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of benign and malignant
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Purpose: The purpose of the study was to build an AI model with selected

preoperative clinical features to further improve the accuracy of the

assessment of benign and malignant breast nodules.

Methods: Patients who underwent ultrasound, strain elastography, and S-

Detect before ultrasound-guided biopsy or surgical excision were enrolled.

The diagnosis model was built using a logistic regression model. The diagnostic

performances of different models were evaluated and compared.

Results: A total of 179 lesions (101 benign and 78 malignant) were included. The

whole dataset consisted of a training set (145 patients) and an independent test set

(34 patients). The AI models constructed based on clinical features, ultrasound

features, and strain elastography to predict and classify benign and malignant

breast nodules had ROC AUCs of 0.87, 0.81, and 0.79 in the test set. The AUCs of

the sonographer and S-Detect were 0.75 and 0.82, respectively, in the test set. The

AUC of the combined AImodel with the best performancewas 0.89 in the test set.

The combined AImodel showed a better specificity of 0.92 than the othermodels.

The sonographer’s assessment showed better sensitivity (0.97 in the test set).

Conclusion: The combined AI model could improve the preoperative

identification of benign and malignant breast masses and may reduce

unnecessary breast biopsies.
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Introduction

Breast cancer is one of the most common malignant tumors

in women (1), and its morbidity and mortality are increasing

yearly. Early screening, diagnosis, and timely treatment can

effectively reduce mortality from breast cancer (2).

Ultrasound is an important modality for screening and

diagnosing breast cancer (3). In addition to grayscale ultrasound,

Doppler and elastography (4) are helpful for obtaining more

diagnostic information, but their accuracy tends to be very

operator-dependent. Especially when the benign and malignant

features are not typical, it is difficult to give an objective and

appropriate diagnosis in a timely manner (5, 6). Therefore, it is

important to develop approaches to minimize the differences

between sonographers’ diagnoses and thus improve the

standardization, quantification, and accuracy of ultrasonography.

With the improvements in medical imaging and computer

technology, computer-aided diagnosis is expected to address the

above problems. Especially in medical imaging analyses, the

computer can extract features that are invisible to human eyes.

This makes the computer a powerful tool for aiding doctors in

clinical diagnoses, such as Coronavirus (COVID-19) detection (7–

13) and cancer diagnosis (14–16). AI also helps in the diagnosis of

breast lesions and is an activefield of research (17). For example,Md.

Milon Islam proposed a machine-learning algorithm to predict

breast cancer (18–20). S-Detect has implemented deep learning

technology from the field of artificial intelligence (AI). This

software can automatically identify the boundary and shape of

breast masses and analyze and interpret grayscale ultrasound

images. Some studies have confirmed that this technology has high

diagnostic performance (21, 22). However, the factor of calcification

is not taken into account in S-Detect, and it is very important in

distinguishing benign from malignant breast nodules. Moreover, S-

Detect has not been widely applied in clinical practice at present.

The diversity and complexity of breast cancer on sonographic

images requiremore comprehensive information tomake an accurate

diagnosis. Therefore, it is proposed that an AI using a combination of

information from a sonographer’s evaluation, S-Detect, elastography,

and clinical characteristics could achieve highdiagnostic accuracy.The

purpose of this study was to build an AI model with preoperative

clinical features to further improve the accuracy of the assessment of

benign and malignant breast nodules. It is our hypothesis that an AI

model combining the sonographer’s evaluation + S-Detect +

elastography + clinical information could improve diagnostic

performance and may reduce unnecessary breast biopsies.
Materials and methods

Study objective

Patients who underwent breast examination or puncture at

the Beijing Friendship Hospital from March 2022 to July 2022
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were selected. There were 145 patients in the training set and 34

patients in the independent test set. All patients underwent

routine ultrasound, S-Detect, and strain elastography. According

to the timing of their examination, all patients were divided into

a training set and a test set. The inclusion criteria were as follows

(1): female patients over 18 years old (2); complete ultrasound

data; and (3) breast lesions classified as BI-RADS 3–5. Exclusion

criteria (1): nonmass lesions that are difficult to detect by

conventional ultrasound (2); cystic and polycystic lesions with

mixed echogenicity (3); pregnancy or lactation, patients with an

artificial prosthesis (4); patients undergoing neoadjuvant

chemoradiotherapy; and (5) needle biopsy performed before

ultrasonography. All patients signed informed consent forms

before the examination.
Ethics statements

This study is a prospective study. The study protocol was

reviewed and approved by the institutional review board of our

hospital. All patients and their families provided written

informed consent.
Imaging analysis

Ultrasound, S-Detect, elastography
examinations, and clinical information
collection
Ultrasound examinations

Ultrasound examinations were conducted using a 3–12

linear probe (RS80A with Prestige, Samsung Medison, Co.,

Ltd., Seoul, South Korea). A radiologist with 10 years of

experience in breast imaging performed bilateral breast

ultrasound examinations under the breast parameters. Bilateral

whole-breast examinations were routinely performed. When a

mass was detected, the location, size, shape, aspect ratio, edge,

capsule, internal echo, calcification, and color Doppler US were

recorded and evaluated. The radiologist made a judgment on

breast lesions according to the fourth edition of the Breast

Imaging Reporting and Data System (BI-RADS) (11).

S-Detect examinations

Additionally, the radiologist performed a computer-aided

diagnosis (CAD) examination with S-Detect software. After

entering S-Detect mode, the software automatically contours

the lesion area. The radiologist manually corrected it if

necessary. S-Detect automatically analyzes the ultrasound

features according to the ultrasound BI-RADS lexicon. S-

Detect selected the most appropriate criterion in each of the

following categories: shape, orientation, margins, lesion

boundaries, posterior features, and echo pattern. The final

evaluation of the breast lesions by S-Detect was divided into
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two categories: possibly benign and possibly malignant. The S-

Detect automatic analysis program was activated to output the S-

Detect report.

Strain elastography

During the strain elastography examination, the areas of

interest, including the lesions and the surrounding normal breast

tissues, were imaged.The probewas held vertically to the chest, and

it vibrated the breast tissue. When the pressure reached the ideal

state, the compression guide bar turned green on the right side of

the elastography interface. Green represents tissue deformation,

and blue represents invisible tissue changes. Elastic scoring was

performed for each nodule according to the standardmethod (23).

Meanwhile, during the process of elastic mode, the E ratio (strain

rate of the lesion/strain rate of the surrounding glandular tissue)

and E-breast (strain rate of the breast lesion/strain rate of the

surrounding fat) were calculated (4). Each lesion was measured

three times, and the average value was taken.

Image interpretation

According to the ultrasound characteristics of the lesions,

the breast lesions were classified into categories 3, 4, and 5 based

on the BI-RADS lexicon by the same radiologist. The

classification results were evaluated by a dichotomous method:

BI-RADS 3 was “possibly benign;” BI-RADS 4 and 5 were

“possibly malignant.”
Statistical analyses

SPSS 20.0,Medcalc15.0 software, andR languagewere used for

statistical analysis in the training set. Measurement data

conforming to a normal distribution are expressed as the mean ±

standard deviation (�x ± s), skewed data are expressed as themedian

(range), and the Mann–Whitney U test was used for comparisons

between groups. Enumeration datawere expressed as rates, and the

c2 test was applied. Logistic regression (started with all candidate

variables with P<0.05 in the univariate logistic model) was

performed to identify clinical and imaging features associated

with malignancy. The model was trained on the whole dataset

and tested in an independent test set. Using the pathological results

as the gold standard, the sensitivity, specificity, and accuracy of the

different diagnostic methods were calculated. Differences were

considered statistically significant at P<0.05.
Machine learning

Features
Twenty features were selected, which can be grouped into

three groups. First, the clinical features were selected by the

National Comprehensive Cancer Network (NCCN) guidelines

(24). Second, the ultrasonic features were selected according to
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the BI-RADS lexicon (25). Third, the strain elastography and S-

Detect results were extracted from the ultrasound machine.

Data pre-processing, feature selection, and
model development

For data preprocessing, we applied the zero-value method to

pad the missing data in the training set (26). After feature

selection, the logistic regression (LR) algorithm was applied as

the backbone of the models. LR is one of the most common

algorithms in the field of machine learning, which is often used

as a baseline for processing binary classification tasks. The

trained LR model will get the weights of each input feature

and predict the possibility of malignant masses. In this article,

four models were built: 1) the clinical model using only clinical

features, 2) ultrasonic model with only parameters from the

classic ultrasound scan, 3) the elastography model which

features comes from elasticity score and elasticity ratio (Eratio

and Ebreast), 4) combined all features model which uses clinical,

ultrasound, elastography features and S-Detect result. Each

model was built by the selected features to obtain the function

and feature weights between the features and malignant breast

masses. All four models were trained on the training set, which

contained 145 patients, and 34 patients were used as an

independent test set to verify the performances between different

models. To evaluate the performance of themodel, accuracy, recall,

sensitivity, and specificity were calculated. Besides that, the ROC

curve, precision-recall (RP) curve, calibration curve, and decision

curvewereplotted to illustrate the performance of themodel.Using

pathological results as the gold standard, the ROC curve and the

AUC score for the S-Detect result and the doctors’ diagnosis were

compared with the logistic regression model. In addition, the final

nomogram model was built by combining the S-Detect result, the

elastography model, the clinical model, and the ultrasound model.

The model development, calibration curve, decision curve, and

nomogram were built using the R language. The research flow is

shown in Figure 1.
Results

Basic clinical information

A total of 189 breast lesions in 189 consecutive patients were

included. Among them, 10 patients with 10 lesions were excluded,

of which six patients presented six non-mass lesions on ultrasound

and four had confinedmastitis. Finally, a total of 179 breast lesions

in179 patientswere included.Themedianage of the patients in this

study was 50 years (range, 22–85 years). Among the 179 breast

lesions, 101 (56.42%) were benign, while 78 (43.58%) were

malignant. A total of 123 of 179 patients (68.72%) were

asymptomatic, and 56 of 179 patients (31.28%) had palpable

masses. A total of 137 masses were confirmed by core needle

biopsy or surgical pathology. Forty-two lesions had typical benign
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features, and no significant changes were observed during the 2-

year follow-up. The clinical characteristics and pathological results

of the patients are shown in Table 1.
The outcomes of different models to
predict and classify benign and
malignant breast nodules

The AI models constructed based on the selected features to

predict and classify benign and malignant breast nodules were

compared. The ROC curves in the training set and independent

test set are plotted in Figures 2A, B. The AUCs of the models

built on clinical features, ultrasonic features, and elastography

features were 0.87 (95% CI: 0.75–0.97), 0.81 (95% CI: 0.61–0.93),

and 0.79 (95% CI: 0.66–0.91), while the AUCs of the

sonographer and S-Detect were 0.75 (95% CI: 0.59–0.91) and

0.82 (95% CI: 0.73–0.93), and the AUC of the AI model built on

combined features (clinical, ultrasonic, elastography, and S-

Detect) was 0.89 (95% CI: 0.79–0.96). The AUPR has similar

trends in that the combined features model has the best

performance of 0.96 (95% CI: 0.95–0.97) (Figure 2C). As also

shown in Table 2, the AI model combining all of the features

showed a relatively better specificity (SPE) (0.92 (95% CI: 0.82–

1.0)) than the other models. The sonographer’s assessment

showed better sensitivity (SEN) (0.97 (95% CI: 0.90–1.0)).
Visualization and clinical application of
the AI model of all features

Based on the above results, the AI model of the combined

features was selected. The ultrasound score (U score) and elastic

score (E score) were calculated for application in the nomogram.
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U Score =

0.034 ∗ Location + 2.636 ∗ shape + 2.246 ∗ boundary + 0.630

∗ edge − 1.935 ∗ calcification + 1.468 ∗ Aspect_ratio + 1.233 ∗
Internal_echo − 2.026 ∗ attenuation + 1.121 ∗ Blood_flow − 3.67

E Score =

0.056 ∗ E_Strain + 0.637 ∗ E_Breast + 0.289 ∗ Elastic _score

− 2.549.

A nomogram (Figure 3A) was used to visualize the AI model

for clinical application. The left side shows the age, menarche

age, number of pregnancies, childbearing age, menopause,

breastfeeding time, tumor size, U score, E score, and S-detect

that were used in the prediction model. The line segment

corresponding to each variable is marked with a scale, which

represents the range of possible values of the feature, and the

length of the line segment reflects the contribution of the feature

to the outcome event. Each feature has a corresponding point

under different values. The points of all features are summed up

to obtain the total points of the patient. Based on the total points,

a vertical line is drawn downward to determine the risk for

malignant breast nodules.

In the calibration curve (Figure 3B) for the nomogram, the

abscissa represents the probability predicted by the nomogram,

and the ordinate represents the actual probability of malignant

breast nodules. A perfect prediction corresponds to the black

dotted line. The solid red line represents the entire cohort, and

the solid green line is bias-corrected by bootstrapping (1,000

repetitions) and represents the observed nomogram

performance. Figure 3B shows that the nomogram

performance was comparable to a perfect prediction.

In regard to the clinical model and the radiomic model, we

showed their decision curves in Figure 3C. The abscissa of this

picture is the threshold probability. When various evaluation

methods reach a certain value, the risk probability is recorded as

Pi; when Pi reaches a certain threshold (referred to as Pt), it is
FIGURE 1

Schematic representation of the study flow. PR curve represent precision-recall curves.
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TABLE 1 Clinical information and pathological results of the patients.

Clinical information Training set (n = 145) Test set (n = 34)

Age (year)

Median (range) 51 (22–85) 57 (27–82)

Menarche age (year)

Median (range) 13 (11–17) 13 (12–15)

Number of pregnancies

0 24 10

1 58 20

2 42 2

3 21 2

Age of primipara (year)

Median (range) 24 (19–32) 27 (19–31)

Lactation time(month)

<6 months 14 3

6–12 months 56 17

12–18 months 32 4

18–24 months 16 0

Menopause

No 76 7

Yes 69 27

Tumor Size (cm)

Median (range) 1.20 (0.24–10.0) 1.38 (0.57–4.13)

Pathologic findings

Benign 88 13

Fibroadenoma 52 7

Adenopathy 27 3

Proliferative lesion 6 2

Intraductal papilloma 2 0

Hyaline change 1 1

Malignant 57 21

Invasive ductal carcinoma 29 14

Invasive lobular carcinoma 18 1

In situ ductal carcinoma 4 3

Solid papillary carcinoma 4 0

Mucinous carcinoma 1 1

Lymphoma 1 0

Malignant phyllodes tumor 0 2
Frontiers in Oncology
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FIGURE 2

The ROC Curves in training set (A). The ROC Curves (B) and the PR Curves (C) independent test set of the models based on the selected
features. Clinical presents the model built with clinical features. Ultra presents the model built with ultrasonic features. Elastography presents the
model built with elastography features. All present the model build with the combined features (clinical, ultrasonic, elastography, S-Detect).
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defined as positive, and certain measures (such as predicting

benign and malignant breast nodules) are taken. The balance of

pros and cons then changes. The ordinate is the net benefit rate

(NB) after subtracting the pros and cons. In addition to the

curves of the four AI models, there are two gray lines in the
Frontiers in Oncology 06
figure. They represent two extreme cases. The horizontal bar

indicates that all samples are negative (Pi<Pt), no intervention

occurs, and the NB is 0. The sloping line indicates that all

samples were positive, all received the intervention, and the NB

is a backslash with a negative slope. The other curves were
TABLE 2 The outcomes of different models to classify and predict benign and malignant breast nodules.

Models Clinical Ultrasound Elastography S_Detect Doctor All

AUC 0.87 (95%CI: 0.75–0.97) 0.81 (95%CI: 0.61–0.93) 0.79 (95%CI: 0.66–0.91) 0.82 (95%CI: 0.73–0.93) 0.75 (95%CI: 0.59–0.91) 0.89 (95%CI: 0.79–0.96)

ACC 0.75 (95%CI: 0.53–0.87) 0.72 (95%CI: 0.53–0.87) 0.60 (95%CI: 0.347–0.72) 0.78 (95%CI: 0.69–0.91) 0.81 (95%CI: 0.71–0.93) 0.75 (95%CI: 0.62–0.84)

SEN 0.64 (95%CI: 0.43–0.85) 0.59 (95%CI: 0.36–0.84) 0.45 (95%CI: 0.27–0.65) 0.70 (95%CI: 0.55–0.86) 0.97 (95%CI: 0.90–1.0) 0.65 (95%CI: 0.42–0.82)

SPE 0.93 (95%CI: 0.72–1.0) 0.94 (95%CI: 0.77–1.0) 0.88 (95%CI: 0.77–1.0) 0.94 (95%CI: 0.81–1.0) 0.53(95%CI: 0.22–0.84) 0.92 (95%CI: 0.82–1.0)
AUC, area under curve; ACC, accuracy; SEN, sensitivity; SPE, specificity.
B

C D

A

FIGURE 3

The nomogram of benign and malignant breast nodules (A), the calibration curve of the nomogram (B) and the decision curve of different AI
models to predict and classify benign and malignant breast nodules (C). The features’ importance (D) was shown with the rate of weight
distribution of the nomogram. (A) Nomogram was used to visualize the AI model for clinical application. The left side is the features age,
menarche age, number of pregnancies, childbearing age, menopause, breastfeeding time, tumor size, U score, E score, and S detect that were
used in the prediction model. The line segment corresponding to each variable is marked with a scale, which represents the range of possible
values of the feature, and the length of the line segment reflects the contribution of the feature to the outcome event. Each feature has a
corresponding point under different values. Add the points of all features together to get the total points of the patient. Based on the total
points, draw a vertical line downward to know the risk for malignant breast nodules. (B) In the Calibration Curve, the abscissa represents the
probability predicted by the nomogram, and the ordinate represents the actual probability of malignant breast nodules. A perfect prediction
corresponds to the black dotted line. The solid red line represents the entire cohort, and the solid green line is bias-corrected by Bootstrapping
(1,000 repetitions) and represents the observed nomogram performance. (C) The decision curve of the elastic model, clinical model, ultrasound
model, and all-features model. The abscissa of this picture is the threshold probability. When various evaluation methods reach a certain value,
the risk probability is recorded as Pi; when Pi reaches a certain threshold (referred to as Pt), it is defined as positive, and certain measures (such
as predicting benign and malignant breast nodules) are taken. The balance of pros and cons then changes. The ordinate is the Net Benefit rate
(NB) after subtracting the pros and cons. In addition to the curves of the four AI models, there are two gray lines in the figure. They represent
two extreme cases. The horizontal bar indicates that all samples are negative (Pi<Pt), no intervening, and the NB is 0. The sloping line indicates
that all samples were positive, all received the intervention, and the NB is a backslash with a negative slope. Other curves are compared with
them. (D) The features importance of weight distribution of the nomogram. The U-score, ultrasound features, showed the highest impact,
followed by S-Detect. Interestingly, age at menarche, number of pregnancies, and duration of breastfeeding also indicated important influences.
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compared with them. Figure 3C shows that within a large Pt

range, the benefits of the elastography model, clinical model,

ultrasound model, and all-features models are higher than the

extreme curves. Therefore, their optional Pt ranges are relatively

large, which means they are relatively safe and effective. The Pt

range of the all-feature model is relatively larger and better.

The features’ importance was shown by the rate of weight

distribution of the nomogram (Figure 3D). The U-score

(ultrasound features) showed the highest impact, followed by S-

Detect. Interestingly, age at menarche, number of pregnancies,

and duration of breastfeeding also indicated important influences.
Discussion

Breast cancer is the most common malignant tumor in

women (27). With the rapid development of computer

technology, AI has shown good performance in diagnosis in

the field of medical imaging. Recently, Wu et al. compared

different deep-learning models based on the multi-input

resolution for breast ultrasound images. They attempted to

select the best DL combination (28). This study established an

AI model with selected preoperative clinical features to improve

the accuracy of the assessment of benign and malignant

breast lesions.

Among the different diagnostic models in this study, the

diagnostic model combining all features showed the highest

diagnostic efficiency and was relatively better than the other

models. The combined model considered the patient’s clinical

information, the radiologist’s evaluation of the ultrasound images,

ultrasound elastography, and the S-Detect results to form a

comprehensive diagnosis. The AUC of the combined model was

better than that of ultrasound, S-Detect, or elastography alone.

This means that combined diagnosis is an important method to

improve the differential diagnosis of benign and malignant breast

lesions. Combined diagnosis can reduce the misdiagnosis rate and

provide a more comprehensive and accurate image diagnosis basis

for clinical practice. Previous studies have shown that the

diagnostic performance of S-Detect moderate is consistent with

that of a radiologist (kappa values = 0.58) (29). Park et al. (30)

reported that S-Detect assistance could notably improve the AUC

and interobserver agreement, especially for less experienced

radiologists. Computer-aided diagnosis can serve as a “second

opinion” to radiologists during morphological interpretation to

improve their accuracy (31).

Our results showed that the combined AI diagnosis model

could achieve complementary advantages, which are of great

significance for the differential diagnosis of benign and

malignant breast masses and can help doctors make better

clinical decisions and reduce unnecessary biopsies. According to

the weight map, U-Score and S-Detect seemed to be more
Frontiers in Oncology 07
important to distinguish benign and malignant breast masses in

the combined model. The U-score (ultrasound features) showed

the highest impact, followed by S-Detect. This may be related to

the following factors. The U-score is a comprehensive score based

on ultrasound features extracted by sonographers. The U-score

includes nodule shape, aspect ratio, edge, capsule, internal echo,

calcification, and color Doppler. The features covered by U-score

are relatively more comprehensive than those observed by S-

Detect. S-Detect technology (Samsung Healthcare, Seoul, South

Korea) is a new artificial intelligence ultrasound-assisted

diagnostic technology that uses a deep-learning algorithm and a

convolutional neural network. Based on big data analysis using

databases, it can provide a reference for the differential diagnosis

of benign and malignant breast lesions. In terms of data sources,

S-Detect data come from ultrasonic radio frequency time series.

Compared to the grayscale image, there is no loss of information

in radio frequency waves. In addition, S-Detect provides multiple

segmentation modalities combined with ultrasound, so users can

choose a more meticulous segmentation modality. S-Detect has a

high stability and classification accuracy, which can reduce the

operator dependence and the influence of subjective factors, and

improve the conventional ultrasound diagnosis confidence (32).

Especially in clinical diagnosis, more information could allow

doctors to more accurately diagnose patients, which is the same

with AI. The model with clinical, ultrasonic, elastography, and S-

Detect information obtains the best performance in the four

models. That illustrates, compared with the previous image-only

method, the multi-modality of information can provide details to

help AI diagnosis. Elastography is a noninvasive diagnostic

method that can provide qualitative and quantitative

information about the stiffness and elastic properties of tissue.

Elastography as a supplement to conventional US can be used to

distinguish benign and malignant breast lesions. A multicenter

prospective study showed that the combination of S-Detect and

elastography could further improve the diagnostic ability of US for

asymptomatic breast nodules. Compared with a single use of S-

Detector conventional ultrasound, S-Detect combined with

elastography showed higher accuracy and specificity (21).

Conversely, another study reported that the additional use of

elastography did not show any improvement in the

characterization of breast lesions compared to the use of

morphology alone (22). Therefore, the value of elastography to

assist diagnosis needs to be further explored. Many breast lesions

are associated with microcalcifications. Certain types of

microcalcifications are associated with negative genetic and

molecular characteristics of the tumor and an unfavorable

prognosis (22). S-Detect does not provide calcification

information. Conventional ultrasound makes up for the

deficiency of S-Detect in calcification information interpretation.

S-Detect and traditional ultrasound can play a complementary

role for each other in collecting diagnostic information.
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Category 4 lesions based on the BI-RADS classification are

defined as suspected malignancy, with malignancy rates ranging

from 2% to 95% (25). Less experienced radiologists are at a greater

risk of misdiagnosing cancer, increasing the number of false-

positive diagnoses. Therefore, how to improve the diagnostic

sensitivity of malignant lesions and reduce the puncture biopsy

rate of benign lesions in clinical practice is of significant concern to

radiologists. In this study, the specificity of the radiologist was 53%

and that of the combined diagnosis was 92%; this improvement in

specificity can reduce unnecessary biopsies, preserve medical

resources, and reduce the psychological burden on patients.

Previous studies have shown that the use of AI can lead to a

change in the final BI-RADS classification, with a significant

increase in the rate of correct reclassification and an

improvement in final management decisions (29, 33, 34).

Nomograms are widely used for cancer prognosis and

have the ability to reduce statistical predictive models into a

single numerical estimate of the probability of an event, and they

provide user-friendly graphical interfaces (35, 36). In this study,

a nomogram was developed based on logistic regression analysis

with ultrasound images, clinical information, ultrasound

elastography, and S-Detect results. The area under the curve

(AUC) was 0.89 in the training cohort. The decision curve

derived from the nomogram displayed good clinical utility.

This nomogram, as a noninvasive tool, provided a visual

display of the diagnostic model, which can be used as a

reference for doctors and may facilitate the development of

more effective preoperative decision-making.
Limitations

This study has some limitations that should be noted. First, this

study was a single-center study, and non-mass lesions were not

included. Second, only static images can be read with S-Detect

(dynamic images cannot be read). However, the future

development direction of artificial intelligence should not be

limited to the analysis of static images; rather, dynamic videos

should be collected to provide a strong basis for the extensive

development of clinical ultrasound technology and to guide clinical

diagnosis and treatment. Third, in this article, though the model

with different features was compared, different algorithms with the

same feature were not designed in the experiments. It is unclear

whether there is an algorithm that suits this task better, and we will

figure out it in futurework. Fourth, in this article, the image features

were extractedby radiomics,whichmeans significantdetail losswill

appear in feature extraction processing compared to predicting

directly from the image. In future work, we will combine the image

and the clinical features into one CNNmodel for direct prediction.

Fifth, the sample size of this studywas small andwas insufficient for

the machine learning algorithm to sufficiently learn some

important features within the data and provide a robust

generalization ability of the developed AI models. A multicenter
Frontiers in Oncology 08
study with a large sample size should be performed to validate the

performance of this AI model. We are going to develop more

clinical and applicable software in the future.
Conclusions

Elastic imaging can provide stiffness information about

lesions. S-Detect can improve the classification of breast

lesions in terms of diagnostic performance and operator

dependence. Our experience suggests an AI model of

sonographer’s evaluation + S-Detect + elastography + clinical

information, with a higher overall AUC value and specificity

than conventional US, could improve the preoperative

identification of benign and malignant breast masses and may

reduce the number of unnecessary breast biopsies.
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