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Background: Endoscopic submucosal dissection has become the primary

option of treatment for early gastric cancer. However, lymph node

metastasis may lead to poor prognosis. We analyzed factors related to lymph

node metastasis in EGC patients, and we developed a construction prediction

model with machine learning using data from a retrospective series.

Methods: Two independent cohorts’ series were evaluated including 305

patients with EGC from China as cohort I and 35 patients from Spain as

cohort II. Five classifiers obtained from machine learning were selected to

establish a robust prediction model for lymph node metastasis in EGC.

Results: The clinical variables such as invasion depth, histologic type,

ulceration, tumor location, tumor size, Lauren classification, and age were

selected to establish the five prediction models: linear support vector classifier

(Linear SVC), logistic regression model, extreme gradient boosting model

(XGBoost), light gradient boosting machine model (LightGBM), and Gaussian

process classification model. Interestingly, all prediction models of cohort I

showed accuracy between 70 and 81%. Furthermore, the prediction models of

the cohort II exhibited accuracy between 48 and 82%. The areas under curve

(AUC) of the five models between cohort I and cohort II were between 0.736

and 0.830.
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Conclusions: Our results support that the machine learning method could be

used to predict lymph node metastasis in early gastric cancer and perhaps

provide another evaluationmethod to choose the suited treatment for patients.
KEYWORDS

early gastric cancer, endoscopic resection, gastrectomy, lymph node metastasis,
artificial intelligence, machine learning
Introduction

Gastric cancer is one of the most common and deadly cancers

in the world (1). According to GLOBOCAN 2021 data, gastric

cancer is the third leading cause of cancer deaths worldwide,

following only lung and liver cancers in overall mortality (2).

Fortunately, because of the improvement in diagnosis and

treatment, the survival rate for gastric cancer has been improved

in recent years (1, 3, 4). Based on a report from the global

surveillance of trends in cancer survival programs, age-

standardized 5-year net survival for stomach cancer was below

30% in most countries, but high in Korea (69%) and Japan (60%),

where it increased by up to 10% between 2000–2004 and 2010–

2014; this is likely to be associated with endoscopic screening

programs for early detection (5). Therefore, it is crucial to identify

gastric cancer patients in the early stage.

Early gastric cancer (EGC) is defined as a stomach lesion

confined to the mucosa and/or submucosa, regardless of its area

or lymph node metastatic (LNM) status (6). Due to advances in

endoscopic therapeutic techniques, the EGC has usually been

diagnosed in the early detection and treated by endoscopic

submucosal dissection (ESD) (7, 8). Many studies have shown

that EGC has a 5-year survival rate of near 90% (9, 10). As the

definition of EGC, the regional LNM is one of the most

important prognostic factors in EGC. One report of trends in

Incident, Management, and Survival in a Well-Defined French

Population of Early Gastric Cancer demonstrated that the 5-year

net survival was 50% in node-positive patients and 85% in node-

negative patients (11). As a result, the lymph node positiveness

decides the survival of EGC and whether the additional

lymphadenectomy is required (12).

The previous studies confirmed that several risks such as

tumor size, invasion depth, ulceration, histological types, and

lymph vascular invasion were related with LNM in EGC (13–

16). Even a few of research based on these factors constructed

traditional scoring to evaluate the probability of LNM in EGC

after the endoscopic resection (17, 18). According to the

previous study, the percentage of actual lymph node positive

after additional surgery of EGC is about 10% based on these

scorings (19, 20). Certainty, the accuracy of these scorings is

necessary more data of clinical practice.
02
Artificial intelligence (AI) is an advanced technology that

has been used in many fields such as in industry, agriculture,

navigation, driverless car, and healthcare (21–23). AI is a

subfield of computer science that emphasizes the design of

intelligent systems that can learn from the data and make

decisions and predictions accordingly (24). Among many

branches of AI, machine learning (ML) and deep learning

(DL) are two major parts of all (25). ML is a mathematical AI

algorithm automatically built from given data to predict precise

outcomes in uncertain conditions without being explicitly

programmed (26).

Currently, ML has been used to the wide area of medicine;

the potential ability of ML can improve the efficiency and

accuracy of clinical work, such as analyzing millions of

clinical data to create prognostic, screening, and diagnostic

models (27–29). ML has a satisfactory to excellent accuracy

for predicting cancer, such as the oral cavity cancer; the

accuracy prediction of cervical LNM was about 90% (30)

and, in the early stage of colorectal cancer, ML model showed

superior performance compared with conventional criteria in

predicting LNM (31). In EGC, few studies have established

predictive models with ML. For the reasons stated above, in

the present multicenter study, we aim to study EGC with the

additional surgery to evaluate the factors such as LNM better

to construct a robust prediction model with ML to provide

another evaluation method to choose the suited treatment

for patients.
Material and methods

Study design

This was a multicenter, retrospective analysis. The cohort I

was obtained from the Sixth Affiliated Hospital of Sun Yat-Sen

University (Guangzhou, China), which was used to construct the

prediction models, and the cohort II as the external validation

date was from the University Hospital Virgen del Rocio (Seville,

Spain), which was performed to verify the ability of models. The

present study was approved by the Institutional Review Board of

the Sixth Affiliated Hospital of Sun Yat-Sen University and the
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University Hospital Virgen del Rocio; the approval number

is E2021197.
Study population

The authors retrieved EGC patients who only received

additional gastrectomy from the electronic medical record

system of the Sixth Affiliated Hospital of Sun Yat-Sen

University (Guangzhou, China). All patients were recruited

from January 2012 to March 2021. After screening, a total of

373 records were found, and 68 patients met any of the exclusion

criteria; then, 305 cases with pathologically confirmation of T1a/

T1b stage were included in the study and underwent additional

gastrectomy with systemic lymphadenectomy (D2) (Figure 1).

The exclusion criteria in this study were as follows: (1) patients

who have received previous neoadjuvant therapy, (2) patients

that present two or more gastric and/or other primary cancer

type, (3) patients’ previous history of cancer or remnant gastric

cancer, (4) patients with distant metastasis, and (5) incomplete

preoperative examinations (variables with >25% of missing

information), including blood analysis, gastroscopy

pathological reports, and/or pathological results. These

exclusion criteria were used for both cohort I and cohort II by

the ML models. For the external validation, a cohort of 35

patients who underwent additional gastrectomy with standard

lymphadenectomy at the University Hospital Virgen del Rocio
Frontiers in Oncology 03
(Seville, Spain) between January 2014 and December 2020 was

recruited (Figure 1).
Clinicopathological evaluation

The medical records for blood analysis, gastroscopy, and

pathological reports for each patient were reviewed for the

analysis. From the blood analyses data were gathered tumor

markers such as CEA, CA199, CA125, CA153, and AFP.

Gastroscopy data were collected from the report, which

included the location of the tumor. The pathological results

provided information about invasion depth (T1a/T1b),

histologic type, Lauren classification, tumor size, and

ulceration. The clinical characteristics of the patients,

including sex, age, body mass index (BMI), and personal

pathological history were also collected.
Statistical analysis and ML models

Association analysis
According to the clinicopathological results, the univariate

analysis was performed on all variables; all data sets were divided

into two groups according to the lymph nodes positiveness.

Association analysis was applied to all variables individually,

categorical variables with expected frequency greater than 5 in
FIGURE 1

Flowchart of patients included in the study for construction models and external validation models according to the inclusion and
exclusion criteria.
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the LNM group and the non-LNM group were tested by chi-

square test, and categorical variables with expected frequency

less than 5 in the LNM group or non-LNM group were tested by

Fisher’s exact test. Continuous variables were tested by the T

student test (the p-value greater than 0.05 in Shapiro–Wilk test

and Levine’s test) and the Mann–Whitney test. The chi-square

test or Fisher’s exact test was also used for tumor markers after

categorization into binary variables using the following cutoff

points set as normal range (37 U/ml for CA19-9, 5 ng/ml for

CEA, 35 U/ml for CA125, 32.4 U/ml for CA153, and 8.78 ng/ml

for AFP) (32).

ML models
After a comprehensive review of different ML prediction

algorithms reported in the literature, compared the scalable,

flexible, accurate, and relatively fast, five types of supervised ML

classifiers were selected to provide for the establishment the

prediction model in EGC (33–37). These models were the

logistic regression classifier (LRC), linear support vector

classifier (Linear SVC), Gaussian process classification (GPC),

and two gradient boosting methods extreme gradient boosting

(XGBoost) and light gradient boosting machine (LightGBM).

LRC is a classification model rather than regression model,

which is a simple and more efficient method for binary and

linear classification problems; it is a classification model that is

very easy to realize and achieves excellent performance with

linearly separable classes (38). Linear SVC was performed to

obtain method based on support vector classifier (SVM). SVM is

a widely used alternative to softmax for classification and is used

for both linear and nonlinear classification by changing the

kernel functions utilized (39). GPC can naturally give predicted

probabilities for classification problems that require tuning of

the kernel functions (40). It was used for complex non-

parametric ML algorithms for classification and regression

(41). XGBoost and LightGBM were considered among the

most recent and efficient ML-based prediction algorithms (42).

The XGBoost model, which can handle both regression and

classification problems, is widely used by data scientists to

achieve state-of-the-art results (43). LightGBM is a gradient

learning framework based on the decision tree and the idea of

boosting (44). Its major difference from the XGBoost model is

that it uses histogram-based algorithms to speed up the training

process, reduce memory consumption, and employ a leaf-wise

growth strategy with depth constraints (37). The original codes

of these five algorithms, which were performed in this study,

were based on Python 3.9 and scikit-learn 1.0 (45).

Feature selection and construction the
ML methods

For ML approach, all features included in the model were

determined by the Akaike Information Criterion (AIC),

Bayesian Information Criterion (BIC), and the Least Absolute

Shrinkage and Selection Operator (LASSO), which were widely
Frontiers in Oncology 04
used for finding the best features for models (46, 47). According

to the previous study (48), all variables were included for feature

selection in the LASSO binary logistic regression model, in the

AIC scores, and in the BIC scores for all possible combinations,

which with p < 0.15 in the univariable analysis were predefined

as the cutoff and the factors were reported from previous study

in the LASSO binary logistic regression model, in the AIC scores,

and in the BIC scores for all possible combinations. The final

features were applied to establish MLmodels depending on these

three methods (AIC, BIC, and LASSO). The statistical analyses

were performed using SPSS® version 26 (IBM SPSS Statistics for

Macintosh) and R Studio (Integrated Development for R.

RStudio, PBC, Boston, MA, version 4.0.5).

All selected categorical features were transformed into

dummy variables. Then, all features were used to construct the

ML models to predict LNM. All models used fivefold cross-

validation on both cohort I and cohort II. All models were

evaluated by the receiver operating characteristic curve (AUC)

and optimized by the grid search; the Bayesian method was used

to improve the ability of model. For LRC and Linear SVC

models, the importance of features was calculated by their

weight coefficients. For XGBoost and LightGBM, the

importance of features was also plotted. All models were

constructed and analyzed by Python (version 3.9.4). All

files used for model construction have been placed in

the supplement.
External validation

All ML models were verified by external validation data and

accuracy; AUC, Brier score, F1 score sensibility, specificity, and

95% ICs were estimated using the bootstrap method. Other

bioinformatic approaches such as confusion matrices, ROC

curves, and calibration curves were used in the present

analysis. The groups that exhibited a high-risk were

established by predictive probability, and their relative odds

ratios were calculated.
Results

Clinicopathological variables associate
with lymph node metastasis

The primary cohort (cohort I) included a total of 305

patients, of whom 69 patients (22.6%) had LNM according to

the 8th edition of the American Joint Committee on Cancer

(AJCC) staging system (49). The classification of tumor size was

based on the eCura system of the Japanese Gastric Cancer

Treatment Guidelines ed. 2018 (50). The tumor size was

divided into three groups (≤ 2cm, 2–3 included, > 3cm). Their

demographic and clinicopathological characteristics are shown
frontiersin.org
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in Table 1. In univariable analysis (in the association analysis),

“age” was the only continuous variable that showed statistically

significant differences between both groups (t = 2.64, P = 0.009).

After categorization, this variable was divided into five groups

based on the risk of cancer associated to age from National

Cancer Institute of US (< 30 years, 30–40 years, 40–50 years, 50–

60 years, and > 60 years) (51). The chi-square test showed
Frontiers in Oncology 05
statistically significant differences between all five groups (c2 =
20.991, P < 0.001). The biomarkers such as CEA (U = 9006, P =

0.178) and CA125 (U = 7123.5, P = 0.114) met the variable filter

criteria, but their binary form (normal vs. high) were not

statistically significant (P = 1.0 and P = 0.428, respectively).

Other categorized variables such as invasion depth (c2 = 17.377,

P < 0.001), histologic type (c2 = 7.715, P = 0.005) and LAUREN
TABLE 1 Clinicopathologic characteristics of patient samples included in the present study.

Variable LNM negative (N = 236) LNM positive (N = 69) P-value

Age
(year, mean±std)

59.0 ± 11.4 54.87 ± 12.5 0.009a

Gender 0.697C

Male (n, %) 135 (57.21%) 37 (53.62%)

Female (n, %) 101 (42.79%) 32 (46.38%)

BMI (mean ± std) 22.69 ± 3.44 22.62 ± 2.83 0.881a

DM 0.764d

Yes (n, %) 12 (5.08%) 4 (5.79%)

No (n, %) 224 (94.92%) 65 (94.21%)

HTA 0.321C

Yes (n, %) 31 (13.14%) 13 (18.84%)

No (n, %) 205 (86.86%) 56 (81.16%)

Tumor location 0.119C

Fundus (n, %) 31 (13.14%) 3 (4.35%)

Body (n, %) 52 (22.03%) 18 (26.09%)

Antrum (n, %) 153 (64.83%) 48 (69.56%)

Depth of invasion <0.001C

T1a (n, %) 131 (55.51%) 18 (26.09%)

T1b (n, %) 105 (44.49%) 51 (73.91%)

Histologic type 0.005C

Undifferentiated type (n, %) 147 (62.29%) 56 (81.16%)

Differentiated type (n, %) 89 (37.71%) 13 (18.84%)

LAUREN classification 0.004C

Diffuse type (n, %) 93 (39.41%) 34 (49.28%)

Intestinal type (n, %) 95 (40.25%) 13 (18.84%)

Mixed type (n, %) 48 (20.34%) 22 (31.88%)

Tumor size 0.166C

2–3(included) cm (n, %) 58 (24.58%) 19 (27.54%)

>3 cm (n, %) 38 (16.10%) 17 (24.64%)

≤2cm (n, %) 140 (59.32%) 33 (47.82%)

Ulceration 0.053C

Negative (n, %) 165 (69.92%) 39 (56.52%)

Positive (n, %) 71 (30.08%) 30 (43.48%)

AFP (median, range) 2.47 (0.95-14.37) 2.74 (0.84-107.97) 0.279b

CA125 (median, range) 9.55 (2.7-130.7) 10.6 (3.1-191.7) 0.114b

CA153 (median, range) 7.2 (1.9-27.1) 10.6 (3.1-19.6) 0.858b

CA199 (median, range) 4.90 (2-115.14) 5.11 (2.0-338.54) 0.743b

CEA (median, range) 2.08 (0.51-23.59) 1.87 (0.53-9.88) 0.178b
front
aIndependent two-sample t-test.
bMann–Whitney U test.
cX2 test with Yates’ continuity correction.
dFisher’ s exact test.
The bold values means these variables show statistically significant differences between both groups.
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classification (c2 = 11.260, P = 0.005) were statistically

significant, and the presence of ulcer presented a high trend

toward significance (c2 = 3.741, P = 0.053). Nevertheless, tumor

size (c2 = 3.590, P = 0.166) and tumor location (c2 = 4.260, P =

0.119) exhibited no association with LNM.
Selected variables

A total of seven variables were included as potential risk

factors in the prediction model, which the p-values in

univariable analysis were less than 0.15 (Table 1 and

Figure 2A). CEA and tumor size have been reported from the

previous study, which were related with LNM in EGC (54, 55),

but CA125 was discarded from the model by lack of data in the

cohort II. In the LASSO method, the including variables were

exhibited a minimum mean squared error (MSE) by five cross-

validation folds, which were the invasion depth, histologic type,
Frontiers in Oncology 06
ulceration, tumor location, tumor size, Lauren classification, and

age. The variables included which with standard error of MSE

contained the age and invasion depth (Figure 2B). There are five

variables in the group; the minimum AIC score was 299.08 with

five variables, which were the depth of invasion, histologic type,

the presence of ulcer, tumor size, and age (Figure 2C) and, in the

minimum, BIC score was 301.07 and was obtained with four

variables, which were the depth of invasion, the presence of

ulcer, tumor size, and age (Figure 2D). Finally, the features

selected with minimum mean squared error (MSE) in LASSO

were applied to establish the prediction ML models. Finally,

seven variables, namely, age, tumor location, histologic type, the

LAUREN classification, tumor size, invited depth, and

ulceration (positive/negative), were included in at least one of

these methods. These seven variables were used to training the

ML models.

Once the variables were selected with LASSO, Table 2 was

assessed to compare detailed clinic-pathological characteristics
D

A B

C

FIGURE 2

Optimal variable combination selection. (A) Correlation matrix of variables. (B) Result by Least Absolute Shrinkage and Selection Operator
(LASSO). Here, the partial likelihood deviance (binomial deviance) curve was plotted in log(l) scale. Dotted vertical lines were drawn at the
values of log(l) with minimum mean squared error (MSE) and the maximum log(l) of one SE of the minimum MSE. The best features were
selected with minimum mean squared error (MSE) from the five cross-validation folds, with lambda value 0.00558, log(l) is −5.19. One SE of the
minimum MSE with lambda value 0.03936, log(l) is −3.24. (C) Dot plot performed by Bayesian Information Criterion (BIC) for all possible models
(disregarding potential transformations and interactions) employing none, any or all of the seven selected risk factors, a lower BIC indicates a
better fit (52). (D) Dot plot performed by Akaike Information Criterion (AIC), a lower AIC indicates a better fit (53).
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between the cohort I and cohort II groups. Both cohort I and

cohort II had a ratio of LNM negative/positive similar, 3.42 and

3.38, respectively.
ML models can predict lymph
node metastasis

The statistical weigh of the different variables for the light

gradient boosting machine classifier (LightGBM), extreme

gradient boosting classifier (XGBoost), LRC, and linear

support vector machine classifier (Linear SVC) are shown in

Figure 3. Tumors invaded the submucosal (T1b), intestinal type,

age < 30, and the presence of ulcer were the four factors with the

highest statistical power to establish these four models.

The confusion matrices for the five classifiers in the cohort I

and cohort II with the percentage of their true label are displayed

in Figure 4. This corresponds to specificity, false positive rate

(FPR), false negative rate (FNR), and sensibility in each subplot.

Both Linear SVC and LightGBM presented a better sensibility in
Frontiers in Oncology 07
the models; the Linear SVC showed a robust performance in

sensibility, 0.71 in cohort I and 0.75 in cohort II. The logistic

regression, XGBoost, and the Gaussian process classifier

performed a better specificity. Concerning the sensibility, in

the Logistic Regression and XGBoost were improved in cohort

II, both with a sensibility of 0.5, equal a completely random

decision. The Gaussian process classifier was the most stable

model in these five models, and the best performance in

specificity, with 0.99 in the cohort I, and 0.93 in the cohort II.

The discrimination and calibration of the five models in the

cohort I and cohort II were shown in Figure 5. For testing

models of ML, each model had better ability to the prediction,

the area under the curve (AUC) values of all algorithms were

closed to 0.8 between the cohort I and cohort II, even the

Gaussian process classification had exceeded this value in both

set (0.816, 95% CI 0.813–0.819 vs. 0.803, 95% CI 0.799–0.808).

However, compared with the different values of AUC between

the cohort I and cohort II for all models, the XGBoost (0.781 vs.

0.804) and the Gaussian process classification (0.816 vs. 0.803)

had tiny difference in both sides. It meant that these two models
TABLE 2 Clinicopathologic characteristics for established the prediction model between cohort I and cohort II.

Variable Cohort I Cohort II

LNM negative (N = 236) LNM positive (N = 69) LNM negative (N = 27) LNM positive (N = 8)

AGE (years)

age < 30 (n%) 1 (0.42) 5 (7.25) 0 (0.00) 0 (0.00)

age 30–40 (n%) 20 (8.47) 3 (4.35) 1 (3.70) 0 (0.00)

age 40–50 (n%) 28 (11.86) 16 (23.19) 2 (7.41) 1 (12.50)

age 50–60 (n%) 75 (31.78) 22 (31.88) 1 (3.70) 1 (12.50)

age > 60 (n%) 112 (47.47) 23 (33.33) 23 (85.19) 6 (75.00)

TUMOR LOCATION

Fundus (n%) 31 (13.14) 3 (4.35) 0 (0.00) 2 (25.00)

Body (n%) 52 (22.03) 18 (26.09) 12 (44.44) 2 (25.00)

Antrum (n%) 153 (64.83) 48 (69.56) 15 (55.56) 4 (50.00)

HISTOLOGIC TYPE

Undifferentiated (n%) 147 (62.29) 56 (81.16) 12 (44.44) 4 (50.00)

Differentiated (n%) 89 (37.71) 13 (18.84) 15 (55.56) 4 (50.00)

LAUREN

Diffuse (n%) 93 (39.41) 34 (49.28) 7 (25.93) 3 (37.50)

Intestinal (n%) 95 (40.25) 13 (18.84) 20 (74.07) 3 (37.50)

Mixed (n%) 48 (20.34) 22 (31.88) 0 (0.00) 2 (25.00)

TUMOR SIZE (cm)

2–3 (include) (n%) 58 (24.58) 19 (27.54) 7 (25.93) 5 (62.50)

> 3 (n%) 38 (16.10) 17 (24.64) 10 (37.04) 3 (37.50)

≤ 2 (n%) 140 (59.32) 33 (47.82) 10 (37.04) 0 (0.00)

DEPTH OF INVASION

T1a (n%) 131 (55.51) 18 (26.09) 8 (29.63) 0 (0.00)

T1b (n%) 105 (44.49) 51 (73.91) 19 (70.37) 8 (1.00)

ULCERATION

Negative (n %) 165 (69.92) 39 (56.52) 11 (40.74) 1 (12.50)

Positive (n %) 71 (30.08) 30 (43.48) 16 (59.26) 7 (87.50)
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had the almost same ability for the prediction in cohort I and

cohort II (Figures 5A, E). The 95% CI of the calibration belt in

both cohort I and cohort II did not cross the diagonal bisector

line, which suggests that the prediction models had a strong

concordance between both groups and further indicates the five

models demonstrate an accurate prediction potential in both

groups. The XGBoost and the Gaussian process classification
Frontiers in Oncology 08
were closer the dotted line to the ideal line, these two models had

the better the predictive accuracy (Figures 5F–J).

Table 3 shows the prediction performance of five ML

classifiers for cohort I and cohort II. The XGBoost classifier

and Gaussian process classification demonstrated the best

performance due to there was a little difference between the

cohort I and cohort II: the cohort I´s specificity 96.7% (95% CI
D

A B

C

FIGURE 3

Feature importance plot for the 4 ML. (A) Light gradient boosting machine classifier (LightGBM). (B) Extreme gradient boosting classifier
(XGBoost). (C) Logistic regression classifier. (D) Linear support vector machine classifier (Linear SVC).
FIGURE 4

Confusion matrix of the cohort I and the cohort II in five machine learning models. In each subplot, the specificity, false positive rate (FPR), false
negative rate (FNR), and sensibility were shown from top left to bottom right, respectively.
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96.5–96.8%) and 99.1% (95% CI 99.1–99.2%); accuracy 79.6%

(95% CI 79.4–79.8%) and 81.5% (95% CI 81.3–81.7%); AUC

78.1% (95% CI 77.8–78.4%) and 81.6% (95% CI 81.3–81.9%), the

cohort II´s specificity 92.6% (95% CI 92.3–92.8%) and 92.6%

(95% CI 92.3–92.8%); accuracy 82.6% (95% CI 82.3–82.8%) and

77.1% (95% CI 76.8–77.4%); AUC 80.4% (95% CI 79.9–80.9%)

and 80.3% (95% CI 79.9–80.8%), respectively. The sensibility

and F1 score values were also demonstrated in this table. The F1

score can be interpreted as a harmonic mean of the precision and

recall, where an F1 score reaches its best value at 1 and worst

score at 0 (57) although, in these five models, the F1 score was

already between in 0.33 and 0.57. A brier score was a way to

verify the accuracy of a probability forecast. A probability

forecast refers to a specific event. The best possible Brier score

is 0, for total accuracy. The lowest possible score is 1, which

means the forecast was wholly inaccurate (58). In this study, all

of the models had the Brier score, which was less than 0.25.

The decision curve of the XGBoost and Gaussian Process

Classification models had a more comprehensive net benefit

threshold probability range in the cohort I, although these were

no statistical differences in the cohort II (Figure 6). Analysis

showed that when the predictive criticism was > 0 in the

XGBoost model and Gaussian process classification in the

cohort I, the models added more net benefit than “no patient

with LNM” or “all patients with LNM” scheme (Figure 6A). The

predictive criticism ranged from 0 to 0.357 of the XGBoost
Frontiers in Oncology 09
model and 0 to 0.293 of the Gaussian process classification in the

cohort II, the models added more net benefit than “no patient

with LNM” or “all patients with LNM” scheme (Figure 6B).

Subsequently, the predicted probability was categorized as

low, medium, and high risk. Table 4 shows the odds ratio (OR)

value of LNM prediction for each model. When comparing the

different levels of risk, Linear SCV classifier, XGBoost classifier,

and Gaussian process classification showed the highest capacity

for the prediction due to the positive gradient increasing in

different levels. The medium risk of Linear SCV classifier was 3.5

times higher than the low risk, and the high risk was seven times

than the low risk. The Gaussian Process has 5.46 and 16.67 times

comparing the medium and high risk with low risk. Even though

the medium risk of XGBoost showed no statistically significant

increasing compared with the low risk (1.67 vs. 1). LRC

demonstrated the negative gradient comparing the high and

medium risk (4.5 vs. 4.8), and LightGBM showed the negative

gradient in medium and low risk (0.89 vs 1).
Discussion

With the development of minimally invasive endoscopic

technology, ESD is the gold standard to treat the EGC (7, 50, 60),

due to the benefit such as minor trauma, quick recovery, and a

better quality of life could be improved after the treatment (61, 62).
EDA B

F G IH J

C

FIGURE 5

Discrimination and calibration performance of the 5 models. (A) ROC curves of the Logistic regression classifier in the cohort I and cohort II,
respectively (AUC=0.788, 95% CI 0.785–0.790 versus 0.732, 95% CI 0.727–0.738). (B) ROC curves of the linear support vector machine classifier
(Linear SVC) in the cohort I and cohort II, respectively (AUC=0.786, 95% CI 0.783–0.789 versus 0.736, 95% CI 0.731–0.741). (C) ROC curves of
the in the extreme gradient boosting classifier (XGBoost) in the cohort I and cohort II, respectively (AUC = 0.781, 95% CI 0.778–0.784 versus
0.804, 95% CI 0.799–0.809). (D) ROC curves of the Light gradient boosting machine classifier (LightGBM) in the cohort I and cohort II,
respectively (AUC = 0.766, 95% CI 0.763–0.769 versus 0.830, 95% CI 0.826–0.835). (E) ROC curves of the Gaussian process classification in the
cohort I and cohort II, respectively (AUC = 0.816, 95% CI 0.813–0.819 versus 0.803, 95% CI 0.799–0.808). The light orange area and blue area
represent the 95% CIs in cohort I and cohort II, respectively. 500 Bootstrap resamples were used to calculate a relatively corrected AUC and
95% CI. Calibration curves of five models in the cohort I and cohort II are shown in figures from (F–J) The 45° dashed line represents a perfect
prediction, the orange lines represent the predictive performance of the model in the cohort I, and the blue lines represent the predictive
performance of the model in the cohort II. The closer the dotted line to the ideal line, the better the predictive accuracy of the model is (56).
AUC, area under the curve; CI, confidence interval; ROC, receiver operating characteristic.
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However, the LNM is a problem that depends on whether receive

or not an additional lymphadenectomy. The traditional methods

of predicting LNM could have certain limitations, in recent

studies the EGC patients with only the evaluation of
Frontiers in Oncology 10
clinicopathological characteristics after ESD needed to perform

additional surgery due to having a high risk of LMN; however,

actually, the risk of LNM was approximately 10% after the

lymphadenectomy (19, 20, 63). Therefore, a good predictive
TABLE 3 Validation performance for the prediction of LNM of EGC by using five machine learning classifiers.

Machine
learning

Sensibility
(95% CI)

Specificity
(95% CI)

F1 Score
(95% CI)

Accuracy
(95% CI)

AUC
(95% CI)

Brier
(95% CI)

Linear SVC

Cohort I 0.711
(0.707–0.716)

0.727
(0.724–0.729)

0.538
(0.534–0.542)

0.723
(0.720–0.725)

0.786
(0.783–0.789)

0.207
(0.204–0.211)

Cohort II 0.748
(0.740–0.755)

0.408
(0.404–0.412)

0.398
(0.393–0.403)

0.486
(0.482–0.489)

0.736
(0.731–0.741)

0.225
(0.223–0.227)

Logistic Regression

Cohort I 0.302
(0.297–0.308)

0.955
(0.953–0.956)

0.413
(0.407–0.419)

0.806
(0.804–0.808)

0.788
(0.785–0.790)

0.189
(0.186–0.191)

Cohort II 0.500
(0.492–0.509)

0.890
(0.887–0.892)

0.531
(0.524–0.538)

0.798
(0.795–0.801)

0.732
(0.727–0.738)

0.235
(0.232–0.237)

XGBoost

Cohort I 0.215
(0.210–0.220)

0.967
(0.965–0.968)

0.323
(0.317–0.329)

0.796
(0.794–0.798)

0.781
(0.778–0.784)

0.145
(0.143–0.146)

Cohort II 0.500
(0.492–0.509)

0.926
(0.923–0.928)

0.568
(0.561–0.575)

0.826
(0.823–0.828)

0.804
(0.799–0.809)

0.172
(0.171–0.174)

LightGBM

Cohort I 0.739
(0.734–0.743)

0.708
(0.705–0.711)

0.540
(0.536–0.544)

0.714
(0.712–0.717)

0.766
(0.763–0.769)

0.234
(0.233–0.236)

Cohort II 0.880
(0.874–0.886)

0.478
(0.474–0.482)

0.480
(0.475–0.485)

0.566
(0.563–0.569)

0.830
(0.826–0.835)

0.245
(0.243–0.247)

Gaussian Process

Cohort I 0.214
(0.209–0.219)

0.991
(0.991–0.992)

0.344
(0.337–0.350)

0.815
(0.813–0.817)

0.816
(0.813–0.819)

0.139
(0.138–0.140)

Cohort II 0.254
(0.246–0.262)

0.926
(0.923–0.928)

0.333
(0.324–0.342)

0.771
(0.768–0.774)

0.803
(0.799–0.808)

0.185
(0.184–0.187)
fro
A B

FIGURE 6

Decision curve analysis for all five models. (A) Curve of cohort (I) (B) Curve of cohort II. The x-axis measures the net benefit, and the y-axis
shows the LNM risk threshold. The blue line represents the linear support vector machine classifier (Linear SVC), the orange line the logistic
regression classifier, the green line the extreme gradient boosting classifier (XGBoost), the red line the light gradient boosting machine classifier
(LightGBM), the purple line the Gaussian process classification, the gray solid line the assumption that no patient with LNM, and the dashed line
represents all patients with LNM (59).
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method can predict LNM in nearby 80% and help to reduce

unnecessary surgery and improve the patient’s quality of life. ML

had been used broadly in medicine, since it can help to improve

the accuracy of clinical prediction (28, 64, 65). In this study, we

found that the ML models were the most important benefit of

improving predictive accuracy to detect the LNM in EGC.

According to the feature selection, we found that the risk

factors related to LNM such as age; the presence of ulceration,

tumor size, and depth of invasion; the histologic tumor type; the

tumor location; and Lauren classification were common in each

model (AIC, BIC, and LASSO) (Figure 2). This is almost

consistent with the ranking of variables importance in the

results of ML models, although the order was different

(Figure 3). Previous studies had been considered that these

factors were related to the LNM in EGC (13, 66). On the other

hand, the age was the risk that was included in these prediction

models (Figure 3), although the age was not contained in the

traditional evolution scale (50), but age-related studies involving

many carcinoma patients have yielded some relevant results (67,

68). Perhaps, in the future, based on the ML models, we can find

more factor combinations that would be constructed the

optimized group that influences the LNM in EGC. This fact

can provide a new solution to find the related factors and design

new ML models in clinical research for prediction.

Another point in this study was the use of ML for the

prediction of LNM. Here, we found that the Linear SVC and

Light gradient boosting classifier (LightGBM) were the best

models to detect the actual positive cases, although the rest

three models presented excellent abilities to detect the actual

negative cases (Figure 4). According to the predicted

probability, the XGBoost classifier and Gaussian process

classification had the best predictive accuracy of the model

than the others. This is probably due to the random sampling

results that were closer to the ideal line (Figure 5). Furthermore,

they had a more comprehensive net benefit threshold

probability range in the cohort I, which that meant for the

patient with LNM who was predicted by XGBoost model and

Gaussian process; the additional treatment could be had more

benefit for them (Figure 6). In the predicted probability among

different risk groups, the Linear SVC, XGBoost classifier, and

Gaussian process had a certain degree of discrimination. The

OR value was obviously increased among low, medium, and
Frontiers in Oncology 11
high risk, which were applied with the Linear SVC, and

Gaussian process. This means that these two models are

better to detect the risk in different groups (Table 4). Thus, as

can be observed, each model has its own characteristics and

advantages in prediction, but Gaussian Process shows the best

comprehensive predictive ability in this study. Perhaps, for the

prediction of the LNM in EGC, we could combine multiple

models to increase prediction ability. Xiao Y. et al.

demonstrated that the ML methods have been more and

more widely used in cancer prediction. However, no

individual method exceeded the others, and a combination of

models could imply an optimal final prediction (69).

It is undeniable that this study also has certain limitations.

First, the model was constructed using a retrospective cohort;

therefore, a prospective data set could be appropriate to improve

the ability of the prediction model; perhaps we can find more

risks that could be related to LNM. In addition, all preoperative

examination results were obtained from reports; therefore,

information bias was unavoidable. This study has been

performed with a limited sample size, especially cohort II.

However, results differed slightly between the cohort I and

cohort II, which implies not only a different origin (China and

Spain) but also a different ethnicity. In future work, we will make

a prospective trial that includes more variables, such as

biomarkers, and supplement with more predictive models to

improve the prediction ability.

In conclusion, we established five commonly used ML

models to predict LNM in EGC; according to our results,

machine learning can be used to detect high-risk LNM in

EGC, especially the Gaussian Process Classification had the

best comprehensive predictive ability. This could be applied to

indicate that additional lymphadenectomy is necessary after the

endoscopic resection in EGC. From another point of view,

machine learning could provide a new solution to find the

related factors in clinical research for prediction of LNM in EGC.
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TABLE 4 Odds ratio and confidence intervals between different risk group in five machine learning classifiers.

OR values (95% CI) Linear SVC Logistic regression XG Boost Light GBM Gaussian process

Low risk 1
(reference)

1
(reference)

1
(reference)

1
(reference)

1
(reference)

Medium risk 3.5
(3.15–3.89)

4.8
(4.32–5.34)

1.67
(1.54–1.81)

0.89
(0.79–0.99)

5.46
(4.94–6.03)

High risk 7.0
(6.35–7.71)

4.5
(4.08–4.96)

10.0
(9.26–10.79)

4.0
(3.63–4.41)

16.67
(15.10–18.39)
Range of predicted probability: low risk (0–0.25); medium risk (0.25–0.5); high risk (>0.5).
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