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Prognostic value of lncRNAs
related to fatty acid metabolism
in lung adenocarcinoma and
their correlation with tumor
microenvironment based on
bioinformatics analysis
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Wen-Hui Gao3, Yang-Yong Sun1, Chang Liu1, Yi-Jun Shi1,
Shuang Li1 and Ai-Zhong Shao1*

1Department of Cardiothoracic Surgery, People's Hospital Affiliated to Jiangsu University, Zhenjiang,
China, 2Department of Oncology, Hospital Affiliated to Hebei University of Engineering, Handan,
China, 3School of Medicine, Jiangsu University, Zhenjiang, China
Background: As a key regulator of metabolic pathways, long non-coding RNA

(lncRNA) has received much attention for its relationship with reprogrammed

fatty acid metabolism (FAM). This study aimed to investigate the role of the

FAM-related lncRNAs in the prognostic management of patients with lung

adenocarcinoma (LUAD) using bioinformatics analysis techniques.

Methods: We obtained LUAD-related transcriptomic data and clinical

information from The Cancer Genome Atlas (TCGA) database. The lncRNA

risk models associated with FMA were constructed by single-sample gene set

enrichment analysis (ssGSEA), weighted gene co-expression network

(WGCNA), differential expression analysis, overlap analysis, and Cox

regression analysis. Kaplan-Meier (K-M) and receiver operating characteristic

(ROC) curves were utilized to assess the predictive validity of the risk model.

Gene set variation analysis (GSVA) revealed molecular mechanisms associated

with the risk model. ssGSEA and microenvironment cell populations-counter

(MCP-counter) demonstrated the immune landscape of LUAD patients. The

relationships between lncRNAs, miRNAs, and mRNAs were predicted by using

LncBase v.2 and miRTarBase. The lncRNA-miRNA-mRNA regulatory network

was visualized with Cytoscape v3.4.0. Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis

was performed using DAVID v6.8. Quantitative real-time fluorescence PCR

(qRT-PCR) was performed to verify the expression levels of the prognostic

lncRNAs.

Results: We identified 249 differentially expressed FMA-related lncRNAs in

TCGA-LUAD, six of which were used to construct a risk model with appreciable

predictive power. GSVA results suggested that the risk model may be involved
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in regulating fatty acid synthesis/metabolism, gene repair, and immune/

inflammatory responses in the LUAD process. Immune landscape analysis

demonstrated a lower abundance of immune cells in the high-risk group of

patients associated with poor prognosis. Moreover, we predicted 279

competing endogenous RNA (ceRNA) mechanisms for 6 prognostic

lncRNAs with 39 miRNAs and 201 mRNAs. Functional enrichment analysis

indicated that the ceRNA network may be involved in the process of LUAD by

participating in genomic transcription, influencing the cell cycle, and

regulating tissue and organogenesis. In vitro experiments showed that

prognostic lncRNA CTA-384D8.35, lncRNA RP5-1059L7.1, and lncRNA

Z83851.4 were significantly upregulated in LUAD primary tumor tissues,

while lncRNA RP11-401P9.4, lncRNA CTA-384D8.35, and lncRNA RP11-

259K15.2 were expressed at higher levels in paraneoplastic tissues.

Conclusion: In summary, the prognostic factors identified in this study can be

used as potential biomarkers for clinical applications. ceRNA network

construction provides a new vision for the study of LUAD pathogenesis.
KEYWORDS

long non-coding RNA (lncRNA), fatty acid metabolism, lung adenocarcinoma
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Introduction

According to GLOBOCAN 2020 cancer incidence estimates,

lung cancer is the leading cause of cancer-related death and has

the highest incidence of mortality globally (1). Lung cancer is

subdivided into small cell lung cancer (SCLC) and non-small cell

lung cancer (NSCLC), with lung adenocarcinoma (LUAD) and

lung squamous cell carcinoma (LUSC) constituting non-small

cell lung cancer. LUAD is the most common form of lung

cancer, including 85% of non-small cell lung cancers and 40% of

all forms (2). Patients with LUAD are typically diagnosed with

advanced illness or metastases despite considerable advances in

clinical diagnosis and multimodal therapy, including surgery,

chemotherapy, and targeted medicines (3), and 5-year lung
A; LUAD, lung
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cancer survival rates range from 10 to 20% in the majority of

nations (4). The lack of understanding of the molecular

mechanisms leads to limitationsin treatment outcomes.

Therefore, further exploration of new prognosticbiomarkers

for patients with LUAD is necessary.

Long non-coding RNAs (lncRNAs) are defined as non-

protein-coding RNA transcripts that include more than 200

nucleotides, which play an essential role in the regulation of

genes as well as a wide variety biological processes (5, 6). The

aberrant regulation of lncRNAs is common in cancer, and it has

been shown to have a role in the development and progression of

the disease (7). lncRNAs contribute to the regulation of tumor

development by promoting carcinogenesis, invasion, and drug

resistance (8). lncRNAs have the potential to engage in

interactions with mRNA, microRNA (miRNA), DNA, and a

wide variety of proteins, which might have significant

implications for a variety of pathophysiological processes, such

as epigenetic regulation, glycolysis, DNA repair, and cellular

stem cells (9–11). As a result of the advent of high-throughput

sequencing technology, an increasing number of lncRNAs, such

as H19, MALAT1, HOTAIR, and JPX, are being recognized as

prognostic biomarkers for LUAD (12–15). Consequently,

understanding the role of lncRNAs in LUAD might result in

the development of new prognostic biomarkers and the finding

of potential therapy targets.

Since immune, methylation, ferroptosis, cell scorching and

necroptosis-related pathways have been extensively reported in
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the field of LUAD, but studies on fatty acid metabolism-related

pathways are still scarce, its important impact on the prognosis

of LUAD was further investigated. Fatty acids play an essential

role in the body’s metabolic processes, as well as cell growth and

signaling (16). There is a connection between the fatty acid

signaling system and the development and progression of

tumors. Synthesized lipids are used by cancer cells for the

purposes of proliferation, survival, invasion, and angiogenesis

(17). A research indicates that lncRNAs may influence the

development of cancer via altering fatty acid metabolism

(FAM) (18). There have been many studies that have shown a

connection between FAM-related lncRNAs and the proliferation

and differentiation of LUAD cells. There was a significant

correlation between high FAM83A-AS1 expression in LUAD

and poor overall and progression-free survival (OS and PFS)

(19). Proliferation and differentiation of LUAD are promoted by

FAM83A-AS1 through the HIF-1/glycolytic axis (20). In

addition, the competing endogenous RNA hypothesis

(ceRNA), which was proposed by Salmena et al., is predicated

on a massive regulatory network system that depicts a

sophisticated interplay between coding and non-coding RNAs

(21). According to this theory, the expression of mRNAs that are

involved in FAM may be influenced by lncRNAs in LUAD by

sponging on the function of miRNAs in the region. The ceRNA

networks have been generated in a variety of cancers by a

number of different researches (22), but their regulatory role

in LUAD is unknown. Therefore, gaining an understanding of

the role that FAM-related lncRNAs play in LUAD might help in

the development of new prognostic biomarkers as well as

potential therapy targets.

In the beginning of our analysis, we collected information

from the MsigDB, TCGA, and GEO databases. Using several

bioinformatics techniques, we establish lncRNA signatures

related with FAM. Then, we identified six survival-related

FAM-related lncRNAs and developed ceRNA networks

associated with FAM. To explore the link between FAM

pathways and LUAD, Gene set variation analysis (GSVA)

uncovered molecular processes related with the risk model.

We evaluated prognostic lncRNAs using TCGA internal and

quantitative real-time polymerase chain reaction (qRT-PCR) as

well as external cohorts.
Materials and methods

Data source

The TCGA database was queried for transcriptome data,

survival details, and clinical information on LUAD. There are

510 LUAD samples and 58 normal control samples in the RNA-

seq expression matrix (mRNA, miRNA, and lncRNA). For the

screening of prognostic genes and assessment of the prognostic

model, 497 LUAD patients with complete survival data were
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employed. In addition, we retrieved the GSE31210 dataset

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE31210) from the GEO database as an independent validation

set. This dataset consists of lncRNA expression profiles and

complete survival details from 226 LUAD patients (23, 24).
FMA score based on ssGSEA

Based on the expression profile of FMA-related genes in the

TCGA dataset, the ssGSEA method was used to calculate the

FAM score for each of the 568 samples. In order to acquire

FMA-related genes, we first downloaded four datasets from

MsigDB: the hallmark gene sets, the Gene Ontology gene sets,

the KEGG Canonical pathways, and the Reactome pathway.

After that, we retrieved the FMA, and the genes that we obtained

were regarded to as FMA-related genes. In the meanwhile, we

also got genes associated to metabolism from a list of 2752

human metabolic enzymes and transporter proteins genes

reported in earlier research. After that, we collected FMA-

related genes using the phrase “fatty acid.” Combining the

FMA-related genes that were previously collected and deleting

duplicate genes(retaining unique genes) led to the discovery of a

total of 525 FMA-related genes that were used in this

investigation. Following this, we matched the expression

profiles of the 525 FMA-related genes in the TCGA database.

Using the ssGSEA algorithm, we obtained the FMA scores of 510

LUAD and 58 normal samples. We then divided the samples

into groups with high and low FMA scores based on the median

values of the scores. (Supplementary Table 1).
WGCNA

We created co-expression networks in the R package WGCNA

(1.69 version) utilizing all lncRNAs in 510 LUAD and 58 normal

samples from the TCGA database in order to study the link between

gene expression data and clinical characteristics (high- and low-

FMA scores) (25, 26). Using flashClust, outliers were evaluated and

a sample tree was generated for 568 samples. No niche samples were

detected in the current investigation. (Supplementary Figure 1A).

To ensure that the gene distribution corresponded to the scale-free

network, the b values were used to create the neighbor matrix (27).

Using an approach of dynamic cutting, the tree was divided into

several modules. The appropriate MEDissThres settings were set to

merge comparable modules (Supplementary Figure 1B). The

Pearson correlation coefficient was used to determine the

association between co-expression modules and the high and low

FMA score groups, and a heatmap was then generated. The

module having the strongest association with the two score

groups was chosen for further investigation as the hub module.

All lncRNAs in the discovered hub module were regarded as

FMA-related lncRNAs.
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Differential expression analysis

The R package limma was used to identify DE-lncRNAs

between 510 LUAD and 58 normal samples. DE-lncRNAs

between LUAD and normal samples were identified as

lncRNAs with |log2 fold change (FC)| > 0.5 and adjusted (adj.)

P< 0.05. (LUAD vs. normal). The adj. P was determined using

the Benjamin & Hochberg technique with multiple testing

adjustments. A total of 5265 DE-mRNAs (Supplementary

Table 2) and 333 DE-miRNAs (Supplementary Table 3)

associated with LUAD in the TCGA database were obtained

using the same methods and thresholds.
Overlap analysis

To identify lncRNAs associated with DE-FMA, an overlap

analysis was conducted. Essentially, the list of FMA-related

lncRNAs obtained by WGCNA and the list of DE-lncRNAs

acquired were submitted to the Jvenn online tool (http://jvenn.

toulouse.inra.fr/app/example.html) to find the common

elements. Adobe Illustrator 2020 was used to create the

Venn diagram.
The construction, evaluation, and
validation of risk model

We chose a cohort of 497 LUAD patients from the TCGA

database containing complete clinical information (including

survival time) as the training set for identifying prognostic genes

and constructing and evaluating prognostic models. The

GSE31210 dataset (n = 226) was used to validate the

prognostic model externally and independently. For the

discovered DE-FMA-related lncRNAs, we conducted a

univariate Cox regression analysis on the training set.

Variables that satisfied the requirements based on univariate P

values with a significance level of less than 0.05 were subjected to

multivariate Cox analysis. The significance criterion for

identifying the best prognostic gene was set at P< 0.05. Based

on the expression and regression coefficients (coef, output of

multivariate Cox analysis) of the prognostic genes, risk scores

were generated for each sample in the training set and the

independent external validation set.The formula for the risk

score as shown below:

riskscore = (coefgene1 � expressionvalueofgene1) + (coefgene2

� expressionvalueofgene2) +⋯ (coefgenen

� expressionvalueofgenen)

Each dataset’s LUAD samples were separated into high- and

low-risk groups based on the corresponding median risk score
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value. The high-risk group consisted of samples with risk scores

above the median value, whereas the low-risk group consisted of

samples with risk scores below the median value. The MEDIAN

function was used to obtain the median value of the risk scores.

After that, variations in OS of LUAD patients between high- and

low-risk groups in the training set and independent external

validation set were evaluated using Kaplan-Meier (K-M) analysis

and log-rank test, and P< 0.05 was regarded statistically

significant. Then, time-dependent (1, 2, and 3 years) ROC

curves were produced using the risk scores, and the prognostic

prediction performance of the prognostic model was assessed by

calculating the area under the curve (AUC) in the training set

and the independent external validation set.
Stratified survival analysis

On the basis of clinical characteristics, we divided TCGA-

LUAD patients into various clinical subgroups, including age

subgroups (≤ 65 and > 65), gender subgroups (male and female),

tissue origin subgroups (upper and lower pages), stage

subgroups (stage i-ii and stage iii-iv), pathological T stage (T1

and T2-4), and pathological N stage (T1 and T2-4) (N1 andN1-3).

The Wilcoxon rank-sum test was used to identify variances in risk

score levels among subgroups. The K-M curve was used to evaluate

the capacity of the risk score system to discriminate clinical

outcomes among various clinical subgroups of patients. P< 0.05

was deemed statistically significant.
GSVA

We segregated LUAD samples from the TCGAdataset into high-

and low-risk categories. Using the c2.cp.kegg.v7.4.symbols.gmt as the

reference gene set and setting the adj. P-value to< 0.05 and the |t

value| > 4, we ranGSVA comparing high- and low-risk patients using

the GSVA package 1.38 in R (28).
ESTIMATE, ssGSEA, and MCP-counter of
the LUAD samples

Estimation of STromal and Immune cells in MAlignant

Tumor tissues using Expression data (ESTIMATE) is a

technique for assessing tumor purity and the existence of

stromal/immune cells in tumor samples (29). Using

ESTIMATE, we assessed the immune score (levels of immune

cell infiltration), stromal score (stromal content), and

ESTIMATE score (which suggests tumor purity) for each

LUAD sample. The ratio of the appropriate component in the

tumor immune microenvironment is proportional to the value

of the related score.
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We calculated the enrichment levels of 28 immune-associated

datasets in each LUAD sample in the form of ssGSEA (30) scores in

the GSVA R package. Marker genes expressions-based

microenvironment cell populations-counter (MCP-counter) (31),

was also used to evaluate the number of immune-infiltrating cells in

each sample; this method yielded an abundance score for eight

immune populations (CD8+ T cells, myeloid dendritic cells, T cells,

natural killer cells, monocytic lineage, B lineages, cytotoxic

lymphocytes, and neutrophils) and two stromal populations

(fibroblasts and endothelial cells). The analysis of gene expression

in cell markers served as the foundation for the subpopulation

classification of these cells. T-test was used to find statistically

significant differences in immune cell counts.
ceRNA network

On the basis of the targeting interactions, a lncRNA-

miRNA-mRNA ceRNA network was created. This ceRNA

network established a complex post-transcriptional regulatory

network in LUAD as a result of revealing the competing binding

of miRNAs by lncRNAs and mRNAs. The LncBase V2.0 (32)

database (www.microrna.gr/LncBase) was used to predict the

target miRNAs of prognostic lncRNAs, and the threshold was set

to score > 0.6 to obtain lncRNA-miRNA relationship pairs.

Subsequently, DE-miRNA-targeted mRNAs were obtained

through the miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/)

database, which provides experimentally validated miRNA-

mRNA relationship pairs (33). Based on the ceRNA

hypothesis, we selected DE-mRNAs with the same expression

trend as the prognostic lncRNA and DE-miRNAs with the

opposite expression trend to the prognostic lncRNA to form

lncRNA-miRNA and miRNA-mRNA relationship pairs. In

addition, we obtained lncRNA-mRNA co-expression

relationship pairs with correlation coefficients (r) > 0.4 and p<

0.05 by Pearson correlation analysis performed on prognostic

lncRNAs and all DE-mRNAs. Ultimately, ceRNA networks were

constructed using lncRNA-miRNA-mRNA relationship pairs

with overlapping relationships. The ceRNA network was

visualized using Cytoscape V3.4.07.
DAVID database

We used the online tool known as the Database for Annotation,

Visualization, and Integrated Discovery (DAVID, http://david.

ncifcrf.gov/, version 6.8) in order to carry out functional

annotation and pathway enrichment analysis on the mRNAs that

make up the ceRNA network (34). This allowed us to better

understand the biological roles that these mRNAs play. The

threshold value was determined to be P< 0.05 and count ≥ 2. The

R programwas used to visualize the findings of GO enrichment and

KEGG pathway analysis as bubble charts. GO enrichment and
Frontiers in Oncology 05
KEGG pathway results were visualized as bubble charts by

R software.
Patient preparation and collection

We collected frozen and surgically resected tumor tissues

from 20 patients with pathologically diagnosed LUAD at the

Affiliated People’s Hospital of Jiangsu University. After removal,

the surgical specimens were immediately frozen in liquid

nitrogen and stored at −80°C. The studies involving human

participants were reviewed and approved by Ethics Committee

of the Affiliated People’s Hospital of Jiangsu University

(approval NO.K-20200097-Y). The patients provided their

written informed consent to participate in this study.
RNA isolation and quantitative real-time
polymerase chain reaction (qRT-PCR)

TotalRNAwasextractedfromall20 tissuesusingTRIzolReagent

(Life Technologies-Invitrogen, Carlsbad, CA, USA) according to the

manufacturer’s recommendations. A NanoDrop 2000FC-3100

nucleic acid protein quantifier was then used to measure the RNA

solution’s concentration and purity (Thermo Fisher Scientific,

Waltham, MA, USALife Real). Prior to quantitative real-time PCR,

the isolated RNA was reverse-transcribed to cDNA using the

SureScript-First-strand-cDNA-synthesis-kit (Genecopoeia,

Guangzhou, China). The qRT-PCR experiment included 3 µl of

reverse transcription product, 5 µl of 5×BlazeTaq qPCR Mix

(Genecopoeia, Guangzhou, China), and 1µl of forward and reverse

primer, respectively. Initial denaturation at 95°C for 1 minute was

followedby40cyclesof incubationat95°Cfor20seconds, 55°C for20

seconds, and 72°C for 30 seconds. Table 1 displays the sequence

information for all primers that were manufactured by Servicebio

(Wuhan, China). The GAPDH gene served as an internal reference,

and the 2-DDCt method technique was used to measure the relative

expression of six prognostic genes (35). The experiment was done

threetimesonseparatedates.Sixprognostic lncRNAswerecompared

between para-cancer and LUAD samples using paired t-tests and

GraphPad Prism V6 (GraphPad Software, La Jolla, CA, USA). The

degree of statistical significance was determined and reported as

follows: * for P< 0.05; ** for P< 0.01.
Statistical analysis

All analyses and data plotting were performed using R

software (https://www.r-project.org/, version 4.0.1, R Project

for Statistical Computing). All box plots were generated by the

R package ggplot2 (version 3.3.2). The survival analysis and Cox

regression analysis were performed in the R package Survival

(version 3.2-3). The R package pROC (version 1.12.1) was used
frontiersin.org
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to draw the ROC curves. Significance thresholds were labeled

where appropriate.
Results

Identification of the FMA-related
lncRNAs in TCGA-LUAD

After integration of the obtained expression profiles of 525

FMA genes in TCGA-LUAD (497 LUAD and 58 normal

samples), the FMA score was calculated for each sample by

the ssGSEA algorithm. All samples were divided into high and

low FMA score groups based on the median value of this score

(median value = 1.586049) (Supplementary Table 1). Following

that, the lncRNA profiles of 497 LUAD tissue samples and 58

normal tissue samples from the TCGA were included into the

WGCNA. In order to develop a scale-free co-expression network

in accordance with the analysis, the b-value was established at 4,

which scale-free R2 ≥ 0.85. (Figure 1A). After that, the

hierarchical clustering technique and the dynamic cutting

algorithm were used to produce a total of 12 modules (gray

modules were excluded because they were not assigned into any

cluster) (Figure 1B). We estimated the correlation of FMA scores

with WGCNA modules. Among the 12 modules, the yellow

module (cor = ± 0.36, P = 1e-18; 781 lncRNAs) and magenta

module (cor = ± 0.45, P = 4e-30; 147 lncRNAs) were highly

correlated between groups with high and low FMA scores

(Figure 1C). From these two modules, 928 lncRNAs

(Supplementary Table 4) defined as FMA-related lncRNAs

were selected for further analysis.
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Identification of the abnormally
expressed FMA-related lncRNAs in LUAD

A normalized lncRNA expression matrix of 568 samples

(510 LUAD and 58 normal) obtained from the TCGA database

was selected as the basis for differential expression analysis.

Using the R package limma, a total of 538 DE-lncRNAs

satisfying |log2 FC| > 0.5 and adj. P< 0.05 was identified based

on LUAD vs. normal, of which 298 were up-regulated and 240

were down-regulated (Supplementary Table 5).

The overlap analysis of FMA-related lncRNAs and DE-

lncRNAs identified a total of 249 common lncRNAs (Figure 2;

Supplementary Table 6), of which 83 were up-regulated and 166

were down-regulated (Figure 3), defining these lncRNAs as DE-

FMA-related lncRNAs in LUAD.
Construction of a prognostic signature
on the FMA-related lncRNA

We identified the optimal prognostic lncRNAs and constructed

a prognostic signature by Cox regression analysis in the TCGA-

LUAD (n = 497) dataset. Eighty-nine lncRNAs significantly

associated with survival in LUAD patients were identified from

249 DE-FMA-related lncRNAs by univariate Cox regression

analysis with a significance threshold of P< 0.05 (Figure 4A;

Supplementary Table 7). Subsequently, we employed multivariate

Cox regression analysis to recognize the optimal variables from the

above 89 lncRNAs. According to P< 0.05, lncRNA RP11-4B16.3

(P = 0.003), lncRNA CTA-384D8.35 (P = 0.008), lncRNA RP11-

401P9.4 (P = 0.013), lncRNA RP5-1059L7.1 (P = 0.021), lncRNA
TABLE 1 Sequence information of 6 lncRNAs.

The specific primer sequences of prognostic lncRNAs

Gene name Primer sequence (5′ to 3′)

RP11-401P9.4 Forward: 5′-TGTTACTTGGGGTTCCTGTTGC-3′

Reverse: 5′-TGGGATGGGTTATGATGCTTTC-3′

RP11-4B16.3 Forward: 5′-TGCTGTGGGCAAAAGAA-3′

Reverse: 5′-GCCTCAGGGCAATGTAA-3′

CTA-384D8.35 Forward: 5′-GTTGCTAGTCCTCCGCTTCG-3′

Reverse: 5′-CTTTCAGTCAGGTGTTCCCC-3′

RP5-1059L7.1 Forward: 5′-CCTGGGGACAAAGTAAGCTAGT-3′

Reverse: 5′-GATGATTCTGTGTTCCACGGAT-3′

Z83851.4 Forward: 5′-GCAGCAGGAGCCGTGAATT-3′

Reverse: 5′-ATGGGTGGGCAGGGAAAAG-3′

RP11-259K15.2 Forward: 5′-AGGGTAACTGAGGGAGGTAAG-3′

Reverse: 5′-TAAGGTGTAATTGGGAAGAGG-3′

GAPDH Forward: 5′-CCCATCACCATCTTCCAGG-3′

Reverse: 5′-CATCACGCCACAGTTTCCC-3′
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A B

D

C

FIGURE 1

The evaluation of the weighted gene co-expression network. (A) Analysis of network topology for various soft-thresholding powers. The left
panel shows the scale-free fit index (y-axis) as a function of the soft-thresholding power (x-axis). (B) The right panel displays the mean
connectivity (degree, y-axis) as a function of the soft-thresholding power (x-axis). (C) Clustering dendrogram of genes, with dissimilarity based
on topological overlap, together with assigned merged module colors and the original module colors. (D) Module-trait associations. Each row
corresponds to a module eigengene, column to a trait. Each cell contains the corresponding correlation and p-value. The table is color-coded
by correlation according to the color legend.
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RP11 -259K15.2 (P = 0.033), and lncRNA Z83851.4 (P = 0.043984)

were filtered out as the best prognostic variables (Figure 4B). Where

HR > 1 for lncRNA Z83851.4 (HR = 1.524, 95% CI: 1.011-2.296),

lncRNA RP5-1059L7.1 (HR = 1.434, 95% CI: 1.057-1.946), and

lncRNA RP11-259K15.2 (HR = 1.276, 95% CI: 1.020-1.596) may be

pro-LUAD progression genes; while with HR< 1, the lncRNAs

RP11-4B16.3 (HR = 0.148, 95% CI: 0.042-0.514), lncRNA RP11-

401P9.4 (HR = 0.555, 95% CI: 0.349-0.882), and lncRNA CTA-

384D8.35 (HR = 0.620, 95% CI: 0.437-0.881) were the potential

suppressor oncogenes (Supplementary Table 8). Therefore, we

constructed a prognostic signature related to lipid metabolism

based on the above six lncRNAs.
Evaluation and validation of a risk model
based on 6 lncRNAs

We utilized a risk scoring system to evaluate and validate the

efficacy of the constructed 6 lncRNAs-based signature for prognostic

prediction of LUAD patients in the TCGA-LUAD (n = 497) and

GSE31210(n=226)datasets, respectively.Riskscoreswerecalculated

for each sample in the TCGA-LUAD dataset according to the

previously described formula, and the samples were divided into

high- (n= 249) low- (n = 248) risk groups based on themedian value

of the risk scores. Risk curves and scatter plots of patient survival

distributions showed that patient death clusteredwith increasing risk

scores (Figure 4C). K-M survival curves demonstrated that the risk

scorecouldsignificantlydifferentiate theprognosisofLUADpatients,

with high-risk scores being inextricably linked to poor prognosis in

LUAD patients (P< 0.0001; Figure 4D). ROC curves were applied to

assess the accuracy of the risk score’s ability to predict patient

prognosis. The results were presented in Figure 4E, and the AUC of

the risk score in predicting patients’OS at 1, 3, and 5 years was 0.631,
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0.659, and 0.750, respectively, demonstrating an acceptable

prognostic predictive validity. Moreover, the prognostic lncRNA

expression heatmap revealed that lncRNA Z83851.4, lncRNA RP5-

1059L7.1, and lncRNARP11-259K15.2 were highly expressed in the

high-risk group; while lncRNA CTA-384D8.35, lncRNA RP11-

401P9.4, and lncRNA RP11-4B16.3, on the other hand, were

overexpressed in the low-risk group (Figure 4F).

To demonstrate the applicability of the six lncRNAs-based

prognostic signature, we performed the same analysis as described

above in the GSE31210-LUAD dataset (independent validation set).

Using the expression profiles of the 6 lncRNAs in the GSE31210

dataset, risk scores for each LUAD sample in the independent

validation set were obtained by the aforementioned formula and

divided into high- (n = 113) and low- (n = 113) risk groups based on

medianvalues.Theprognosticpredictiveperformanceoftheriskscore

intheindependentvalidationsetwascomparabletotheirperformance

in the TCGAdataset. Figures 5A, B indicated that patients in the low-

risk group had a longer survival time and a greater likelihood of

survival compared to the high-risk group.Meanwhile, the risk profile

also showed a tolerable predictive accuracy in the independent

validation set with AUC values of 0.612, 0.641, and 0.674 at 1, 3,

and 5 years, respectively (Figure 5C). Furthermore, the expression

patterns of prognostic lncRNAs in different risk groups were

consistent with their expression in the TCGA dataset (Figure 5D).
Relationship between the risk score and
clinical characteristics

We divided TCGA-LUAD patients into different clinical

subgroups based on clinical characteristics, including age

subgroups (≤ 65 and > 65), gender subgroups (male and female),

tissue origin subgroups (upper and lower pages), stage subgroups
FIGURE 2

The overlap screening of lncRNAs associated with fatty acid metabolism and DE-lncRNAs showed a total of 249 common lncRNAs.
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(stage i-ii and stage iii-iv), pathological T stage (T1 and T2-4), and

pathological N stage (N1 and N1-3). The risk score was found to be

remarkably correlatedwith pathological T andN stages byWilcoxon

rank-sum test. Detailly, in the pathological T-stage subgroup, risk

score levels were considerably higher in the T2-4 group compared

with the T1 group (P< 0.01; Supplementary Figure 2A); in the

pathological N-stage subgroup, risk score levels were proportional

to lymph node involvement, which was significantly upregulated in

the N1-3 group (P< 0.01; Supplementary Figure 2B). However, the

distribution of risk scores among other clinical characteristics

subgroups was relatively uneventful (Supplementary Figures 2C–

F). Subsequently, weperformeda stratified survival analysis based on

the above clinical characteristic’s subgroup information. The results

indicated that the risk score distinguished significantly between the
Frontiers in Oncology 09
prognosis of the different clinical subgroups (except for the T1

group), with a low-risk score implying a relatively better prognosis

(Supplementary Figure 3).
Functional enrichment analysis based on
the risk score

To initially reveal the potential mechanisms by which risk score

affects prognosis in LUAD patients, we performed a GSVA by R

package GSVA. 22 KEGG pathways were identified to be

substantially differentially enriched between the high-risk group

and the low-risk group based on the comparison of the high-risk

group to the low-risk group at |t| > 4 and adj. P< 0.05.(Figure 6;
A

B

FIGURE 3

Expression patterns of DE-fatty acid metabolism-related lncRNAs in normal and cancerous tissues are compared. (A) A clustering analysis based
on DE-fatty acid metabolism-related lncRNAs was shown in Heatmap. (B) The Volcano plot displays substantially differently expressed lncRNAs
associated with fatty acid metabolism. .
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Supplementary Table 9). Pathways ‘PENTOSE PHOSPHATE

PATHWAY’, ‘STARCH AND SUCROSE METABOLISM’,

‘GLYCOLYSIS GLUCONEOGENESIS’, ‘AMINO SUGAR AND

NUC L E O T I D E S UGA R ME TA BO L I SM ’ , a n d

‘GLYCOSYLPHOSPHATIDYLINOSITOL GPI ANCHOR
Frontiers in Oncology 10
BIOSYNTHESIS’ with t > 4 were markedly activated in the high-

risk group compared to the low-risk group; notably, high-risk

patients might be implicated in the upregulation of

‘NUCLEOTIDE EXCISION REPAIR’, ‘MISMATCH REPAIR’,

and ‘BIOSYNTHESIS OF UNSATURATED FATTY ACIDS’.
A B

D E

F

C

FIGURE 4

Extraction of the prognostic signature of fatty acid metabolism-related lncRNAs in LUAD. (A) The prognostic lncRNAs identified using a
univariate Cox regression model. (B) The prognostic lncRNAs identified using a multivariable Cox regression model. (C) Distributions of risk
score, survival status, and hallmark gene expression profiles. (D) Kaplan–Meier plot of overall survival for patients in low-risk and high-risk
categories according to a prognostic classifier based on fatty acid metabolism in the TCGA cohort. (E) The accuracy of the risk score’s ability to
predict patient outcomes at 1, 3, and 5 years was evaluated using ROC curves. (F) Clustering analysis based on predictive fatty acid metabolism-
related lncRNAs was shown in Heatmap for the TCGA cohort.
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Comparatively, the low-risk group was preferentially associated

with ‘ABC TRANSPORTERS’, ‘TASTE TRANSDUCTION’, and

‘LINOLEIC ACID METABOLISM’. Moreover, PRIMARY

IMMUNODEFICIENCY, CYTOKINE RECEPTOR

INTERACTION, ARACHIDONIC ACID METABOLISM, and

ADIPOCYTOKINE SIGNALING PATHWAY were upregulated

in the low-risk group. The above evidence suggested that the risk

score was possibly involved in regulating fatty acid synthesis/

metabolism, gene repair, and immune/inflammatory responses in

the LUAD process.
Analysis of the immune landscape of
LUAD patients based on the risk score

Inspired by the above results, we proposed to assess the

differences in the immune microenvironment between risk
Frontiers in Oncology 11
groups using the ESTIMATE, ssGSEA, and MCP-counter

algorithms. According to the ESTIMATE methodology, the

immunological score, the stromal score, and the ESTIMATE

score were all considerably lower in the high-risk group in

comparison to the low-risk group (all P< 0.05; Figure 7A).

Subsequently, we evaluated the proportion of 28 immune cells

and 10 immune cells in the TCGA-LUAD sample (n = 497)

using the ssGSEA and MCP-counter algorithms, respectively

(Figure 7B). According to the outcome of the t-test, the

abundance of immune cell infiltration was substantially

different between the groups of patients who were at high risk

and those who were at low risk. In the ssGSEA analysis, 21

(Neutrophil, Activated B cell, Eosinophil, Activated CD8 T cell,

Immature, B cell, MDSC, Effector memeory CD8 T cell, Natural

killer cell, Central memory CD4, T cell, CD56dim natural killer

cell, Activated dendritic cell, Monocyte, T follicular, helper cell,

Type 1 T helper cell, Effector memeory CD4 T cell, Type 17 T
A B

D

C

FIGURE 5

Validation of the prognostic signature of lncRNAs associated to fatty acid metabolism in LUAD. (A) Distributions of risk score, survival status, and
expression profiles for hallmark genes. (B) Kaplan–Meier plot of overall survival for patients in low-risk and high-risk categories based on the
fatty acid metabolism prognostic classifier in the GEO cohort. (C) ROC curves were used to evaluate the risk score’s capacity to accurately
predict patient outcomes at 1, 3, and 5 years in the GEO cohort. (D) Heatmap in the GEO cohort displays clustering analysis based on
prognostic fatty acid metabolism-related lncRNAs.
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helper cell, Macrophage, Immature dendritic cell, Mast cell,

Plasmacytoid dendritic cell, and Activated CD4 T cell) of the

28 immune cells were significantly different between the high-

and low-risk groups, and surprisingly, all of these differential

immune cells were more infiltrative in the low-risk group (all P<

0.05; Figure 7C). Similarly, in the MCP-counter analysis, nine

immune cells (T cells, NK cells, Neutrophils, Cytotoxic,

lymphocytes, B lineage, CD8 T cells, Endothelial cells,

Monocytic lineage, and Myeloid dendritic cells) with

significantly different levels of infiltration were also

significantly higher in the low-risk group (all P< 0.05; Figure

7D). These results implied that patients in the high-risk group

associated with poor prognosis may be characterized by

immune deficiency.
Analysis of the ceRNA mechanism of
prognostic lncRNAs

To further investigate the regulatory mechanisms of

prognostic lncRNAs, we combined differential expression
Frontiers in Oncology 12
analysis, LncBase V2.0 database, miRTarBase database, and

lncRNA-mRNA co-expression analysis to construct a

prognostic lncRNA-miRNA-mRNA ceRNA regulatory network.

Based on the TCGA database, 5262 mRNAs (Supplementary

Table 2) and 333 miRNAs (Supplementary Table 3) that were

aberrantly expressed in LUAD were obtained by R package

limma with the difference threshold set to |log2 FC| > 0.5 and

adj. P< 0.05 (LUAD vs. normal). Subsequently, a total of 49

lncRNA-miRNA relationship pairs (6 lncRNAs and 49 miRNAs;

Supplementary Table 10) were obtained by screening DE-

miRNAs that interacted with prognostic lncRNAs and had

opposite expression trends using the LncBase V2.0 database

with a score > 0.6 as the criterion. Meanwhile, through the

miRTarBase database, we obtained 9021 miRNA-mRNA

relationship pairs for 322 DE-miRNAs and 2624 DE-mRNAs

(miRNAs were expressed in opposite trends to mRNAs;

Supplementary Table 11). Subsequently, co-expression analysis

of prognostic lncRNAs with DE-mRNAs was performed using

Pearson correlation analysis, and 2173 lncRNA-mRNA co-

expression relationships were obtained based on r > 4 and p<

0.05, which contained 1380 DE-mRNAs and 6 prognostic
FIGURE 6

The analysis of gene-set variation (GSVA) indicates functional differences between high- and low-risk subgroups. Variations in pathway activity
evaluated by GSVA between patients at high and low risk. The T values are shown using a linear model. We establish |t| > 4 and P value< 0.05 as
the cutoff value. The red column represents active pathways in individuals at high risk, whereas the blue column represents activated pathways
in patients at low risk.
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lncRNAs (Supplementary Table 12). Finally, we obtained a total

of 279 lncRNA-miRNA-mRNA ceRNA mechanisms

(Supplementary Table 13) by combining the above obtained

lncRNA-miRNA relationship pairs, miRNA-mRNA relationship

pairs, and lncRNA-mRNA co-expression relationship pairs,

which contained 6 prognostic lncRNAs, 39 miRNAs, and 201

mRNAs (Figure 8A). Concretely, the lncRNA CTA-384D8.35

(up-regulated) was able to regulate the expression of 7 mRNAs

(up-regulated) by competitive binding with 4 miRNAs (down-

regulated). lncRNA RP11-259K15.2 (down-regulated)

controlled the expression of 22 mRNAs (down-regulated) by

competitive binding with 7 miRNAs (up-regulated). The
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lncRNA RP11-401P9.4 (down-regulated) with 24 miRNAs

(up-regulated) and 171 mRNAs (down-regulated) comprised

239 ceRNA regulatory mechanisms. The lncRNA RP11-4B16.3

(down-regulated) could regulate the expression of ARAP2 and

RCAN1 (down-regulated) through the sponge hsa-miR-767-3p

(up-regulated). The lncRNA RP5-1059L7.1 (up-regulated) could

combine with the sponge hsa-miR-30b-3p (down-regulated) to

regulate the expression of ADAM12 and COL5A1 (up-

regulated). lncRNA Z83851.4 (up-regulated) was found to

incorporate with 2 sponge miRNAs (hsa-miR-15b-5p and hsa-

miR-195-5p; down-regulated) to regulate the expression of

TBRG4 and BIRC5, respectively (up-regulated). Overall, the
A

B

D

C

FIGURE 7

Immune scores and stromal scores correlate with subtypes of LUAD. (A) The P values for the distribution of immune scores in high and low risk
groups, stromal scores in histological types, and ESTIMATE scores in histological types are all less than 0.05. (B) Heatmap displaying the percentage
of 28 immune cells and 10 immune cells in the TCGA-LUAD sample utilizing ssGSEA and MCP-counter, respectively. (C) The violin plot of various
immune cell infiltration levels between high-risk and low-risk patients as determined by ssGSEA. (D) The violin plot of varied immune cell infiltration
levels between high-risk and low-risk patients as assessed by MCP-counter. *P < 0.05; **P < 0.01;***P < 0.001;****P < 0.0001.
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three prognostic lncRNAs upregulated in LUAD, lncRNA CTA-

384D8.35, lncRNA Z83851.4, and lncRNA RP5-1059L7.1 had

relatively independent ceRNA regulatory relationships.

Whereas, lncRNA RP11-401P9.4, lncRNA RP11-259K15.2,

and lncRNA RP11-4B16.3 had crosstalk among their ceRNA

mechanisms. Detailly, RCAN1 could be competitively regulated

by both lncRNA RP11-4B16.3-hsa-miR-767-3p and lncRNA

RP11-401P9.4-hsa-miR-130b-5p/hsa-miR-134-5p/hsa-miR-

339-5p/hsa-miR-4668-3 binding mode; lncRNA RP11-

259K15.2-hsa-miR-15a-5p and lncRNA RP11-401P9.4-hsa-

miR-21-5p/hsa-miR-339-5p/hsa-miR-590-5p both regulated

the expression of BTG2; CADM1 was regulated by lncRNA

RP11-259K15.2-hsa-miR-15a-5p and lncRNA RP11-401P9.4-

hsa-let-7a-2-3p/hsa-let-7g-3p/hsa-miR-21-5p/hsa-miR-361-3p;

lncRNA RP11-259K15.2 and lncRNA RP11-401P9.4

competitive binding to hsa-miR-3913-5p and hsa-miR-130b-

5p, respectively, could act on CGNL1 simultaneously; CREBRF

could be regulated by lncRNA RP11-259K15.2-hsa-miR-15a-5p/
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hsa-miR-503-5p, also regulated by lncRNA RP11-401P9.4-hsa-

let-7c-3p/hsa-miR-142-5p/hsa-miR-20b-3p.

Moreover, to reveal the potential functions of the ceRNA

network, we extracted 201 mRNAs from the network and

performed functional enrichment analysis (Figure 8B;

Supplementary Table 14). GO analysis revealed that these

genes were enriched for a total of 67 biological processes (BP),

13 cellular components (CC), and 30 molecular functions (MF)

terms. In the BP category, we found that these genes were

significantly enriched in biological processes related to RNA

(‘negative regulation of transcription from RNA polymerase II

promoter’, ‘positive regulation of transcription from RNA

polymerase II promoter’, ‘regulation of transcription from

RNA polymerase II promoter’, etc.)/DNA (‘negative regulation

of transcription, DNA-templated’, ‘positive regulation of

transcription, DNA-templated ’ , ‘transcription, DNA-

templated’, etc.) transcription, angiogenesis (‘vasculogenesis’,

‘blood vessel development ’ , ‘angiogenesis ’ , etc.), cell
A

B

FIGURE 8

Analysis of the CeRNA network and function enrichment. (A) Interactions of LncRNA–miRNA–mRNA in LUAD. Orange rectangles represent up-
regulated lncRNAs, light blue rectangles represent down-regulated lncRNAs, red circles indicate up-regulated mRNAs, green circles indicate
down-regulated mRNAs, pink triangles represent up-regulated miRNAs, and light blue triangles represent down-regulated miRNAs. (B) The
bubble plots displaying GO and KEGG enrichment data for mRNAs in ceRNA. The size of the dot denoted the gene count, and the color of the
dot indicated the P value.
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proliferation (‘BMP signaling pathway’, ‘negative regulation of

cell proliferation’, ‘negative regulation of canonical Wnt

signaling pathway’, ‘positive regulation of cell proliferation’,

etc.), and organ/tissue formation (‘heart morphogenesis’, ‘heart

development’, ‘lung alveolus development’, ‘tricuspid valve

morphogenesis’, etc.); the enrichment results in the CC and

MF categories suggested that these genes may serve molecular

functions for protein (‘protein kinase binding’, ‘protein binding’,

‘protein C-terminus binding’, etc.), RNA/DNA (‘sequence-

specific DNA binding’, ‘sequence-specific DNA binding’, ‘RNA

polymerase II distal enhancer sequence-specific binding’, etc.),

and transcription factor (‘transcription factor binding’) binding

in a variety of membrane (‘plasma membrane’, ‘basement

membrane’, ‘apical plasma membrane’, etc.), plasma (‘cytosol’

and ‘cytoplasm’), nuclear (‘nucleus’ and ‘nuclear body’), and

complexes (‘transcription factor complex’ and ‘receptor

complex’). KEGG analysis revealed that these genes were

involved in a total of 14 pathways, of which several pathways

that were shown to be associated with multiple cell physiological

events (e.g., cell proliferation and apoptosis) were significantly

enriched, such as ‘Hippo signaling pathway’, ‘TGF-beta

signaling pathway’, ‘FoxO signaling pathway’, and ‘Wnt

signaling pathway’. In addition, they were involved in

‘Pathways in cancer’ and ‘MicroRNAs in cancer’ pathways.

This evidence indicated that prognostic lncRNAs may be

involved in the process of LUAD by regulating genomic

transcription, influencing the cell cycle, and modulating tissue

and organogenesis.
Expression validation of 6 prognostic
lncRNAs

We collected 20 samples and para-cancer samples from 10

pairs of LUADs and elucidated the expression changes of

selected prognostic lncRNAs in LUADs by qRT-PCR. Six

lncRNAs were significantly differentially expressed between

LUAD and paraneoplastic samples. The expression levels of

lncRNA RP11-401P9.4, RP11-4B16.3, and lncRNA RP11-

259K15.2 were remarkably reduced in LUAD samples

compared with paraneoplastic samples (Figures 9A–C);

whereas lncRNA CTA-384D8.35, lncRNA RP5-1059L7.1, and

lncRNA Z83851.4 were notably up-regulated in LUAD samples

(Figures 9D–F), which was consistent with the results in the

TCGA-LUAD dataset.
Discussion

Lung cancer has the highest mortality rate of all

malignancies, accounting for more than a quarter of all cancer

deaths (36). Despite recent advances in lung cancer treatment,
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the patient survival rate remains bleak (37). LUAD is among the

most common kinds of lung cancer (38). Therefore, it is vital to

discover other prognostic characteristics for LUAD. To improve

prognosis assessment and individualized treatment, it is essential

to research potential biological pathways and find reliable

prognostic biomarkers. Researchers are beginning to

comprehend the significance of FAM in relation to

tumorigenesis, development, drug resistance, and prognosis in

LUAD as a consequence of rigorous studies on metabolic

reprogramming (39, 40). We have a limited understanding of

the connection between lncRNA and FAM in LUAD. To

determine the prognostic pattern of LUAD, a network of

FAM-related ceRNAs and six FAM-related lncRNAs were

created. The prediction capability was enhanced by combining

prognostic features with clinical characteristics to develop risk

molde with great repetition and reliability. A prognostic

signature based on lncRNAs related with FAM may be used to

stratify the prognosis of LUAD patients, according to the current

study. These prognostic markers will aid in the elucidation of the

molecular mechanisms behind LUAD and offer innovative

FAM-targeted treatment options.

Several studies have been conducted to develop different

types of prognostic models for patients with LUAD, addressing

ferroptosis (41–43), methylation (44–46), immune-related genes

(47–49), and the tumor microenvironment (TME) (43, 50, 51)

and so on, and to elucidate the underlying mechanisms of LUAD.

The present study is based on the relationship between FAM and

LUAD (52), and research in this area is still limited. Moreover, as

essential regulators of several physiological and pathological

processes, lncRNAs have a crucial role in regulating FAM in

diverse malignancies through ceRNA-related pathways (18, 53,

54). Therefore, in this study, the prognostic performance of

FAM-associated lncRNAs in LUAD was extensively

investigated. Based on univariate and multi-causal Cox

regression analyses, a lncRNA signature consisting of six

lncRNAs (i.e. lncRNA RP11-4B16.3, lncRNA CTA-384D8.35,

lncRNA RP11-401P9.4, lncRNA RP5-1059L7.1, lncRNA RP11-

259K15.2, and lncRNA Z83851.4) as important independent

prognostic factors. Tang et al. (55) discovered that CTA-

384D8.35 is a crucial survival gene in individuals with

pancreatic ductal adenocarcinoma. CTA-384D8.35 was

considerably enhanced in the expression profile of peripheral

blood mononuclear cells in individuals with primary Sjogren’s

disease, according to Peng et al. (56). Based on the mechanism by

which Rho-GTPase lead to activation protein 30 (ARHGAP30)

may enhance the intrinsic hydrolysis of GTP and negatively

regulate Rho-GTPase, ARHGAP30 can promote the hydrolysis

of GTP. Hu et al. (57) investigated the relationship between

ARHGAP30 expression and LUAD and identified survival curves

of LUAD patients with a more favorable prognosis for Z83851.4

with low ARHGAP30 expression. The mechanism of the other

LUAD lncRNAs is yet unknown.
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A scoring model was established in the TCGA training

cohort for the expression levels of six lncRNAs related with

metabolism in normal and malignant tissues. An independent

prognostic score method was used to predict OS in individuals

with LUAD. With similar findings, we validated the model using

the TCGA test cohort and the whole GEO cohort. We performed

clinical correlation studies to better understand the significance

of high- and low-risk models in LUAD and discovered that

survival was substantially different between high- and low-risk

groups, with the high-risk group having a dismal prognosis. To

further comprehend the processes behind differential prognosis

between high- and low-risk groupings, we used GSVA to identify

variations in immunological state between these subgroups.
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Energy metabolism pathways, such as the pentose phosphate

pathway, are abundant in the high-risk group. Liu et al. (58)

discovered that LUAD patients with a poor prognosis are

predominantly enriched in the pentose phosphate pathway,

which is consistent with the findings of the current

investigation. Moreover, unlike protein-coding genes, the

majority of pentose phosphate-related lncRNAs were

negatively correlated with pentose phosphate activity and were

linked with a poor prognosis (59, 60).

Taking into account the heterogeneity of the TME in LUAD,

we found variations between high- and low-risk groups using TME

patterns derived by Estimate, ssGSEA, and MCP-counter methods.

The study revealed that the low-risk group had a greater number of
A B
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FIGURE 9

Expression levels of six lncRNAs between LUAD and normal tissues. (A–F) Results of quantitative real-time PCR for the six lncRNAs. The
expression of hub genes was standardized relative to the expression of GAPDH. The significance of differences was determined using the
Student’s t-test; *P<0.05, **P<0.01, ***P<0.001.
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immune cell infiltrations than the high-risk group. In addition, the

low-risk group had a better clinical prognosis than the high-risk

group. We assumed that the low-risk group was the immune-

response-activatied subtype and the high-risk group was the

immune-response-suppressed subtype. TME is recognized to have

a crucial role in lipid metabolism between cancer cells and the full

populations of immune and stromal cells (61). The TME contains

both immunosuppressive and activating cells, and tumor infiltrates

are very varied based on the kind of cancer or patient model. T-cell

infiltration is a strong prognostic indicator and has been used in the

treatment of several malignancies (62). Studies have shown the

beneficial effect of T lymphocytes on tumor development (63), and

their absence from the TME results in immunological privilege (64).

Moreover, the significant infiltration of CD8 T cells and active CD8

T cells indicated a favorable prognosis and suggested that activating

these cells in the TME may have therapeutic benefits.

Immunosuppressive cells, such as tumor-associated macrophages

(TAMs) and myeloid-derived suppressor cells (MDSCs), have a

substantial impact on the longevity of LUAD patients (65, 66).

Moreover, as essential regulators of several physiological and

pathological processes, lncRNAs play crucial roles in regulating

FMA in different malignancies through ceRNA-related pathways

(18, 53, 67). We conducted a functional enrichment analysis on the

all mRNAs of the ceRNA network and discovered that they were

mostly enriched in the Hippo signaling pathway and the FoxO

signaling circuit. Several studies have shown that the modulation of

the Hippo signaling pathway accelerates the advancement of LUAD

(68–71). This result shows that there may be a regulatory network

of ceRNAs involving FAM-related lncRNAs that may potentially be

involved in the regulation of the Hippo signaling pathway, which

plays an important role in the progression of LUAD

In conclusion, we created and validated a risk score model for

prognosis and risk stratification based on FAM-related lncRNAs in

TCGA andGEOdatasets. High predictive accuracy was found for 1-,

3-,and5-yearOS.TocomprehendthepathogenicprocessesofLUAD,

it ispossible to target certaingenes. Inaddition,GSEA, tumor immune

infiltration, andother analyses suggested that FAMmayhave a role in

carcinogenesis, progression, and tumor microenvironment. These

findings indicate a potential treatment target for LUAD. However, it

is important to acknowledge the study’s shortcomings. First, the

predictive model used in this study was created utilizing data from a

single source (TCGA). External, independent data sets and long-term

follow-up are required to validate the predictive utility of our

innovative LUAD model. As this was a retrospective research, data

gaps and selection biases were unavoidable. Third, future research

should expand on explicit processes.
Conclusion

We created a 6 FAM-related lncRNA prognostic model to

predict the OS of LUAD patients and were the first to build a FAM-

related ceRNA network for LUAD, which may illuminate the
Frontiers in Oncology 17
molecular regulatory mechanism of FAM in LUAD. In addition,

this study adds to our knowledge of the regulation of FAM-related

lncRNAs in the course of LUAD and identifies novel potential

biomarkers for diagnosis, prognosis, and treatment.
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Results of lncRNA-miRNA relationship pairs.
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Results of miRNA-mRNA relationship pairs for 322 DE-miRNAs and 2624

DE-mRNAs.

SUPPLEMENTARY TABLE 12

Results of co-expression analysis of prognostic lncRNAs with DE-mRNAs

was performed using Pearson correlation analysis.
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SUPPLEMENTARY TABLE 14

Results of mRNAs from the network and performed functional
enrichment analysis in ceRNA network.

SUPPLEMENTARY FIGURE 1

The identification of outlier samples, the selection and validation of the
best soft threshold power for gene coexpression network construction.

(A) Clustering dendrogram of LUAD data used to identify outliers. (B)
Clustering of genes having similar features.

SUPPLEMENTARY FIGURE 2

Variations in risk scores between clinical characteristics. (A) Variations in
risk scores based on the T stage. (B) Variations in risk scores during the N

stage. (C) Variations in risk score based on age. (D) Differences in risk
score based on gender. (E) Variations in risk score based on the tissue of

origin. (F) Variations in risk score based on tumor stage.

SUPPLEMENTARY FIGURE 3

Differences of survival between high- and low-risk groups based on clinical

features. (A) Differences of survival between high-risk and low-risk groups for

individuals under 65 years old. (B) Differences of survival between high-risk
and low-risk groups for individuals over 65 years of age. (C) Differences of

survival between high- and low-risk groups based on female. (D) Differences
of survival between high- and low-risk groups based on male. (E) Differences
of survival between high- and low-risk groups based on lower lobe. (F)
Differences of survival between high- and low-risk groups based on upper

lobe. (G) Differences of survival between high- and low-risk groups based on

stage III-IV. (H) Differences of survival between high- and low-risk groups
basedon stage iii. (I)Differences of survival between high- and low-risk groups

based on T1 stage. (J) Differences of survival between high- and low-risk
groups based on T2-4 stage. (K) Differences of survival between high- and

low-risk groups based on N13 stage. (L)Differences of survival between high-
and low-risk groups based on N0 stage.
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