immunity in liver tumors. Mary et al. (60) found that

the dysregulation of CD8 T cells would allow for tumor

progression. Moreover, the Toll-like receptor signaling

pathway benefits immune-related anticancer chemotherapy

and radiotherapy (61). Our results are consistent with these

dominant perceptions that the immune microenvironment’s

abundance correlates with better clinical outcomes. Given the

above discovery, we speculated that cluster1, having a better

prognosis, was more immune-activated than cluster2, and

ferroptos i s was involved in shaping the immune

microenvironment in OS.

Considering the heterogeneity and complexity of

individuals, we constructed a risk scoring system, “ferroptosis-

based risk signature,” to quantify the biological characteristics of

OS patients (Figure 3). High-risk scores with worse clinical

outcomes exhibited strong relevance to immunosuppression

and lower stromal scores (Figure 4). The significance of

immune and stromal scores in the ESTIMATE algorithm for

tumor classification and clinical outcomes was already testified

(62, 63). Hence we speculated that our constructed ferroptosis

score was more significant in predicting immunosuppression

than in predicting the stromal activation for OS malignancy.
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Moreover, immune checkpoints like PDCD1LG2, CD274,

TIGIT, and CD40LG were upregulated in low-risk groups,

reflecting the potential of immunotherapy in managing OS

(Figure 4C). These results suggest that ferroptosis-based risk

signature is reliable for comprehensively predicting the clinical

prognosis, immune response activity, and therapeutic strategy

for OS.

Among the 8 independent prognosis factors (Supplementary

Figure 3) in the signature, ATF4, HILPDA, ATM, CBS, MUC1,

and MT1G were significantly upregulated in the high-risk group,

whereas PML was down-regulated (Figure 3E), implying that

PML might serve as an antineoplastic factor in OS progression.

Chen et al. (64) found that expression of activating transcription

factor 4 (ATF4) promoted the malignancy of gliomas and

fostered tumor angiogenesis and proliferation, while ATF4

knockdown made cells susceptible to ferroptosis. Hypoxia-

inducible lipid droplet-associated (HILPDA) (65, 66) was

overexpressed in multiple tumor types, HILPDA was positively

correlated with tumor-associated macrophages (TAM)

infiltration, and immunosuppressive genes, such as PD-L1,

PD-1, TGFB1, and TGFBR1. Notably, Ataxia-Telangiectasia

mutated protein (ATM) was reported as a positive regulator

for ferroptosis (67). Radiotherapy-activated ATM and IFNg
from immunotherapy-activated CD8+ T cells would

synergistically enhance ferroptosis and tumor lipid oxidation,

indicating the correlation between ferroptosis agonists and

chemoradiotherapy via immunotherapy for the first time (68).

Li Wang et al. (69) found that inhibition of Cystathionine b-
synthase (CBS) triggered ferroptosis in hepatocellular carcinoma

and reduced tumor growth. Takahiro et al. (70) showed that the

transmembrane mucin MUC1 contributed to immunologic

escape in triple-negative breast cancer (TNBC) and that

targeting MUC1-C correlated with PD-L1 suppression to

activate the immune response and tumor cell killing. Emerging

evidence suggests the crucial role of metallothioneins (MTs),

including MT1G, in tumor formation, progression, and drug

resistance (71). As a tumor suppressor, promyelocytic leukemia

(PML) protein was mechanistically capable of inhibiting tumor

proliferation, migration, and invasion while promoting cell

senescence and apoptosis (72–74). A recent study also

reported that ubiquitination of PML promotes lung cancer

progression via fostering immunosuppression in the tumor

microenvironment (75).

Single-cell sequencing analysis further investigated the role

of ferroptosis signature in the tumor microenvironment and

malignant cell proliferation of OS (Figure 5). Neoplastic cells and

M2 macrophages were identified in the high-risk group, while

immune cells were mostly identified in the low-risk group.

Growing evidence has clarified the crucial role of TAMs in the

progression and metastasis of tumors (76, 77). Additionally,

Zhou et al. found the preventive effect of inhibiting M2

polarization of TAMs in OS metastasis (78). Moreover,

previous work indicated that the infiltration degree of
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intratumoral T cells was positively effective in predicting the

prognosis of colorectal cancer, ovarian cancer, and melanoma

patients (79–81). Existing research also reported the cytotoxic

effect of NK cells against tumor progression in multiple cancers

(82, 83). Our results implied that the prognostic signature could

predict tumor invasion and progression from the M2

polarization of TAMs. The risk score was negatively correlated

with anticancer immune cell infiltration in primary OS.

However, in the high-risk group, several cancer-promoting

pa thways were enr i ched (F i gu r e 5C) . Ox ida t i v e

phosphorylation is upregulated in multiple cancers, including

leukemias, melanoma, pancreatic ductal adenocarcinoma

lymphomas, and endometrial carcinoma (84). Similarly, high-

rate glycolysis can promote tumor proliferation in an aerobic

environment (85). Importantly, HIF-1 functions as a crucial

signal by coordinating tumorigenesis-related transcription

factors and signaling molecules (86); Ni et al. suggests that

inhibition of HIF-1a would unleash the activity of tumor-

infiltrating NK cells (87). In the low-risk group, immune-

related pathways were enriched as expected, including the T

cell receptor signaling pathway, PD-L1 expression and PD-1

checkpoint pathway in cancer, NF-kB signaling pathway, and

NK cell-mediated cytotoxicity. However, ferroptosis and

apoptosis were also correlated with low-risk cells (Figure 5D),

suggesting that ferroptosis risk score was negatively relevant to

ferroptosis occurrence and ferroptosis occurrence in OS cells

associated with immune system activation.

Based on the above findings, we chose two prognostic genes

to illustrate our results through functional experiments in OS

cells. HILPDA and MUC1 expression were verified to be

increased in OS tissues (Figures 6A, B), and we confirmed the

knockdown of HILPDA or MUC1 could inhibit the proliferation

and migration of OS cells (Figure 6). Notably, Hasegawa et al.

reported that MUC1-C forms a complex with xCT, which

interacts with xCT and thereby controls GSH levels (88) and

that xCT activity drives the expression GPX4 (89). Our results

showed that interference targeting MUC1 led to the decrease of

xCT, and GPX4 also exhibited downregulation. Therefore, the

decline in these two anti-ferroptosis proteins (89) might be the

potential mechanism of weakened ferroptosis resistance in

MUC1-knockdown cells (Figure 7). However, HILPDA-

knockdown cells seemed to have enhanced ferroptosis

resistance (Figure 7). Thus, the restraint in OS invasiveness

regarding HILPDA knockdown is probably unrelated to the

ferroptosis mechanism.

Adverse chemotherapy combined with surgical removal of

OS lesions is the primary management strategy for OS patients

(3), while chemoresistance has become a pivotal obstacle in

improving the therapeutic effect (90). The interaction between

ferroptosis and chemoresistance has recently been a topic of

investigation, which Zhang et al. (91) reports that cisplatin and

paclitaxel facilitated the secretion of miR-522 from cancer-
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associated fibroblasts, leading to ALOX15 suppression,

ferroptosis inhibition, and ultimately chemoresistance. Our

analysis for IC50 of anticancer drugs (Figure 8) showed the

potential therapeutic efficiency of ferroptosis regulators. The

ferroptosis risk score was correlated with sensitivity to drugs

targeting RTK, IGF1R signaling, and kinases and with resistance

to drugs targeting PI3K/mTOR, ERK/MAPK signaling, DNA

replication, and cell cycle signaling. These results imply that

patients with higher ferroptosis scores may benefit more from

chemotherapy drugs targeting RTK, IGF1R signaling, and

kinases. Ferroptosis regulators might be an adequate predictor

for evaluating chemoradiotherapy’s prognosis or targeted

therapies. Therefore, our findings provided new probabilities

for improving the management strategies for OS.

There are still some limitations in our study. Firstly, the data

capacity for OS in public databases is significantly less than that

for other tumor types, obstructing the exploration of OS

bioinformatics research. To enlarge the sample capacity of the

control group, we extracted control cell lines with inconsistent

standards to accomplish the variation analysis, which could

result in unpredictable biological deviations. More practicable

sequencing data is yet to be discovered. Likewise, the interaction

between stromal cell and ferroptosis signature remains unclear,

as well as the major function of stromal cells in tumor

progression and infiltration. Secondly, checkpoint PD-1/PD-L1

(CD274) has been reported as a pivotal mediator of

immunosuppression in the tumor immune microenvironment

(92, 93). Zheng et al. (94) demonstrated that PD-L1 was

negatively associated with prognosis , while PD-L2

(PDCD1LG2) positively correlated with overall survival in OS.

Given our contradictory result that the expression level of

checkpoint CD274 was higher in the low-risk group, further

inquiry about the molecular mechanisms of CD274 affecting

ferroptosis signature and OS prognosis is needed, and PD-L1-

related immune therapy on OS remains to be developed.

Thirdly, ferroptosis-related gene signature for OS is not a

novel subject. Lei et al. (95), Zhao et al. (96), Jiang et al. (97)

all reported prognostic ferroptosis signatures, which might make

our finding less novel. However, our study appears to be the first

to reveal the correlation between immune landscape and

ferroptosis signature from the perspective of a single-cell

sequence. Notably, we are the first to propose the potential

ferroptosis mechanism of specific genes, HILPDA and MUC1

regarding ferroptosis s ignature . From mechanist ic

investigations, we confirmed the cancer-promoting function of

HILPDA and MUC1. However, the potential mechanisms or

detailed pathways between HILPDA, MUC1, and ferroptosis

require further exploration. Furthermore, the specific roles of the

other six genes and their crosslinking remains to be explored.

Generally, existing data and results could only support the

predicting value of ferroptosis signature on OS progression,

immune activity, and patient prognosis. The activation
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mechanism of ferroptosis signature to intervene in the immune

system is lacking. Therefore, more experiments are needed to

explore the mechanism of ferroptosis signature in

OS immunology.
Conclusions

In summary, our study comprehensively evaluated the

expression pattern and prognostic value of ferroptosis

regulators in OS. Our study’s constructed prognostic model

based on ferroptosis regulators is promising in predicting

tumor progression, immune infiltration, and survival outcome

of OS patients. Moreover, the risk stratification had a guidance

value on chemoradiotherapy and might be correlated with the

efficacy of immunotherapy. We also confirmed the cancer-

promoting function of HILPDA and MUC1 and the

ferroptosis-resistant related mechanism of MUC1 in OS,

which suggested that MUC1 has the potential to become a

ferroptosis-related therapeutic target. However, further

exploration is necessary to reveal the potential mechanism

among these genes in OS progression and therapeutic efficacy.
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SUPPLEMENTARY FIGURE 1

Unsupervised consensus NMF clustering on TARGET cohort. (A)
Heatmaps of NMF clustering for k = 3, 4, and 5. (B) The correlation

among cophenetic, dispersion, evar, residuals, rss, silhouette and

sparseness coefficients with reference to different cluster number.

SUPPLEMENTARY FIGURE 2

Enrichment characteristics in two ferroptosis subclusters. (A, B) GSVA

analysis for NMF clustered ferroptosis subclusters based on KEGG
database and GO database. Red represents high expression level and

blue represents low expression. The darker the color, the greater the

significance. (C, D) GO enrichment analysis including biological process,
molecular function and cellular component based on high-expression
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genes in cluster one and cluster two. The length of bars represents gene
counts of GO terms. Color represents adjusted p value (Benjamini-

Hochberg), the redder the color, the greater the significance.

SUPPLEMENTARY FIGURE 3

Kaplan–Meier survival analysis for TARGET OS patients based on the

expression of ATF4 (A), HILPDA (B), ATM (C), CBS (D), MUC1 (E), MT1G
(F), PML (G), ARNTL (H).

SUPPLEMENTARY FIGURE 4

Validation of the ferroptosis prognostic signature in GEO OS cohort. (A)
Distribution plots of risk scores and heatmap of signature gene expression
in GEO OS patients. Red represents high expression level and blue

represents low expression. The darker the color, the greater the
significance. (B) Kaplan-Meier analysis exhibiting the overall survival of

GEO OS patients in high-risk group and low-risk group. (C) Time

dependent ROC curve analysis of the ferroptosis signature model in
predicting prognosis of GEO OS patients. * P < 0.05; ** P < 0.01; *** P

< 0.001; **** P < 0.0001.

SUPPLEMENTARY FIGURE 5

Single cell sequencing analysis of primary OS samples. (A) UMAP

visualized 16 cell subclusters identified using “FindClusters” function. (B)
Heatmap of top10 feature genes in 16 subclusters. Yellow represents high
expression level of genes, purple represents low expression. (C)
Expression of eight risk signature genes in all identified cells. Purple
represents high expression of signature genes. The more purple the

color, the higher the expression. (D) Expression proportion of eight
signature genes among all detected cells in primary OS samples. Red

represents the proportion of gene-positive cells and blue represents the

proportion of gene-negative cells.
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SUPPLEMENTARY FIGURE 6

Single cell sequencing analysis of metastatic OS samples. (A) UMAP
visualized 13 cell subclusters identified in metastatic OS samples using

“FindClusters” function. (B) Heatmap of top10 feature genes in the 13
subclusters. Yellow represents high expression level of genes, purple

represents low expression. (C) Expression of eight risk signature genes
in all identified cells. Purple represents high expression of signature genes.

The more purple the color, the higher the expression. (D) Expression
proportion of eight signature genes among all detected cells in metastatic

OS samples. Red represents the proportion of gene-positive cells and

blue represents the proportion of gene-negative cells. (E) UMAP
visualization exhibits 10 annotated cell clusters based on metastatic OS

single cell sequencing. (F) Risk cell clustering by ferroptosis signature
clusters all cells into high-risk cells and low-risk cells. Red represents

high-risk cells and blue represents low-risk cells. NA represents partial
signature genes were not expressed in the single-cell sparse matrix.

SUPPLEMENTARY FIGURE 7

Single cell sequencing analysis of recurrent OS samples. (A) UMAP
visualized 13 cell subclusters identified in recurrent OS samples using

“FindClusters” function. (B) Heatmap of top10 feature genes in the 13

subclusters. Yellow represents high expression level of genes; purple
represents low expression. (C) Expression of eight risk signature genes

in all identified cells. Purple represents high expression of signature genes.
The more purple the color, the higher the expression. (D) Expression

proportion of eight signature genes among all detected cells in recurrent
OS samples. Red represents the proportion of gene-positive cells and

blue represents the proportion of gene-negative cells. (E) UMAP

visualization exhibits 6 annotated cell clusters based on recurrent OS
single cell sequencing. (F) Risk cell clustering by ferroptosis signature

clusters all cells into high-risk cells and low-risk cells.
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