AUTHOR=Kriegsmann Katharina , Lobers Frithjof , Zgorzelski Christiane , Kriegsmann Jörg , Janßen Charlotte , Meliß Rolf Rüdinger , Muley Thomas , Sack Ulrich , Steinbuss Georg , Kriegsmann Mark TITLE=Deep learning for the detection of anatomical tissue structures and neoplasms of the skin on scanned histopathological tissue sections JOURNAL=Frontiers in Oncology VOLUME=12 YEAR=2022 URL=https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2022.1022967 DOI=10.3389/fonc.2022.1022967 ISSN=2234-943X ABSTRACT=

Basal cell carcinoma (BCC), squamous cell carcinoma (SqCC) and melanoma are among the most common cancer types. Correct diagnosis based on histological evaluation after biopsy or excision is paramount for adequate therapy stratification. Deep learning on histological slides has been suggested to complement and improve routine diagnostics, but publicly available curated and annotated data and usable models trained to distinguish common skin tumors are rare and often lack heterogeneous non-tumor categories. A total of 16 classes from 386 cases were manually annotated on scanned histological slides, 129,364 100 x 100 µm (~395 x 395 px) image tiles were extracted and split into a training, validation and test set. An EfficientV2 neuronal network was trained and optimized to classify image categories. Cross entropy loss, balanced accuracy and Matthews correlation coefficient were used for model evaluation. Image and patient data were assessed with confusion matrices. Application of the model to an external set of whole slides facilitated localization of melanoma and non-tumor tissue. Automated differentiation of BCC, SqCC, melanoma, naevi and non-tumor tissue structures was possible, and a high diagnostic accuracy was achieved in the validation (98%) and test (97%) set. In summary, we provide a curated dataset including the most common neoplasms of the skin and various anatomical compartments to enable researchers to train, validate and improve deep learning models. Automated classification of skin tumors by deep learning techniques is possible with high accuracy, facilitates tumor localization and has the potential to support and improve routine diagnostics.