
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Francesca Negri,
University Hospital of Parma, Italy

REVIEWED BY

Shuiling Jin,
First Affiliated Hospital of Zhengzhou
University, China
Zhigang Bai,
Beijing Friendship Hospital, China

*CORRESPONDENCE

Clement Penny

Clement.penny@wits.ac.za

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Gastrointestinal Cancers:
Colorectal Cancer,
a section of the journal
Frontiers in Oncology

RECEIVED 19 August 2022

ACCEPTED 08 December 2022
PUBLISHED 06 January 2023

CITATION

Mirza S, Bhadresha K, Mughal MJ,
McCabe M, Shahbazi R, Ruff P and
Penny C (2023) Liquid biopsy
approaches and immunotherapy in
colorectal cancer for precision
medicine: Are we there yet?
Front. Oncol. 12:1023565.
doi: 10.3389/fonc.2022.1023565

COPYRIGHT

© 2023 Mirza, Bhadresha, Mughal,
McCabe, Shahbazi, Ruff and Penny.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Review
PUBLISHED 06 January 2023

DOI 10.3389/fonc.2022.1023565
Liquid biopsy approaches and
immunotherapy in colorectal
cancer for precision medicine:
Are we there yet?

Sheefa Mirza1,2†, Kinjal Bhadresha3†,
Muhammed Jameel Mughal4, Michelle McCabe5,
Reza Shahbazi3, Paul Ruff1,2 and Clement Penny1,2*

1Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand,
Johannesburg, South Africa, 2Department of Internal Medicine, Common Epithelial Cancer
Research Centre, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South
Africa, 3Hematology/Oncology Division, School of Medicine, Indiana University, Indianapolis,
IN, United States, 4Department of Biochemistry and Molecular Medicine, School of Medicine and
Health Science, The George Washington University, Washington, DC, United States, 5Department of
Anatomical Pathology, School of Pathology, Faculty of Health Sciences, University of the
Witwatersrand, Parktown, Johannesburg, South Africa
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths

globally, with nearly half of patients detected in the advanced stages. This is due

to the fact that symptoms associated with CRC often do not appear until the

cancer has reached an advanced stage. This suggests that CRC is a cancer with

a slow progression, making it curable and preventive if detected in its early

stage. Therefore, there is an urgent clinical need to improve CRC early

detection and personalize therapy for patients with this cancer. Recently,

liquid biopsy as a non-invasive or nominally invasive approach has attracted

considerable interest for its real-time disease monitoring capability through

repeated sample analysis. Several studies in CRC have revealed the potential for

liquid biopsy application in a real clinical setting using circulating RNA/miRNA,

circulating tumor cells (CTCs), exosomes, etc. However, Liquid biopsy still

remains a challenge since there are currently no promising results with high

specificity and specificity that might be employed as optimal circulatory

biomarkers. Therefore, in this review, we conferred the plausible role of less

explored liquid biopsy components like mitochondrial DNA (mtDNA), organoid

model of CTCs, and circulating cancer-associated fibroblasts (cCAFs); which

may allow researchers to develop improved strategies to unravel unfulfilled

clinical requirements in CRC patients. Moreover, we have also discussed

immunotherapy approaches to improve the prognosis of MSI (Microsatellite

Instability) CRC patients using neoantigens and immune cells in the tumor

microenvironment (TME) as a liquid biopsy approach in detail.

KEYWORDS

liquid biopsy, neoantigen, immune cells, exosomes, colorectal cancer, mitochondrial
DNA, circulating cancer associated fibroblasts (cCAFs)
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Introduction

Colorectal cancer (CRC) is third in terms of the most

common (6.1%) and second in terms of deadly (9.2%) disease

worldwide. It is estimated that by the year 2035, the total number

of deaths from rectal and colon cancer will increase by 60% and

71.5%, respectively. Overall survival (OS) 5 years after primary

diagnosis in stage I–II is 87-90%, decreasing to 68–72% in stage

III, and futher lowering to 11–14% in stage IV metastatic CRC

(mCRC) (1–5). Today therapeutic algorithms for CRC contain

endoscopic and surgical resection, systemic adjuvant

chemotherapy, radiation therapy, targeted therapy, and

immunotherapy (6, 7). Due to the poor response of numerous

colorectal patients to existing therapeutic approaches and since

CRC survival is highly dependent on primary diagnosis and

early treatment, a known significant biomarker that can predict

the beneficial response as early as possible is immediately

required. To date, tissue biopsy is one of the best standard

options for tumor identification. Though, the main drawback is

that it is problematic to screen disease development over

frequent biopsies due to recurrent injury and poor patient

compliance. Tissue removal also carries hazards, and it is

unapproachable for some cancer cases (8, 9). Also, biopsy has

some significant boundaries: it is invasive, expensive, painful has

technical boundaries related to tumor location, and is not

effective in pointing to tumor cells subpopulations (10–12).

Indeed, there is a critical need to find a minimally invasive or

non-invasive method to screen the high-risk population and

detect CRC presence in asymptomatic patients at an earlier and

curable stage.

The awareness of liquid biopsy is that of identifying

circulating biomarkers to distinguish cancer cells released from

the primary tumor and/or metastasis sites (13–15). The meaning

of ‘liquid biopsy’ describes the importance of identifying cancer-

derived biomarkers in blood or other body fluids, such as stool,

saliva, cerebrospinal fluid or urine (16–22). The very noteworthy

targeted constituent studied in liquid biopsy is circulating tumor

DNA (ctDNA), circulating tumor cells (CTC), circulating tumor

RNAs, and exosomes (23–27). Although they are the most

studied component for liquid biopsy, CTCs alone cannot be

considered as a clinical diagnostic tool due to the debate over

their clinical utility (28). However, it has been reported that

tumor cells communicate not only with additional malignant

cel l s , but also with the const i tuent of the tumor

microenvironment (TME), suggesting their stability in

circulation is highly reliable on TME (29, 30). So, here we

hypothesized that CTC research should be commenced

concurrently with other TME components, such as, cancer

associated fibroblasts (CAFs), various immune cells, extra-

cellular vesicles (EVs) etc. Furthermore, another noninvasive

approach being studied is the use of ctDNA, exosomal miRNAs,

and proteomics; which though in primary stages, needs to be
Frontiers in Oncology 02
elucidated in-depth. Additionally, we have highlighted the

benefits of immunotherapy treatment for MSI-high (MSI-H)

CRC patients and use of neoantigens and immune cells as a

liquid biopsy approach for better prognosis.

Overall in this review, we have described the concept of

liquid biopsy and its applications in the management of CRC

patients (Figure 1). Furthermore, we have highlighted the role of

less explored components, such as organoid models of CTC,

immune cells in TME, mitochondrial DNA (mtDNA), and

neoantigens in the liquid biopsy approach. These approaches

could be used noninvasively to gain knowledge about molecular

characterization and the mechanism of disease progression

in CRC.
Tumor-microenvironment components

The awareness of the tumor microenvironment (TME) has

been proposed more than one hundred years ago. In the

meantime, cancer research has discovered many several

noteworthy roles of TME components not only in cancer

metastasis, but also in cancer metabolism and development (31–

33). TME consists of a web of cancer cells, stromal cells, immune

cells, CAFs, exosomes, and extracellular matrix. In this

composition, immune cells and stromal cells are the two major

non-tumor cell types in addition to tumor cells (34). Interestingly,

TME Web found it possible to achieve immune organization of

cancers concerning prognosis, chemotherapy, and prediction of

immunotherapy response (35–37). In the current scenario, several

studies on cancer have shown that TME meaningfully affects

cancer cell proliferation and development and recommends

potential worth in the diagnosis and prediction of cancer

prognosis (38–40). In addition, it has been suggested that TME

is highly affected by the development of CRC (41–43).

Furthermore, the TME components play significant roles in

defining CRC with poor prediction and immune escape (44,

45). Together, the significant function of TME in the

development and metastasis of CRCs and the investigation of

the essential molecular mechanism that makes the interaction

between the transformation of TME and the progression of CRCs

have fascinated important considerations over the past era. But

until now, a comprehensive understanding of the TME in CRC

development and metastasis has yet to be discovered.
Circulating tumor cells and circulating
cancer-associated fibroblasts: Symbiotic
siblings and potential drug targets

CTCs are the representative of the cancer cells detached

from the primary tumor which enter into the circulatory system

(blood, lymphatic system) to cause metastasis (46, 47).

Undoubtedly, CTCs have been used as a dynamic component
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of liquid biopsies to investigate the presence of residual cancer

cells, track treatment response, and prediction of disease

recurrence, which is suggestive of the fact that CTCs could

play a critical role in the early diagnosis and prognosis of various

cancers, including the development of personalized therapeutic

options (48–53). Compared to other cancer biomarkers, CTCs

are cancer cells that could carry biological and molecular

evidence of cancer cells that supports single-cell analysis and

directly provide information about ongoing alterations in cancer

cells at all different stages of disease progression (54–56). Based

on the evidence, CTCs have a favorable role in early prediction,

therapeutic observation, and disease progression and would be a

significant drug target for various cancers (57–60). The existence

of clusters of CTCs has been reported during the last decade, and

several groups have described the clinical relevance of CTC

clusters. Although the prognostic value of CTC has been well

validated, limitations are preventing the use of CTC

enumeration in routine clinical practice concerning the use of

CTCs either as a clinical marker for early cancer detection, or as

a surrogate endpoint in interventional studies (61). These

limitations include uncertainty about the specificity of CTC

detection assays and justifiable concerns that CTC detection

alone may be misleading or inadequate, especially when applied

in the early detection of metastases. Additional biomarker assays

can enhance the specificity and broaden the application of

“liquid biopsies” in early cancer detection, monitoring disease
Frontiers in Oncology 03
progression, and determining response to therapy (Figure 2). To

relate to a single cancer cell, CTC clusters are comparatively low

and rare in circulation, but reveal noteworthy, better resistance

to apoptosis and additional metastatic potential (62–64).

Likewise, research on clusters of CTCs in the peripheral blood

of patients with CRC has revealed that the clusters of CTCs are

not malignant, but relatively tumor-derived endothelial cells

connected to the vascular features; particularly, the separation

and counting of these clusters of CTCs can distinguish between

healthy individuals and patients with early-stage CRC with a

high degree of precision (IIa) (48, 65).

Because CTCs can be detected in the peripheral blood of

cancer patients, it follows that a “liquid biopsy” to detect tumor

components in blood will not only contain tumor cells but will

also contain other cellular components of TME. Cancer-

associated fibroblasts (CAFs) – responsible for cancer cell

proliferation, migration, invasion, drug resistance, and other

important biological processes through secretion of cytokines,

chemokines, and growth factors - are a heterogeneous

population and an essential component of cells in TME

(Figure 3) (66). Various studies have revealed their inevitable

role in the regulation of almost all hallmarks of cancer, resulting

in tumor progression and metastasis (67–69). According to Dr.

Paget’s seed and soil theory, the seed has been repeatedly studied

as cancer stem cells (CSCs), resident? cancer cells, and more

recently as CTCs; whereas soil is represented as the TME (70). It
FIGURE 1

Liquid biopsy components in CRC and their clinical utility. CTCs are shedded from the tumor into the blood vessels where they can release their
components: nucleic acids and exosomes with tumor-specific cargo material. For the analysis of these molecules, blood can be taken out, and
plasma or serum further processed for the extraction of the desired constituents. From the blood circulation, these molecules can be filtered
into saliva and urine which can also be collected and further analyzed. Each of these constituents delivers one or more levels of tumor
information. The quantity of the concentration of single proteins or panels including numerous tumor proteins is the present gold standard in
cancer management.
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is very well known that in the CTC population, most CTCs die at

an early stage when they enter the circulation due to the

collective effects of environmental and mechanical factors, for

example, oxidative and sheer stress and immune response (48,

71). Consequently, only a few drug-resistant cells can escape and

spread by undergoing a series of modifications to survive the

changing environment. By looking at this theory, it is proposed

that caves form clusters with CTCs to provide a suitable TME to

CTCs and/or CTSCs (circulating tumor stem cells) for their

persistence during metastasis in the circulation.

In CRC, various studies have reported clinical applications of

CTC for early diagnosis, prognosis, and treatment monitoring

using different techniques (48). In addition to this, recent studies

revealed the importance of the CTC cell line in classifying

cancer-associated proteins (neoantigens) and pathways

connected to cancer cell stemness and metastasis, as well as in

assessing anticancer drug sensitivity (72–76). Agarwal et al.

identified clusters of cCAFs/CTCs and discovered that the
Frontiers in Oncology 04
cumulative number of these clusters is associated with cancer

growth and metastasis (77). Although these studies have shown

the presence of CAFs outside of the primary tumor site or

metastatic lesions, there has been little direct evidence showing

the presence of CAFs in the circulation of cancer patients in a

clinical setting. In addition to this, several biomarkers, genes,

and proteins have been extremely highly expressed in CAFs and

also have poorer disease progression and overall survival in CRC

(Figure 4). To date, the importance and use of CTCs in clinical

setting for CRC is increasingly being established (Table 1) (26,

78–88), but the low population and vast heterogeneity of CTCs

in addition to the progress of diagnosis and analysis approaches

have few common approvals to use CTCs as a new biomarker.

Thus, impeding cCAF/CTC complex formation or dismantling

them, as well as clusters with other types of cells, may open new

frontiers for controlling cancer or preventing metastasis.
Exosomal miRNAs/ctDNA/cfDNA

A stimulating realm of tumor research has advanced over the

past decade by concentrating on extracellular vesicles (EVs),

known as exosomes, to answer pivotal challenges around

therapeutics, diagnosis, and prevention. Exosomes are known

as vesicles formed via the endocytic pathway and ranging in size

from 30-140nm in diameter. As a new significant focus on the

enigma of cancer, exosomes signify a noteworthy characteristic

of biological signaling between cells and are also used as novel

biomarker identification strategies (89–91). In addition,

numerous studies have discovered that body fluids harbor

abundant quantities of EVs, the constituent’s quantity of

which varies based on the physiological or pathological state of

an individual (92, 93). These diverse populations of

extracellular? vehicles transfer detailed cargo such as miRNA,

proteins, and lipids from one cell to another to stimulate a

specific response. Exosomes can be found in all body fluids and

can be detected in liquid biopsies (94). This section focuses

primarily on exosomes containing miRNAs, proteins, and

mRNA that appear to be consistently altered in patients with

CRC. To date, there are only a minority of publications aimed at

understanding exosomes in relation to CRC. EVs released from

CRC cells can reveal vital evidence about significant molecules

and signaling pathways involved in the growth and development

of CRC (95, 96). Thus, the existence of tumor-derived EVs in

circulating body fluids makes them prospective innovative

biomarkers for early prognosis, diagnosis, and prediction of

CRC cancer.

Exosomes have a prominent role in cell proliferation,

metastasis, and epithelial-to-mesenchymal transition (EMT),

as well as by supporting the angiogenic switch and the

remodeling of the extracellular matrix (ECM) in CRC (97, 98)

(Figure 5). In recent research, it was observed that CRC cells

released more exosomes in hypoxic conditions (99, 100).
FIGURE 2

Overview of the CTCs detection technologies and the potential
clinical applications of CTCs in CRC. CTCs isolation can usually
be divided into two groups: physical isolation designed to exploit
the differing physical belongings of blood components, such as
size, deformity, and charge; and biological isolation, often
utilizing antibody-based capture methods to enrich CTCs or
deplete various blood cells. Following isolation, CTCs are open
to a variety of downstream applications, focusing primarily on
one of three categories: enumeration, characterization, and
expansion.
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Besides, these exosomes encourage cell proliferation via

shortening the mitosis period and triggering STAT3 signaling

in CRC (95, 101). Furthermore, Mulvey et al. demonstrated that

co-culture of the CRC HCT116 cell line exosomes with normal

colon cells can increase its clonogenicity (102). Numerous

cellular components in exosomes have been reported that

could contribute to CRC metastasis through various molecular

mechanisms. A recent research report suggested that

glycoprotein A repetition-dominant (GARP) knockdown

Mesenchymal stroma/stem-like cells prevent the cell

proliferation and invasion of mouse colorectal cancer cells

through exosomes (103).

Exosomal miRNAs have been significantly concerned in

several exosome-mediated biological functions in cell-cell

communication in numerous cancers including CRC (104,

105). MiR-21-5p and miR-155-5p have been revealed to be

highly expressed in macrophage-derived M2 exosomes, which

facilitated the migration and invasion of CRC (106, 107). In

addition to this, it also observed that exosomes from bone

marrow-derived mesenchymal stem cells (BMSCs) can inspire

stem cell-like features of colorectal cancer through miR-142-3p
Frontiers in Oncology 05
(108). In addition, CAFs, TAM, and MSC exosome proteins are

also significant mediators of cancer and TME regulation. Gang,

N, and his team used proteomic analysis of CAFs and serum-

derived exosomes that have recognized QSOX1 as a biomarker

for the early prediction and detection of CRC non-invasively

(109). Current research also described novel types of RNAs, such

as Piwi-interacting RNA (piRNA) and tRNA-derived small RNA

(tsRNA), along with miRNA, lncRNA, and cicrRNA (110, 111).

There has only been limited research into the current existence

and role of these types of non-coding RNAs in CRC exosomes.

Thus, even though the therapeutic approach of exosomes has

revealed countless application scenarios in colorectal cancers,

many problems remain before we can routinely use exosomes in

the clinical treatment of CRC.

In most solid tumors, CAFs are the significant cellular

components of the TME (112). CAF-derived exosomes could

stimulate neoplastic angiogenesis and cancer cell growth in CRC.

Furthermore, these can also activate cancer cell dedifferentiation

through the Wnt signaling pathway, therefore increasing the

chemical resistance of CRC (95, 113). Compared to RNA and

protein, there is little research on exosomal DNA. In previous
FIGURE 3

Fundamental Functions and associated mechanisms of CAFs in CRC hallmarks. The figure shows the role of CAFs in CRC biology, including
tumorigenesis, proliferation, angiogenesis, invasion and metastasis, stemness, therapy resistance, and tumor immunity.
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research, it was observed that the gDNA from exosomes is

widely used in liquid biopsy, and it has a great impact on

tumor immunity and metabolism (114–118). The KRAS and

BRAF mutation was identified in serum exosomes of patients
Frontiers in Oncology 06
with CRC with greater sensitivity and specificity (119, 120).

Furthermore, it was also revealed that exosome gDNA plays a

significant role in immunity in CRC patients (117). Current

research studies have revealed that the number of exosomes in
FIGURE 4

Effects of CAFs in CRC. A numeral of biomarkers that are extremely expressed in CAFs, like a-SMA, fibroblast activation protein alpha (FAP),
fibroblast-specific protein 1 (FSP-1), platelet-derived growth factor receptor-a (PDGFRa) and PDGFRb have now been commonly used to
classify or isolate CAFs from the pool of fibroblasts present in the whole body. Described genes and proteins showed poorer disease
progression, recurrence-free survival, and overall survival. Taken together, these markers could be used as liquid biopsy approach for early
detection and treatment prognosis in CRC patients.
TABLE 1 List of CTCs biomarkers and its clinical use in CRC.

Biomarkers Methods Clinical use

EpCAM CellSearchTM, CanPatrolTM Predictive and prognostic

CEA RT-PCR Prognostic

CK19 RT-PCR, CK19-Epispot Prognostic

CD133 Drug sensitivity analysis of CTC lines Prognostic

CKs RT-PCR Prognostic

VIM CanPatrolTM Prognostic

TWIST1 CanPatrolTM Prognostic

CD26 Drug sensitivity analysis of CTC lines Prognostic

CD44v6 Drug sensitivity analysis of CTC lines Prognostic

KRAS Label-free Vortex technology Prognostic

BRIEF Label-free Vortex technology Prognostic

PI3KCA Label-free Vortex technology Prognostic

AKT2 CanPatrolTM Prognostic

SNAI1 CanPatrolTM Prognostic
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the body fluid of CRC patients is markedly higher compared to

healthy controls (98). Hence, the studies on CRC exosomes must

be encouraged due to this increased presence of CRC exosomes

that can likely be used during cancer treatment.

Another promising biomarker that has established

noteworthy consideration in the current era is circulating

tumor DNA (ctDNA). ctDNA comprises DNA fragments that

are released by fragmenting tumor cells into the blood

circulation and in principle should have genetic and epigenetic

alterations identical to the cancer cells they initiated from (121,

122). Numerous types of DNA modifications have been noticed

with adaptable frequency in the ctDNA of patients with CRC.

The revealing of mutant DNA in plasma or serum from a CRC

patient has been associated with diagnosis, prognosis, and

therapeutic response in numerous reports (123). Furthermore,

in CRC patients KRASmutations in ctDNA have been identified

in different stages, with the highest level found in the more

advanced stage (124–126). Furthermore, recent studies found

that ctDNA was detected postoperatively in approximately 5% to

30% of patients with stage II to III colon cancer and has

established a strong prognostic capacity in numerous

observational studies (127). Since the last decade, in CRC, the

introduction of next-generation sequencing (NGS) technology

has led to the discovery of ctDNA in plasma, which is an

encouraging practice (128, 128). Some research reports

revealed that ctDNA methylation has a notable sensitivity

compared to traditional serum tumor markers in patients with

initial-stage CRC and is a significant biomarker for the diagnosis

of CRC (129–131). Currently, personalized immunotherapy

based on neoantigens requires tissue samples to obtain
Frontiers in Oncology 07
accurate evidence of somatic genomic modifications in

individual cancer patients. Although it is from time to time

problematic to obtain many tumor tissues; consequently, the

development of ctDNA analysis could be significant in the

enlargement of neoantigen-based treatment, even though it is

still puzzling. Together, current potential clinical trials with

ctDNA focus on the diagnosis, surveillance, and prognosis of

CRC. With the rapid progress of research technology, liquid

biopsies will play a crucial role in the diagnosis and treatment of

CRC. In Tables 2, 3 (132–179), we have listed circulating

miRNAs, lncRNAs, circ-RNAs and proteins as diagnostic

biomarkers in CRC patients.
Mitochondrial DNA: Unexplored arena

In the recent era, the standard for the molecular profile of

colorectal cancer (CRC) is tissue biopsy. However, they are

inadequate concerning about sampling rate, illustration of

tumor heterogeneity, and sampling can expose patients to

antagonistic side effects. To study cell-free DNA (cfDNA)

from the various body fluids, this being a component of a

liquid biopsy, is relatively invasive, but highly significant to

discover all tumor-specific mutations. Furthermore,

mitochondria have their circular genome and therefore

contribute to the total cfDNA content in the blood. MtDNA

plays an essential role in mitochondrial biogenesis and regulates

mitochondrial function and the regulation of apoptosis (180–

182). A single cell comprises up to several thousand copies of

mitochondrial DNA (mtDNA) contrasting to two copies of
FIGURE 5

Roles and application of exosomes. Tumor-derived exosomes promote cancer growth and metastasis. Through multiple mechanisms, they
participate in cancer growth and metastasis by reshaping TME resulting into EMT, cell proliferation, apoptosis inhibition, immunosuppression,
and angiogenesis. Exosomes derived from cancer cells are enriched with proteins, mRNA, miRNA, lncRNA, DNA etc. that are more abundant in
cancer cells than in normal cells. Thus, exosomes may be used as biomarkers for cancer diagnosis, prediction, and treatment.
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TABLE 2 Non-invasive biomarkers (miRNA, Proteins, lnc RNA and circ-RNA) used for CRC detection till date.

Circulating nucleic acids and proteins in CRC

Sample miRNA Protein lncRNA Circ-RNA

Plasma miR-125a-3p, miR-193a-5p, miR-320c, miR-23b, miR-27a, miR-760, miR-130a, miR-29a,
miR-210-3p, miR-92a, miRNA-18a, miR-100, miRNA-19a, miR-30e, miRNA-335, miR-
16, miRNA-29a, miR-144-5p, miRNA-15b, let-7i, miRNA-19b, miR-486-5p, miR-20a,
miR-181a-5p, miR-155, miR-30d-5p, miR-21, miR-24, miR-92, miR-29b, miR-106a,
miR-194, miR-200c, miR-320a, miR-372, miR-375, miR-96, miR-423-5p, miR-92a, miR-
601, miR-221, miR-760, miR-182, miR-320d, miR-506, miR-7, miR-4316, miR-93, miR-
223, miR-31, miR-1290, miR-181b, miR-431, miR-203, miR139-p3, miR-139-3p, miR-
409-3p, miR-18a, miR-22, miR-25, miR-29, miR-19a, miR-19b, miR-15b, miR-29a, miR-
335, let-7g, miR-15b-5p, miR-18a-5p, miR-29a-3p, miR-335-5p, miR-19a3p, miR-19b3p

CPNE3
CEA
Melanotransferrin

LNCV6_116109
LNCV6_98390
LNCV6_38772
LNCV_108266
LNCV6_84003
LNCV6_98602
91H
PVT-1
MEG3
ATB
CCAT1

circ-133
circPACRGL
circ-ABCC1
circ_0000338
ciRS-122
hsa_circ_0004585
circ-FBXW7

Serum miR-17-92a, miR-99b-5p, miR-19a, miR-150-5p, miR-1229, miR-548c-5p, miR-25-3p,
miR-638, miR-17-5p, miR-33a-5p, miR-92a-3p, miR-210-3p, miR-135a-5p, miR-208b,
miRNA-21, miR-139-3p, miRNA-31, miR-145, miRNA-92a, mir-92a, let-7g, miR-143,
miRNA-181b, miR-21-5p, miRNA-203, miR-21, miR-96, miR-221, miR-139a-5p, miR-
196b, miR-338-5p, miR-210, miR-1290, miR-103, miR-720, miR-106a, miR-17-3p, miR-
92, miR-125, miR-223, miR-20a, miR-150, let-7a, miR-4516

FOXD2-AS1,
QSOX1, NRIR,
PKM2,
LOC_009459,
NNT-AS1, H19,
CCAL, UCA1,
HOTTIP, PrP(C),
CA11-19,
MIC-1 (GDF15),
IL-6, IL-8,
Growth-related
gene, product b1,
Cyr61, B6-
integrin, TIMP-1,
RBP4, THBS2,
TFF3, COL3A1,
COL10A1,
AZGP1,
Angiopoietin-2 7,
Kininogen

CCAT1
UCA1
HOTAIR
LOC285194
Nbla12061
RP11-462C24.1
BLACAT1

circ_0004771
circFMN2

Stool miR-21, miR-29a, miR-135, miR-224, miR-92a, miR-7, miR-938, miR-222, miR-146a,
miR-143, miR-138, miR-127-5p, miR-29b, miR-9, iR214, miR-199a-3p, miR-196a, miR-
183, miR-17, miR-20a, miR-96, miR-106a, miR-134, miR-135b, miR-221, miR-18a, miR-
223, miR-451, miR-144, miR-17-3p, miR-135b-5p, miR-421, miR-27a-3p

Haemoglobin
(FIT)
M2-PK
MMP 9
F
rontiers in O
ncology 08
TABLE 3 Non-inavsive Protein and miRNA Panel used for CRC detection.

Sample Protein Panel miRNA panel

Serum RBP4 and CEA
TFF3 and CEA
sDC-SIGN and sDCSIGNR
IGFBP-3 and CEA
AZGP1, CEA and CA19-9
IGFBP2, DKK3 and PKM2
CEA, hs-CRP, CYFra21-1 and Ferritin

miR-23a-3p, miR-27a-3p, miR-142-5p, miR-376c-3p
Let-7a, miR-1229, miR-1246, miR-150, miR-21, miR-223, mir23a
miR-19a-3p, miR-21-5p, miR-425-5p
miR-301a, miR-23a
miR-20a, miR-486
miR-223, miR-92a

Plasma BAG4, IL6ST, VWF, EGFR and CD44 miR-103a-3p, miR-127-3p, miR-151a-5p, miR-17-5p, miR-181a-5p, miR-18a-5p,
miR-18b-5p
miR21, miR25, miR18a, miR22
miR-1290, miR-320d

Stool Complement C3, Lactotransferrin, Haemoglobin subunit a1 and
Haptoglobin

(miR-17, miR-18a, miR-19a, miR-19b, miR-20a, and miR-92a
miR-144-5p, miR- 451a miR-20b- 5p
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nuclear DNA (nDNA). Therefore, investigating hypothetically

cell-free mitochondrial DNA (cf-mtDNA) could give an

advanced level of understanding, rather than the examination

of cell-free nuclear DNA (cf-nDNA). Furthermore, it was

reported that mtDNA has a high mutation frequency and in

CRC and other cancers fundamental molecular modifications

(183, 184). Based on reported research literature, assessment of

cf-mtDNA as a significant biomarker is stimulating for liquid

biopsies and as a neoantigen due to high copy number might

enable discovery of even minor quantities of ctDNA and their

molecular modifications. Besides, earlier research has exposed

that cf-mtDNA content and fragmentation design distinguish

between cancer patients and healthy individuals, therefore also

potentially serving as an indicative marker of disease (185–188).

Though cf-mtDNA has been not completely categorized yet and

an efficient method for comprehensive examination is

still missing.

Rigorous research has been done to understand the

hereditary risk issues of CRC. Thus far, over 40 nuclear

genome alternatives significantly related to CRC risk have

been recognized, counting SNP rs10911251, rs1321311,

rs1035209, and so on (189, 190). But such loci account for

only about 8%–16% of CRC cases, signifying that additional

genetic risk factors of CRC still possibly need to be discovered.

Remarkably, numerous somatic mtDNA mutations and

copy number alterations have also been commonly recognized

in a wide variety of malignancies, including CRC (191). In CRC

it was observed that mtDNA copy number is increased during

the cancer process. Previous studies by Guo et al. have described

that the reduction of mtDNA made by the mitochondrial

transcription factor A (TFAM) mutation plays a potential role

in cancer progression and resistance to cisplatin in MSI CRC

(192). In addition to this, a report from China investigated 104

colorectal cancer patients and found that the percentage of

mtDNA deletion of 4977 bp of mtDNA in CRC tissues was

significantly reduced (193). Furthermore, recent research

revealed that mitochondrial cfDNA had a surprisingly higher

plasma copy number in healthy subjects than in CRC patients

(188). Though, today the possible contribution of germline

mtDNA differences in CRC expansion is a smaller amount of

knowledge available including liquid biopsy. Together, we are

confident that liquid biopsy is likely to be a substitute standard

approach for monitoring the advanced development of genomic

changes during cancer progression. Liquid biopsy has revealed

remarkable effectiveness in a variety of applications and will

contribute to personalized oncology.
Organoids

Tumor organoids were reviewed by Tatullo et al. with 77

references (194). To date, scientific cancer research has been

conducted in in vitro experiments, performed on tissue culture
Frontiers in Oncology 09
plates and two-dimensional (2D) samples. In this framework,

the development of colonies and spheroids has been determined

as morphological indicators of cancer and stemness of cancer

cells (195). In the current research scenario, 3D cultures systems

have significantly enhanced in-vitro tumor models based on new

biological mediums that mimic the extracellular environments.

Organoids have been described more extensively in many

reports in the scientific research literature. The overview of

patient-derived organoids (PDO) has allowed for more

representative cancer modeling, highlighting their excessive

significance in biomedical applications, translational medicine,

and personalized therapy approaches (196, 197). Furthermore,

patient-derived organoids have certain advantages such as stable

morphology, gene expression, and cell signaling, heterogeneity

with cancer cells in the tumor, significant drug screening, low

cost, and being easily generated “in a dish” (198). The

application of the organoid culture method to liquid biopsy is

a promising approach that combines the advantages of organoid

cultures with the boundless potential of the liquid biopsy

component for precision oncology.

Sato and their team first developed an organoid model from

mice in the CRC research field and later they also developed an

organoid culture protocol that is acceptable and also suitable for

colon epithelial cell culture (199). In CRC, PDO developed from

metastases taken by serial biopsies at various time points, and

various counties of severely pretreated CRC patients were taken

as preclinical models in clinical trials studies (200, 201). Those

organoids were further treated with anti-cancer drugs, and the

outcomes were associated with patients’ responses in clinical

trial studies. The outcome suggested the ability of PDO to mimic

TME in vivo, notable molecular and functional levels, and the

most important aspect being to predict patient treatment

response (202). Clinically active KRAS signaling suppressors

and various drug groupings were observed against non-

cancerous colon and CRC organoids (203). In recent research

Zhao et al. used the organoid culture approach to identify the

metabolic phenotype in cancer stem cells and differentiated

cancer cells in CRC (204). To date, only one study has been

done on organoids derived from CTCs and it revealed that CTC-

derived organoids were more sensitive than Xenograft-derived

organoids, to drugs affecting the Survivin pathway, which

significantly decreased the levels of Survivin and X-linked

inhibitor of apoptosis protein (XIAP), that induce CTC

derived organoid death. Based on this first study, future use of

the organoid approach to CTCs may open new viewpoints by

providing extraordinary visions of the cancer growth and

metastatic process, by allowing the discovery of novel CTC

markers, beneficial treatment targets, and chemoresistance

mechanisms (205).

Notwithstanding organoid significant advantages, patient-

derived organoid (PDO) also possesses certain limitations such

as abnormalities, noise during drug screening, development and

standardization of organoid culture, and lack of major TME
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components (206–208). Based on the published literature, PDO

is a fascinating in vitro model for the development of preclinical

drugs in CRC, because of its ability to mimic human

physiopathology. Taken together, the potential of the organoid

approach for basic and clinical studies of CRC is greater than the

treatment of patients with CRC in the new time of personalized

medicine. Furthermore, it will open a new door for the liquid

biopsy approach using CTCs and/or CTSCs to generate

organoid models.
Liquid biopsies and immunotherapy

In the research of CRC treatment, diagnostic and

chemotherapy have developed curiously in the last two eras.

Still, it is problematic to find minimal residual disease (MRD)

essential for primary detection of recurrence of tumors and give

suitable drugs timely prior cancer becomes multi-drug-resistant

and more aggressive. However, the most thrilling example of

change in cancer therapy in the current era has been

immunotherapy. Subsequently, with its early approval for the

treatment of melanoma, it has become the standard of care for

various other tumors. Immunotherapy has also established

promising abilities and good tolerance in gastrointestinal (GI)-

related cancers (209). All the research conferred so far in CRC

are focused either on the association between ctDNA existence

and tumor burden or the recognition of molecular modifications

that predict response or resistance to targeted agents. The

burden of tumor mutations is currently being argued in CRC

and various solid tumors were given its association with

response to immunotherapy and the current approval of the

Food and Drug Administration (FDA) as an agnostic biomarker

to access cancer immunotherapy with pembrolizumab or

dostarlimab (210, 211). On the other hand, MSI is currently

the most applicable potential biomarker for immunotherapy

sensitivity in CRC, characteristically measured in solid tissue

samples (212). Additional growing manipulation of liquid

biopsy in CRC is the examination of methylation biomarkers,

which is rapidly developing as an influential approach to early

diagnosis and prognosis (213).
MSI colorectal cancer

Microsatellite instability (MSI), also known as a hypermutable

phenotype, occurs because of a defective mismatch repair system

(dMMR) in approximately 15% of colorectal cancer patients

(CRC) (214–216). MSI CRC is most often associated with the

proximal colon, increased immunogenicity, and a good prognosis,

in contrast to CRC of chromosomal instability (CIN) (also known

as stable/low-level microsatellite stable/MSI-low-level [MSS/MSI-

L]) CRC which is more commonly found in the distal colon with

increased immune tolerance and a poor prognosis (215, 217).
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Many studies have shown the advantages in detecting MSI status,

including prognosis and specific treatment benefits associated

with this molecular subtype, with increased survival rates of up

to 15% in CRC patients (218, 219). A few studies thus far have

illustrated MSI to be a rare occurrence in rectal cancer, and linked

to a poorer prognosis with a higher risk of dying (220–222). Better

results are observed in locally advanced (stage II/III) MSI CRC

compared to CIN CRC, with the recently added benefit of oFDA-

approved immunotherapy (i.e. pembrolizumab, nivolumab, and

combination nivolumab/ipilimumab) in the treatment of

unresectable or metastatic resistant MSI CRC in conventional

regimens (223–226). To date, the conventional treatment regimen

for rectal cancer continues to be resection surgery,

chemoradiation (preoperative), and chemotherapy, with the

intolerant response that do not have alternative approved

treatment strategies available (227, 228). MSI CRC is known to

have a poor response to 5-fluorouracil (5-FU), which is a

fluoropyrimidine drug used in the conventional adjuvant

treatment regimen of CRC (229). Adverse effects include

nausea, diarrhoea, mucositis, neuropathy, neutropenia and more

serious complications leading to death have been reported in 1%

of patients. Therefore, it is imperative to implement a reliable

diagnostic methodology for accurate diagnosis of MSI.

Mononucleotide markers have been well described as the most

reliable markers for MSI panels, without the need for di-

nucleotide markers and matched normal tissue testing (230,

231). Ethnic polymorphisms have also been described in certain

markers (eg. African polymorphisms in BAT25 and BAT26) and

should therefore be considered when deciding on the

implementation of diagnostic markers panel in certain

geographical settings (231–233). If instability is required in 30%

of markers used in the panel for a diagnosis of MSI, it is important

to establish that the markers included are nonpolymorphic in the

general population. Additional testing to confirm MSI status is to

assess the expression profiles of mismatch repair (MMR) proteins

through immunohistochemistry (IHC) (234–236). This is a more

cost-effective approach and in addition provides information on

the deficient dMMR protein, gaining insight into the possible

mechanism of the disease, whether likely sporadic (associated with

MLH1 protein loss through MLH1 promoter methylation, and

BRAFV600E pathogenic variants) or due to hereditary Lynch

syndrome pathogenic variants (MSH2, MSH6, MLH1, or PMS2)

(237–239).

MSI CRC is known to have a better response to

immunotherapy, and this is due to the active innate

inflammatory tumor microenvironment, as a response to the

hypermutated phenotype of these tumors (240). The TCGA

study revealed that hypermethylated and hypermutated cancers

were more commonly associated with the proximal colon and

distinct at the genomic level compared to distal colon and rectum

cancer (217). This could potentially be due to the difference in the

originator cells of the right colon (developed from the midgut)

compared to the distal colon (originated from the hindgut) (241,
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242). To date, few clinical trials have also begun exploring

combination radioimmune therapy, with promising toxicity

reports indicating hope for patients with rectal cancer (243).

Another remarkable study of a PD-1 blockade (dostarlimab) in

the treatment of MSI rectal cancer indicated high sensitivity and

100% complete response rates with no severe adverse events (244).

This illustrates the need for more clinical trials in immunotherapy

and neoadjuvant therapy with a focus on rectal cancer to be

conducted, to provide more effective predictive therapy for the

better management and increased survival of these patients.

Besides this, the neoantigens currently appear in MSI-H CRC,

which is related to a higher tumor mutation burden, so it has

potential as neoantigens in the immunotherapeutic strategy for

the treatment of various types of CRC. But a liquid biopsy-based

examination to assess MSI can successfully assess an extensive

subclass of CRC patients, including those with inadequate tissue

samples or when protection concerns about invasive surgery arise.
MSS colorectal cancer

Tumors in the distal colon display lower mutational burdens

and are less immunologically active, with little to no CD8+ T

lymphocyte localization or infiltration. This type is generally

referred to as a “cold-tumor” (245). Cold-tumors represent the

majority of CRC and mostly do not benefit from immune

checkpoint inhibitor (ICI) therapy. Improvement in immune

therapeutic strategies includes transitioning “cold-” into

immune infiltrated “hot-tumors”, and once infiltrated,

ensuring an effective inhibitory response on tumor cell activity

is attained (245). This is achieved by controlling tumor

immunogenicity and the TME by directing the immune

system in targeting tumor cells specifically (246). ICIs are

designed to inhibit certain receptors such as Programmed-

death-1 (PD-1) on T-cells that are controlled by cancer cells to

evade immune attack. Monoclonal antibody (mAb) treatment,

chimeric antigen receptor (CAR)-T cell therapy, and ICIs are key

immunotherapies currently being used against many cancers

(247). mAb therapy against the receptor Programmed death

ligand-1 (PD-L1) on cancer cells, to block its communication

with PD-1 and increase T cell immune response has shown

effective in many solid tumors. Adoptive cell transfer (ACT),

such as chimeric antigen receptor (CAR) T-cell therapy

involving the patient’s own T-cells has also gained increased

recognition (248). These cells are genetically engineered to

include the new CAR, and then re-administered to the patient

(247) The CAR increases-affinity and binding of T-cells to target

antigens, without the need of the major histocompatibility

complex (MHC) receptor. CAR-T therapy has had fewer

success rates in solid tumors, mainly due to a suppressive

TME (increased cytokine and dense stromal network) (248).

Enzymes targeting and degrading stromal matrices (eg.
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heparanase) have been employed to overcome this hurdle and

increase infiltration of CAR T-cells in solid tumors (249, 250).

Cancer vaccines have also been introduced as novel

immunotherapeutic approaches to target antigens uniquely

expressed on tumor cells, thus inducing an anti-tumor

immune response in patients (251). In addition, oncolytic

viruses destroying cancer cells but non-virulent to normal cells

is another immunotherapy strategy (247). Certain virus, have

natural tropism to infect certain cells, for example, hepatitis B

virus for hepatocytes and parvovirus B19 for human erythroid

progenitor cells, and this mechanism has been used to direct

virus-mediated cytotoxicity in tumor cells (252). To address

effective immunotherapeutic strategies in MSS CRC in future,

combination therapy involving two or more approaches would

need to be implemented, involving chemotherapy, radiotherapy,

mAb, ICI targeted therapy, stromal matrix degradation,

oncolytic viral therapy, CAR-T therapy and cancer

vaccines (247).
Neoantigen: An emerging concept

Neoantigens have potential high specificity and targeted but

are mainly patient-specific and, consequently, are difficult to

classify for utility and are mostly remarkable procedures in a

cancer patient population. Currently, immunotherapy, inclusive

of immune checkpoint inhibitors (ICIs), tumor-specific

vaccines, and tumor-infiltrating lymphocytes (TILs) based on

neoantigens, has a progressively significant role in cancer

treatment (253). The conventional significant cDNA library

screening method is labor-intensive, low-throughput, and

unable of classifying some altered antigens consequent from

GC-rich transcripts and low-expression transcripts (254).

However, current scientific developments in next-generation

sequencing and a notable improvement in bioinformatics

analysis have provided a robust groundwork on which to build

these significant efforts. A peptide-based identification method

connecting whole-exome sequencing (WES) and MHC-peptide

binding prediction algorithms has been effective in identifying

neoantigens recognized by TILs in patients with melanoma

(255). Neuropeptides are expressed in tumor cells, while

healthy cells will not present such antigens. Earlier research on

CRC genomics mostly focused on the mechanism of tumor

development and progression, with a lower inclusion of

neoantigens and neoantigen-based immunotherapy (256). In

research, it was observed that certain CRC patients with high

microsatellite instability (MSI-H) might benefit from ICI

treatment due to the presence of high neoantigens (256).

However, not all patients with MSI-H CRC show medical

efficacy in ICI treatment. Neoantigen-based immunotherapy is

synchronizing with ICI since it does not need a detailed analysis

of the patient’s MSI status or tumor mutation burden (TMB)
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(257). The tumor-specific landscape of neoantigens makes them

significant perfect targets for antitumor immunotherapy and has

been investigated for the treatment of CRC in a variety of basic

and clinical immunotherapy studies. The average TMB of CRC

was classified seventh among 30 of the most common categories

of tumors. A previous study by Aleksandrov L. B observed that

approximately 16% of CRCs have a TMB of >12 mutations per

106 base pairs, which are identified as extremely mutated tumors

(258). Patients with higher TMB might have more potent

neoantigens that can be used for the clinical approach in CRC.

For MSI-H CRC, frameshift mutations generally instigated by

INDELs can lead to the creation of novel frameshift peptides

(FSP), which are the key cause of neoantigens in CRC.

Frameshift mutations can be frequently initiated in DNA

segments or genes with a significant biological role in

maximum MSI-H CRC. These genes play a vital role in

epigenetic regulation, DNA repair, signal transduction, cell

apoptosis, and miRNA processing. Besides frameshift mutation

currently, it has been described that single-nucleotide variants

(SNVs) in genes like KRAS, PIK3CA, PCBP1, and CHEK2, are

related to the creation of the 10 most frequent neoantigens. In

Table 4, we have listed the mutated antigens that were studied in

CRC tissue (259).

One main hurdle for personalized neoantigen-based

immunotherapy is the availability of tumor biopsies. To date,

neoantigens are usually recognized from genomic profiling of

various tumor biopsies (260). Although this predictable

approach is time-consuming, invasive, with a low positivity

rate, and in the most challenging case where repeated

sampling is mandatory or there is an inadequate sample, it is

more common with frequent and metastatic cancers.

Specifically, at the top immune checkpoint, significant

inhibitors can be more effective in the presence of natural

neoantigens (261, 262). Based on the current scenario, liquid

biopsies can be a good replacement for determining potential

neoantigens as budding targets for immunotherapy in numerous

cancers. Although there is a certain restriction in the detection of

genomic mutations with very low allele occurrence in the plasma
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sample, the dependability of genetic information has been

described concerning the use of liquid biopsy (263). Thus,

based on current research on liquid biopsies, valuable visions

could be served for making treatment choices using neoantigen.
Immune cells

The TME generates a potential protective shell in which

cancer cells easily and rapidly gather gene alterations and

immune escape. Generally, this process occurs in the early stage

of cancer, the immune response created by immune cells in the

TME has antitumoral properties (264). Collectively, evidence has

revealed that TME contains NK cells, CD8+ cytotoxic T cells, M1

macrophages, T helper-1 cells, and antigen-presenting cells

(APCs) which act as tumor foes and suppress tumor

development. Neutrophils, tumor-associated macrophages

(TAMs), CD4+ T helper-2 cells, and regulatory T cells (Tregs)

are crucial components for reducing the immune suppression

environment, inhibiting cancer cell survival and progression, in

addition to helping to avoid immune devastation (265) (Figure 6).

In metastatic CRC, it has been confirmed that tumor behavior

with the lowest tumoricidal immune infiltrates shows a higher risk

of tumor replacement (266). CD8+ T and CD4+ T cells are the

utmost powerful cytolytic cell subcategory. Cytotoxic processes

are supported by some constituents shaped by CD8+ T cells, such

as granzymes, perforin, Fas ligand (FasL), and TNF-a (267).

Recent research established that patients with promising CRC

regularly have tumor immune cell infiltrates with higher cytolytic

events (268). But, the percentage of cytotoxic T cells number

decreases as TNM-stage increases in CRC (269).

In humans, Treg cells are the main source of IL10. IL10 has

numerous effects on immune cells, including decreasing the

cytotoxic activity of CD8+ T cells, down-regulating MHC-II-

restricted antigens, preventing the synthesis of IFN-g or TNF-a,
and hindering the effector roles of dendritic cells and other CD4

+ T cell subsets (Th1, Th2, or Th17 cells) (270, 271). Based on

the results of numerous reviews, there is still support that tumor

infiltration of Treg cells possibly extends the survival of CRC

patients (272). In concept, Treg cells are susceptible to apoptosis

in CRC tumors that could negatively regulate the expression of

IFN-g, TNF-a, and IL-2 by tumoricidal T cells (273).

Collectively this suggested that the concentration of Treg cells

along with their connected cytokine profiles in cancer should be

determined together in a liquid biopsy-based approach to

increase the use of Treg cells in predicting CRC prognosis.

B cells consist of diverse subcategories and govern antibody

production, antigen appearance, and immunosuppression (274). A

currently published study on colon cancer has reported that a high

concentration of tumor B cells may provide for promising clinical

outcomes only in patients with right-sided colon cancer (275).

Furthermore, the higher expression of CXCL9 and CXCL10 in

CRC tumors can also attract regulatory B cells (Breg), although
TABLE 4 List of mutated antigens found in CRC.

Frameshift Mutation Genes SNVs Genes

OGT KRAS

TGFbRII PIK3CA

BAX PARVA

MSH3 G3BP1

FTO ACTR10

Caspase 5 RAE1

PDP1

QRICH1
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such chemoattractants are also effective in employing tumoricidal

T cell functions (276). Assessing the concentrations of tumoricidal

T cells, Treg cells, and B cells together could significantly improve

the prediction of the prognosis of CRC. In addition to this

component, natural killer cells (NK) also play a cytolytic role in

TME. In CRC, it was found that alteration of MHC-I functions,

resulting in NK cells, will reduce its development and decrease the

production of IFN-g, GZMB, and perforin production (277).

Surprisingly, in CRC metastasis, it was observed that the number

of tumor-formed NKT cells was markedly decreased compared to

normal tissue (278). However, it is at minimum knowledge that

NK cell infiltration into CRC at progressive disease phases is

challenging. In TME, one of the most significant components of

dendritic cells (DCs) is specialized antigen-presenting cells in the

human body. Previous data suggested that in CRC tumor

infiltration of DCs is negatively related to tumor phases because

this growth of DC cells with various phenotypes will result in a

poor prognosis of CRC (279). Fundamentally, it is indicated that

mature or immature DC could have various effects on CRC

development. Lastly, the major component of Tumor-associated

macrophages (TAMs) are dangerous immune infiltrates in cancer

phenotype. In CRC, numerous studies have shown that a high

number of CD68+ macrophages in tumor IM expect a promising

prognosis (280, 281). Furthermore, Itatani et al. observed that by

improving the production of metalloproteinase-9, CCR1+

macrophages support the invasion of CRC (282). Similarly, to
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CCL2 and CCL15, CCL5 helps as another significant chemokine

that controls the development of CRC (283). Besides, in CCL5-

deficient mice, xenografted CRC tumors show a high amount of

tumoral CD8+ T cells, signifying that CCL5 at minimum

influences T cell infiltration (284).

The Immunoscore system delivers insights into a novel

approach for consistently predicting CRC diagnosis,

particularly since this tool has the potential to screen

immunotherapy components . On the other hand,

Immunoscore combined with diagnostic tools such as liquid

biopsy, and a neoantigen-based approach provides for better

CRC treatment, especially for immunotherapy.
Future perspective and conclusion

The prognosis of individuals with CRC has substantially

improved in the current era due to the significant improvement

and expansion in diagnostic and therapeutic approaches.

However, early prediction, diagnosis, and treatment monitoring

of CRC have various lacunae; due to this, many patients die each

year. In recent years, the field of liquid biopsy has grown rapidly

because it is noninvasive, overcomes tumor heterogeneity, and can

allow real-time intensive care of tumor development, recurrence,

or therapeutic response (285). This is the reason that recently

there are numerous ongoing clinical trials from the US National
FIGURE 6

The impact of immune infiltrates on CRC. In CRC, immune infiltrates can impact CRC cell death, either directly or via tumoricidal T cells (TCT),
and consequently affect tumor progression. For example, cytotoxic T cells, macrophages, and NK cells can exert a cytolytic effect on CRC cells.
For other populations of cells, such as Treg, B cells, dendritic cells, or M2-like macrophages, generally impact CRC cell death by mediating the
tumoricidal activity of TCT cells. Herein, Treg, regulatory B cells, immature dendritic cells, and macrophages enable TCT cells to be exhausted,
thus causing substantial progression in CRC tumors. Accordingly, immunoscore system using immune cells could deliver insights into a novel
liquid biopsy approach as a diagnostic tool.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1023565
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mirza et al. 10.3389/fonc.2022.1023565
Laboratory of Medicine (NIH) on liquid biopsy-based approaches

to detect CRC. Presently, numerous efforts have been made

utilizing CTCs, CAFs, exosomes, immune cells, neoantigens,

mtDNA, and ctDNA isolation and characterization-based

approaches to detect and treat CRC; and which have shown to

be highly sensitive and effective. In addition, genes and proteins

expressed by these components can also be used for early CRC

detection and therapy. However, a CTC end point value for the

clinical evaluation of CRC patients’ progression and prognosis is

still not adequately developed owing to sampling issues, storage

conditions and timing of biopsy; and most importantly

enrichment procedures (286, 287). Therefore, it is important to

develop a CTC capturing platform that is more precise and

effective. Additionally, recent studies on CTCs/cCAFs clusters

open a new path for developing an additional personalized and

detailed treatment plan for each cancer patient. But there are still

several lacunae on the biology of CTCs clusters, and specifically on

the heterotypic CTCs-CAFs clusters, that need to be investigated

to recognize the mechanism of cellular aggregates and their role in

metastasis. Furthermore, it is also important to see which of the

CAF-derived signals improve CTC survival and cancer cell

growth, besides to govern the efficient alterations between

homotypic CTCs clusters and heterotypic CTCs-CAFs clusters.

Another significant component of liquid biopsy is the exosome,

that has a potential role in tumor initiation, development and

metastasis, including EMT, tumor angiogenesis, extracellular

matrix remodeling, organ-specific metastasis, and immune
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evasion. The advantage of exosomes is that they are easier to

isolate than CTCs and cfDNA in tumors; a current era is

improved and more research will be focused on exosomes in

the diagnosis of cancers at an early stage in the future. But there is

still uncertainty in clinical approaches due to low effectiveness and

informal phagocytosis by the immune system. So, based on

evidence, indepth research should be undertaken to solve this

hindrance and develop precise clinical applications of exosomes.

Furthermore, analysis of ctDNA is a most promising component

of liquid biopsy that can play a critical role in numerous

characteristics in the clinical management of patients with CRC

(288). Furthermore, TMB in ctDNA and immune check point

proteins in CTCs show significant roles in tumor immunotherapy.

However, due to inadequate and partial knowledge of molecular

mechanisms, ctDNA as liquid biopsy has not yet been applied in

immune-oncology in the clinic; however, promising available data

and advanced noteworthy technologies and methods recommend

that this approach certainly has a plausible role in CRC patient

therapy. Based on our review, we found that a higher copy

number of mtDNA significantly promotes cell proliferation,

apoptosis resistance, and CRC metastasis, thus also providing a

novel indication for this process as a drug target and prediction of

neoantigens in CRC treatment (188). Existing genomic research

has revealed that there are many hotspot mutations in significant

driver genes; and the neoantigen epitopes made by these

mutations are vital “public” immunotherapy targets as a liquid

biopsy approach. More recently, liquid biopsy-based neoantigens
TABLE 5 Advantages and disadvantages of liquid biopsy components.

Component Advantage Disadvantage

ctDNA • Well established methods for detection of tumor-specific genetic
abnormalities with greater sensitivity

• Analyze cancer origin and prediction of drug effectiveness
• Detection of acquired resistance and/or minimal residual disease
• Cancer progression and metastasis monitoring

• Unsuitable for functional test due to impaired detectability (low
ctDNA abundance)

• Background noise from typical cell-free DNA
• Difficulties in standardizing procedures

mtDNA • Compared to nuclear DNA, single cell contains several thousand
copies of mtDNA

• Higher sensitivity
• Enable detection of even small amounts of molecular alterations

due high mutation rate
• Potential prognostic marker due to differential fragmentation

pattern between cancer patients and healthy individuals

• Not fully characterized yet
• Lack of optimized protocol for cf-mtDNA
• Large scale prospective studies are needed

CTCs • Feasible for molecular and morphological identification
• Possible prognostic and/or predictive markers for monitoring

cancer progression and metastasis
• Potential therapeutic targets
• Useful for in-vitro culturing to test drug sensitivity
• DNA, RNA and protein profiling

• Low specificity- especially in early stage settings
• Difficulties with detection method standardization due to EMT

and heterogenous biomarkers for identification
• Short half-life

cCAFs • Well established role in cancer progression and metastasis
• Advantage survival in circulation by forming clusters with CTCs

and/or CSCs
• Potential therapeutic target
• Detection and monitoring of minimal residual disease
• Potential biomarker for early detection and prognosis
• Prospective model for better understanding of TME

• Larger confirmatory studies are needed
• Lack of robust and standardized methods for detection
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are a new immunotherapeutic approach for the treatment of

various types of CRC. Though, there are still numerous

challenges such as tissue biopsy and identification, which still

require further research as explored form of liquid biopsy

(Table 5). The worldwide replacement of tumor biopsies with

liquid biopsies appears idealistic; however, with a range of

approaches using CTCs, CAFs, ctDNA, exosomes, mtDNA and

neoantigen, it seems highly likely that useful tools will be

developed for CRC with applications in early detection,

postoperative monitoring, treatment response and therapeutic

resistance. In summary, liquid biopsy is an important part of

precision medicine and is held to be a clinical reality soon.
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