Check for updates

OPEN ACCESS

EDITED BY John Gibbs, Hackensack Meridian Health, United States

REVIEWED BY Jilong Wang, Guangxi Medical University, China Kit Fai Lee, The Chinese University of Hong Kong, China

*CORRESPONDENCE Ya-Min Zhang 2537970897@qq.com

This article was submitted to Gastrointestinal Cancers: Hepato Pancreatic Biliary Cancers, a section of the journal Frontiers in Oncology

SPECIALTY SECTION RECEIVED 17 August 2022 ACCEPTED 03 October 2022 PUBLISHED 20 October 2022

CITATION

Fu B, Zhang J-R, Han P-S and Zhang Y-M (2022) Comparison of survival and post-operation outcomes for minimally invasive versus open hepatectomy in hepatocellular carcinoma: A systematic review and meta-analysis of case-matched studies. *Front. Oncol.* 12:1021804. doi: 10.3389/fonc.2022.1021804

COPYRIGHT

© 2022 Fu, Zhang, Han and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Comparison of survival and post-operation outcomes for minimally invasive versus open hepatectomy in hepatocellular carcinoma: A systematic review and meta-analysis of casematched studies

Bing Fu¹, Jin-Rui Zhang¹, Pin-Sheng Han¹ and Ya-Min Zhang^{2*}

¹The First Central Clinical School, Tianjin Medical University, Tianjin, China, ²Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China

Background: With the rapid development of minimally invasive techniques and instruments, more and more patients begin to accept minimally invasive surgery. Minimally invasive hepatectomy (MIH) has obvious advantages in terms of surgical incision, but there is still no strong evidence of its long-term survival effect.

Purpose: The primary objective of this study was to compare long-term survival outcomes between MIH and Open hepatectomy (OH) in hepatocellular carcinoma based on high-quality case-control studies.

Methods: The study on the comparison of MIH (including RH or LH) and OH in the treatment of HCC from the date of establishment to June 1, 2022 was searched through PubMed, Web of Science, Embase and Cochrane Library databases. The main results were long-term overall and disease-free survival and short-term postoperative effect; All studies were conducted according to PRISMA guidelines, and meta-analysis of random effect models was adopted.

Results: 43 articles included 6673 patients. In these studies, the data from 44 studies need to be extracted and pooled in the meta-analysis. Our results showed that compared with OH group, OS (HR 1.17; 95%Cl 1.02, 1.35; P=0.02) and DFS (HR 1.15; 95%Cl 1.05, 1.26; P=0.002) in MIH group were slightly lower than those in OH group. The operation time (Z=2.14, P=0.03, MD8.01, 95% Cl: 2.60–13.42) was longer than OH group. In terms of length of hospital stay (Z=10.76, p<0.00001, MD -4.0, 95% Cl: -4.72 to -3.27), intraoperative blood loss (Z=5.33, P<0.00001, MD -108.33, 95% Cl: -148.15 to -68.50), blood transfusion rate (Z=5.06, p<0.00001, OR=0.64, 95% Cl 0.54 to 0.76, $I^2 = 0\%$), postoperative complications (Z=9.24, p<0.00001, OR = 0.46, 95% Cl 0.39 to

0.55, $I^2 = 21\%$), major morbidity (Z=6.11, p<0.00001, OR=0.46, 95% CI 0.39 to 0.59, $I^2 = 0\%$), R0 resection (Z=2.34, P=0.02, OR=1.46, 95% CI 1.06 to 2.0, $I^2 = 0\%$) and mortality(Z=2.71,P=0.007, OR=0.56, 95% CI 0.37 to 0.85), the MIH group was significantly better than the OH group. The meta-analysis showed no significant difference in terms of major hepatectomy Z=0.47, P=0.64, OR=1.04, 95% CI 0.89 to 1.22, $I^2 = 0\%$), anatomical resection (Z=0.48, P=0.63, OR=0.92, 95%CI 0.67 to 1.27), satellite nodules (Z=0.54, P=0.59, OR=0.92, 95%CI 0.69 to 1.23, $I^2 = 0\%$), microvascular invasion (Z=1.15, P=0.25, OR=1.11, 95%CI 0.93 to 1.34, $I^2 = 0\%$) and recurrence (Z=0.71, p=0.48, OR=0.94, 95% CI 0.78 to 1.12, $I^2 = 19\%$).

Conclusion: This study is the first to compare the clinical efficacy of MIH and OH in the treatment of HCC based on a high-quality propensity score matching study. The results show that in terms of long-term survival outcomes (OS and DFS), although the gap between MIH and OH is not obvious, OH was better than MIH on the whole. However, in terms of short-term postoperative outcomes (post-operation outcomes), MIH was slightly better than OH.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022332556.

KEYWORDS

minimally invasive hepatectomy, open hepatectomy, hepatocellular carcinoma, meta-analysis, robotic hepatectomy

Introduction

According to global cancer statistics in 2020: primary liver cancer is the seventh most commonly diagnosed cancer and the third leading cause of cancer death worldwide, with approximately 906,000 new cases and 830,000 deaths (1). According to different periods of patients with hepatocellular carcinoma, the treatment methods are different. For early cancer, patients can choose surgical resection, liver transplantation or radiofrequency local ablation. But it is well known that surgery is the most effective treatment for hepatocellular carcinoma (2).

Nowadays, with the continuous development of surgical techniques and instruments, more and more people begin to appreciate the advantages of minimally invasive surgery, such as less trauma, less bleeding and faster recovery. In addition, the confidence and expectation of doctors and patients on postoperative efficacy have also increased. In 1991, a research team from the United States (Reich H and McGlynn F et al.) first reported two cases of laparoscopic hepatectomy for benign liver lesions, which opened the era of minimally invasive hepatectomy for liver tumors (3). Since then, with the mastery of laparoscopic hepatectomy technology, surgeons have gradually realized the great advantages of minimally invasive liver resection. In recent years, Da Vinci surgical system(DaVSS)has come to be known and widely used in

the field of surgery. Inspired by this, in 2006, Ryska et al. reported for the first time two cases of robotic hepatectomy (RH). Both patients recovered well without any complications (4). This case report proves the technical feasibility of this minimally invasive method, which lays a solid foundation for the application of robot technology in the field of hepatectomy, and it also shows the further development of MIH technology. Although these studies have shown encouraging results, the strength of MIH is mainly reflected in short-term outcomes after surgery, and there is a lack of comparison of such long-term outcomes as overall survival and progression-free rates. The purpose of this study was to compare the high-quality Case-control study of MIH with OH for hepatocellular carcinoma (HCC), so as to determine whether MIH has obvious advantages in long-term and short-term curative effects.

Materials and methods

Search strategy

We searched PubMed, Web of Science, Embase, and Cochrane Library databases for studies comparing MIH (including RH or LH) and OH for HCC from inception to June 1, 2022. We also manually searched through relevant references to identify other relevant studies. The detailed search strings are shown in Supplementary File 1. Review was reported following the PRISMA guidelines. The protocol of this study was registered in the International Prospective Register of Systematic Reviews (PROSPERO), CRD42022332556.

Inclusion/exclusion criteria

The following inclusion criteria were considered in this study (1): population: patients with resectable hepatocellular carcinoma; (2) Intervention and Comparison: methods of hepatectomy (RH or LH vs OH); (3) outcomes: overall survival, disease-free survival, overall morbidity, blood loss, conversion rate, operative time, R0 resection rate, length of hospital stay, blood transfusion rate, postoperative complication, major morbidity, anatomical resection, satellite nodules, microvascular invasion, major hepatectomy, and recurrence; (4) Study design: Case-Matched Studies (High-quality Propensity score matching research); Noncomparable study, case report, editorial, meta-analysis, review, studies published in languages other than English, small sample size (less than 20), no survival-related data, low quality studies were excluded. Duplicate data for the same institution, we selected the most comprehensive study.

Study selection

We retrieved the titles and abstracts of individual studies using keywords search. Two investigators (HPS and ZJR) screened the literature based on prespecified inclusion and exclusion criteria. Any differences are settled by discussion and consensus. In the event of disagreement between the two investigators, a third investigators (ZYM) involved in the decision-making.

Quality assessment

The quality of non-randomized studies was evaluated by using the Newcastle–Ottawa Scale (NOS). The standard included three categories—patient selection (four points), comparability of the study groups (two points), and ascertainment of exposure or outcome (three points). Studies with a cumulative score of \geq 6 points were considered to be of high quality. Two investigators (HPS and ZJR) independently evaluated the quality of the selected articles, exchanged different opinions, and sought third-party quality evaluation results.

Data extraction and outcome measures

Post-operation outcomes assessed were overall morbidity, blood loss, conversion rate, operative time, R0 resection rate, length of

hospital stay, blood transfusion rate, postoperative complication, major morbidity, anatomical resection, satellite nodules, microvascular invasion, and major hepatectomy. Long-term survival outcomes evaluated were overall survival (OS) as well as DFS (disease-free survival) for HCC. Data on first author, publication year, type of study, number of patients enrolled, patients' age and sex, tumor size and number, types of surgery, and liver function status (HBV and cirrhosis) were also extracted. To maintain data consistency across meta-analyses, we converted medians and their ranges to sample means and standard deviations (5). In addition, when the relevant hazard ratio (HR) was not directly available, data from Kaplan-Meier curves were considered (6).

Statistical analysis

RevMan version 5.4 software (Cochrane Collaboration, Copenhagen, Denmark) was used for data analysis. The continuous variables were assessed by standardized difference (SD), dichotomous variables by odds ratio (OR) and 95% confidence interval (CI), and survival outcomes by HR. The mean and standard deviation (SD) were calculated from the median and interquartile ranges using the method proposed by Wan X et al (5). For those studies that did not have hazard ratio (HR) and standard errors or corresponding 95%CI, data in the Kaplan-Meier curves provided by published studies were evaluated using the approach suggested by Tierney et al (6). The fixed effect model was used to calculate all pooled results. Heterogeneity was assessed by calculating I², and results greater than 50% were considered significant heterogeneity. In addition to, we also performed analyses of sensitivity and publication bias to explore heterogeneity between studies. P<0.05 was considered to indicate a statistically significant difference.

Results

Study selection and characteristics

We identified 627 articles from the database and searched 24 articles manually. After removing duplicates (13 studies), the total number of studies was 638. Of these, 473 were excluded by assessing titles or abstracts, and the remaining 165 studies underwent full-text evaluation. Ultimately, this meta-analysis included 44 studies summarized from 43 articles (Peng zhu-2022 contained two studies) (7). Figure 1 displays a flowchart of the established screening strategy. The basic characteristics of the 44 studies included in this meta-analysis, including the author, publication year, tumor size and so on, are shown in Table 1. These studies were published between 2011 and 2022, with study periods ranging from 1990 to 2019. Among them, 42 studies (7–48) compared the LH group with the OH group, and the remaining 2 studies (7, 49)

focused on the RD group with the OH group. The quality evaluation of individual studies is shown in

Meta-analysis results

Operative time

All the studies (n = 6673 patients) compared the operation time in the meta-analysis. The analysis results showed that the operation time of OH group was slightly less than that of MIH group (Z=2.14, P=0.03, MD 13.82, 95% CI: 1.19–26.44). However, the data are highly heterogeneous ($I^2 = 74\%$,

p<0.00001) (Figure 2A). Sensitivity analysis showed that the I² value (I² = 48%, p=0.0004) was less than 50 after removing 4 studies (Sam-2014, Sun-2014, Xavier-2018, YoonYI-2017) (31, 34, 43, 45), and the overall result was unchanged (Figure 2B). Funnel plot indicated there was no remarkable publication bias (Figure 2C).

Blood loss

Blood loss was reported in 40 studies. The analysis results showed that the blood loss in MIH group was less than that in OH group (Z=5.33, P<0.00001, MD -108.33, 95% CI: -148.15 to

Source		Approach (MIH/OH)	Number of patients (MIH/OH)	Sex(male) (MIH/OH)	Age(rang O	ge)(MIH/ H)	Tumo (range O	or size)(MIH/ H)	H (M O	BV IH/ H)	Sin mul (M O	gle/ tiple IH/ H)	Conversion	Cirr (M O	hosis IH/ H)	NOS quality score
AntonellaDelvecchio- 2020	8	MIH/OH	38/84	29/61	75 (70–82)	74.3(70- 86)	4.0(3.0- 16.0)	7.0(1.5– 14.0)	10	16	33(5)	68 (16)	NA	23	37	8
AoxiaoHe-2021	9	MIH/OH	26/78	11/33	56.1 ± 10.6	52.0 ± 12.2	7.50 ± 3.51	7.55 ± 3.88	NA	NA	NA	NA	NA	16	45	6
Chen(2017)	49	RH/OH	81/81	61/65	60.6 (27- 89)	60.0 (32- 86)	3.2 (1.0- 9.0)	3.3 (0.8- 10.5)	NA	NA	NA	NA	NA	37	38	6
CheungTT-2013	10	MIH/OH	32/64	22/50	59.5 (39– 79)	61 (29-82)	2.5 (1-10)	3 (1-10)	26	49	NA	NA	NA	32	64	7
ChongLAI-2016	11	MIH/OH	28/33	24/28	56.5 ± 12.6	52.8 ± 11.8	3.0 ± 1.1	3.3 ± 1.1	23	29	26 (2)	31 (2)	NA	18	22	8
DaiHoonHan-2015	12	MIH/OH	99/198	73/151	54.25 ± 11.07	54.70 ± 9.21	2.51 ± 1.14	2.58 ± 1.09	88	172	92 (7)	173 (25)	8 (8.1%)	53	122	9
Doo-HoLee-2019	13	MIH/OH	58/58	34/35	57.0 (33- 82)	59.0 (34- 81)	2.35 (0.7- 14.0)	2.60 (1.1- 14.5)	53	54	NA	NA	NA	35	39	7
FeiLiu-2019	14	MIH/OH	67/67	59/57	54.28 ± 12.03	53.06 ± 13.42	5.04 ± 2.68	5.17±2.22	54	55	57 (10)	58 (9)	2 (2.9%)	45	41	9
HadrienTranchart- 2010	15	MIH/OH	42/42	15/14	63.7 ± 13.1	65.7 ± 7.1	35.8 ± 17.5	36.8 ± 20.9	NA	NA	NA	NA	2 (4.7%)	31	34	7
Ho-SeongHan-2015	16	MIH/OH	88/88	72/74	60 (26-81)	59.5 (20- 85)	3 (1-12)	3 (1.5-15)	NA	NA	67 (21)	70 (18)	8 (9.1%)	55	52	8
JiangX-2016	17	MIH/OH	59/59	42/38	51 (36-68)	50 (38-70)	3 (2-5)	3 (1-6)	35	32	NA	NA	NA	NA	NA	6
JonghunJ.Lee-2015	18	MIH/OH	43/86	29/69	62.0 (30- 86)	63.0 (34– 84)	5.4 (2-16)	4.4 (2–14)	19	52	41 (2)	81 (4)	6 (14.0%)	18	33	9
JongManKim-2018	19	MIH/OH	37/37	30/31	58 (34–78)	58 (34–78)	2.8 (0.9– 11.5)	2.8 (1.1– 10)	27	31	NA	NA	1 (2.7%)	15	20	8
KeChen-2019	20	MIH/OH	38/38	31/32	56.0 ± 10.3	55.2 ± 11.1	7.3 ± 3.4	7.6 ± 4.2	35	33	32 (6)	32 (6)	7 (18.4%)	34	34	9
KeunSooAhn-2014	21	MIH/OH	51/51	36/40	58.2 ± 10.4	57.1 ± 10.6	2.6 ± 1.5	2.8 ± 1.2	40	37	51 (0)	51 (0)	5 (9.8%)	NA	NA	8
KimH-2013	22	MIH/OH	29/29	22/19	54.62 ± 9.16	53.90 ± 10.08	3.59 ± 2.17	4.28 ± 2.55	24	27	24 (5)	28 (1)	NA	18	19	8
Kit-ManHo-2021	23	MIH/OH	45/90	37/72	62 (57.5- 68.0)	62 (54.75- 71.00)	3.5 (2-5)	4 (3-5)	42	72	37 (8)	70 (20)	5 (11.1%)	26	58	9
KomatsuS-2016	24	MIH/OH	38/38	33/34	61.7 ± 16.1	61.5 ± 12.2	85.5 (20– 180)	52.5 (23– 130)	9	10	22 (16)	22 (16)	13 (34.2%)	NA	NA	8

(Continued)

10.3389/fonc.2022.1021804

TABLE 1 Continue	d															
Source		Approach (MIH/OH)	Number of patients (MIH/OH)	Sex(male) (MIH/OH)	Age(ran O	ge)(MIH/ H)	Tumo (range O	or size)(MIH/ H)	HI (M O	BV IH/ H)	Sin mul (M O	gle/ tiple IH/ H)	Conversion	Cirr (M O	hosis IH/ H)	NOS quality score
L.Xiang-2016	25	MIH/OH	128/207	109/171	50.9 ± 11.9	50.5 ± 10.7	6.7 ± 1.5	6.9 ± 1.5	106	172	128 (0)	207 (0)	12 (9.4%)	104	167	9
LanyunLuo-2015	26	MIH/OH	53/53	38/35	49 (36-72)	51 (38-68)	3 (2-5)	3 (1-6)	41	38	NA	NA	NA	NA		6
LeeKF-2011	27	MIH/OH	33/50	24/40	59 (36-85)	58.5 (32– 81)	2.5 (1.5- 9)	2.9 (1.2– 9)	22	46	31(2)	41 (9)	6 (18.2%)	28	32	9
Masateru Yamamoto- 2019	28	MIH/OH	58/58	39/30	71 (34–89)	72 (45-88)	17 (2-42)	16 (8–50)	10	13	NA	NA	NA	NA	NA	6
MeguroM-2015	29	MIH/OH	35/35	23/27	70 (64–75)	66 (55–72)	2.5 (2.0- 3.1)	3.0 (2.0- 3.5)	15	14	28 (7)	29 (6)	NA	NA	NA	7
MemeoR-2014	30	MIH/OH	45/45	35/37	62 (34–75)	60 (43-80)	3.2 (0.9– 11)	3.7 (0.1– 15)	16	13	NA	NA	NA	45	45	7
Peng Zhu-2022	7	RH/OH	56/56	45/44	52 (28-72)	53 (21-73)	3.3 (1.0- 12.5)	4.0 (1.2- 14.0)	49	43	52 (4)	54 (2)	8 (14.3%)	NA	NA	8
Peng Zhu-2022	7	MIH/OH	56/56	47/44	53 (24-72)	54 (21-73)	3.3 (1.1- 14.3)	4.0 (1.2- 14.0)	48	43	53 (3)	54 (2)	7 (12.5%)	NA	NA	8
Sam-YoulYoon-2014	31	MIH/OH	58/174	45/130	54.3 (49– 63)	55.0 (49– 61)	2.87 (0.70-4.9)	3.04 (0.20-4.9)	54	165	58(0)	174 (0)	0	NA	NA	8
SpositoC-2016	32	MIH/OH	46/46	28/35	66 (40-85)	68 (49-83)	2.6 (1.0- 6.5)	2.2 (1.0- 8.5)	6	10	37 (9)	35 (11)	NA	46	46	8
StefanoDiSandro- 2018	33	MIH/OH	75/75	42/51	68.6 (61.3,75.5)	67.1 (61.2,75)	2.5 (2,3)	2.5 (1.8,3.3)	7	11	67 (8)	65 (10)	NA	75	75	8
Sung-JinKim-2014	34	MIH/OH	70/76	58/58	59.30 ± 9.43	59.30 ± 9.43	2.58 ± 1.44	2.58 ± 1.44	46	54	NA	NA	6 (8.57%)	NA	NA	7
TakeshiTakahara- 2015	35	MIH/OH	387/387	262/261	66.42 ± 9.84	66.42 ± 9.84	28.8 ± 15.1	28.8 ± 15.0	91	100	NA	NA	18 (4.56%)	322	310	8
TanakaS-2015	36	MIH/OH	20/20	17/14	70 (66-73)	71 (67-75)	2.3 (2.0- 2.7)	2.3 (1.9– 2.8)	4	2	18 (2)	17 (3)	NA	NA	NA	7
TanToCheung-2020	37	MIH/OH	24/96	20/81	63.0 (43– 76)	62.0 (36– 85)	4.5 (2.5– 9.5)	4.8 (1-10)	20	88	18 (6)	75 (21)	NA	24	96	8
TruantS-2011	38	MIH/OH	36/53	31/47	60.6 ± 10.2	63.3 ± 7.6	2.9 ± 1.2	3.1 ± 1.2	3	4	34 (2)	44(9)	7 (19.4%)	36	53	9
TsutomuIwata-2018	39	MIH/OH	30/30	18/21	70 (19-86)	69 ((28-82)	2.4 (0.9-7)	2.4 (1.3- 4.8)	7	6	29 (1)	28 (2)	NA	18	16	8
WeiLi-2018	40	MIH/OH	41/307	32/268	53.2 ± 11.1	54.3 ± 12.1	4.0 ± 2.0	5.7 ± 3.0	31	261	35 (6)	223 (84)	NA	NA	NA	7

(Continued)

10.3389/fonc.2022.1021804

TABLE 1 Continue	d															
Source		Approach (MIH/OH)	Number of patients (MIH/OH)	Sex(male) (MIH/OH)	Age(ran O	Age(range)(MIH/ OH)		or size)(MIH/ H)	size HBV MIH/ (MIH/) OH)		Single/ multiple (MIH/ OH)		Conversion	Cirrhosis (MIH/ OH)		NOS quality score
WethitDum-2019	41	MIH/OH	41/41	28/35	73 (71–79	73 (71–75)	4 (2.5– 5.7)	4.1 (2.7– 7.0)	16	13	32 (9)	36 (5)	5 (12.2)	19	24	9
WuX-2018	42	MIH/OH	86/86	72/74	53 (17–79)	52 (21-82)	3.5 (0.9- 12.5)	3.5 (0.8– 11.3)	77	79	64 (22)	58 (28)	8 (9.3%)	86	86	9
XavierUntereiner- 2018	43	MIH/OH	33/33	26/27	68.3 (61.0– 73.2)	65.3 (64.3– 71.5)	3.0 (2.3– 5.0)	3.0 (2.0- 4.8)	NA	NA	NA	NA	2 (6.1%)	24	21	7
XuHW-2018	44	MIH/OH	32/32	28/28	53.5 (26.0– 70.0)	52.0 (27.0– 74.0)	4.0 (1.0- 10.0)	6.2 (1.5– 10.0)	18	15	29 (3)	29 (3)	NA	NA	NA	7
YoonYI-2017	45	MIH/OH	33/33	23/26	56.03 ± 7.02	57.33 ± 6.88	3.31 ± 1.65	2.96 ± 1.5	29	28	NA	NA	NA	33	33	7
Young-InYoon-2019	46	MIH/OH	217/434	170/337	56.41 ± 9.65	56.94 ± 9.16	2.83 ± 1.28	2.90 ± 1.31	185	372	NA	NA	NA	145	284	7
YufuPeng-2019	47	MIH/OH	33/33	28/29	55.0 (35.0– 76.0)	56.0 (29.0– 74.0)	2.9 (1.0- 3.0)	3.0 (1.0- 3.0)	26	30	NA	NA	1 (3.0%)	27	24	8
Zhi-chengDeng-2018	48	MIH/OH	157/157	62/60	60(31-85)	61 (26-85)	2.47 (0.8– 10)	2.86 (1– 18)	140	143	138 (19)	135 (21)	NA	89	92	8

NA, not available.

-68.50). The data were highly heterogeneous ($I^2 = 53\%$, p<0.0001) (Figure 3). Sensitivity analysis showed that the I^2 value ($I^2 = 46\%$, p=0.001) decreased when Takeshi's study was removed (Takeshi-2015) (35). Then we applied the fixed effects model to the remaining studies and found that the final results did not change (Supplementary Figure 1).

Length of hospital stay

42 studies (n = 6527 patients) compared the length of hospital stay in the meta-analysis. The analysis results showed that the length of hospital stay was shorter in the MIH group than in the OH group (Z=10.76, p<0.00001, MD -4.0, 95% CI: -4.72 to -3.27). Furthermore, the results indicated high heterogeneity ($I^2 = 57\%$, p<0.0001) (Figure 4). Sensitivity analysis showed that the I^2 value ($I^2 = 37\%$, p=0.01) decreased when Antonella's study was removed (Antonella-2020, Ho-SeongHan-2015, StefanoDiSandro-2018, Zhi-chengDeng-2018) (Supplementary Figure 2) (8, 16, 33, 48).

Major hepatectomy

28 studies (n = 4832 patients) compared major hepatectomy in the meta-analysis. The results of the analysis showed no significant difference between the two groups in major hepatectomy, with cases of 573 (2081) in the MIH group and 845(2751) in the OH group (Z=0.47, p=0.64, OR = 1.04, 95% CI 0.89 to 1.22, $I^2 = 0\%$) (Figure 5).

Blood transfusion

36 studies (n = 5919 patients) compared blood transfusion in the meta-analysis. The results of the analysis showed that the transfusion rate in (9.9%) MIH group was significantly lower than that in (13.7%) OH group (Z=5.06, p<0.00001, OR = 0.64, 95% CI 0.54 to 0.76, $I^2 = 0\%$) (Figure 6).

Anatomical resection

14 studies (n = 2604 patients) compared anatomical resection in the meta-analysis. The results of the analysis showed no significant difference between the two groups, with cases of 489(929) in the MIH group and 971(1675) in the OH group (Z=0.48, p=0.63, OR = 0.92, 95% CI 0.67 to 1.27). Furthermore, the results indicated high heterogeneity (I^2 = 62%, p=0.001) (Figure 7). Sensitivity analysis showed that the I^2 value (I^2 = 10%, p=0.35) decreased when L.xiang's study was removed (L.xiang -2016) (Supplementary Figure 3) (25).

Satellite nodules

14 studies (n = 2136 patients) compared satellite nodules in the meta-analysis. The results of the analysis showed no significant difference between the two groups, with cases of 100(937) in the MIH group and 122(1199) in the OH group (Z=0.54, p=0.59, OR = 0.92, 95% CI 0.69 to 1.23, $I^2 = 0\%$) (Figure 8).

Resection R0

25 studies (n = 4224 patients) compared resection(R0) in the meta-analysis. The results of the analysis showed that the R0 rate in (96.2%) MIH group was higher than that in (94.8%) OH group (Z=2.34, p=0.02, OR = 1.46, 95% CI 1.06 to 2.0, $I^2 = 0\%$) (Figure 9).

Microvascular invasion

18 studies (n = 2372 patients) compared microvascular invasion in the meta-analysis. The results of the analysis showed no significant difference between the two groups, with cases of 349 (1115) in the MIH group and 383(1257) in the OH group (Z=1.15, p=0.25, OR =1.11, 95% CI 0.93 to 1.34, $1^2 = 0\%$) (Figure 10).

Study or Subgroup Events Total Weight M.H. Fixed, 95% C1 M.H. Fixed, 95% C1 AntoneliaDelvecchio 2020 38 38 84 84 Not estimable AdviaoHe-2021 26 76 78 Not estimable DaiHoonHan-2015 16 99 30 188 568 1.08 0.59, 0.07 DaiHoonHan-2015 16 99 30 188 568 1.08 0.56, 0.09 HadrienTranchart-2010 32 42 22 42 266 1.01 0.13, 8.3 Keunsbookhm-2014 2 51 35 1.01 0.65, 0.10, 0.37, 2.73 Ho-SeongHan-2015 31 88 28 8.15 1.17, 0.66, 2.16 Keunsbookhm-2014 2 51 35 1.00 0.65, 0.10, 0.01 0.01 Keunsbookhm-2015 0 53 0.53 Not estimable 0.46, 0.46, 0.45, 56 LeeK-2011 0 33 0.50 Not estimable 0.49, 0.46, 5.61 Peng Zhu-		MIH		OH			Odds Ratio	Odds R	atio
AntonellaDelvecchio-2020 38 38 64 84 Notestimable Aoxiand+e-2021 26 26 78 78 78 78 79 73 67 77 73 48 81 28 6.2% 1.11 [0.59, 207] 78 78 78 78 78 78 78 6.2% 1.01 [0.57, 207] 78 78 77 56% 1.00 [0.57, 1.98] 78 77 77 56% 1.00 [0.37, 73] 78 77 76 78 76 77 76 78 76 77 76 78 77 76 78 77 76 78 76 78 77 76 78 77 76 78 77 76 78 77 76 78 77 76 78 77 76 78 77 77 78 78 77 77 78 78 77 76 78 78 78 78 77 78 78 78 78 78 78 78 78 78 78	Study or Subgroup	Events	Total	Events	Total	Weight	M-H. Fixed. 95% CI	M-H. Fixed.	. 95% CI
AxiaoHe-2021 26 28 78 78 78 Notestimable Chen-2017 34 81 32 81 62.3% 1.11 (0.69.07) DaiHoonHan-2015 16 99 30 198 5.6% 0.48 (0.90.75, 2.03) FelLiu-2019 47 67 37 767 5.6% 0.48 (0.00.51, 1.98) FelLiu-2019 37 67 37 767 5.6% 0.48 (0.00.51, 1.98) H-seongHan-2015 31 88 28 88 6.1% 1.17 (0.62, 2.18) KeunSooAhn-2014 2 21 3 51 1.0% 0.65 (0.10, 0.37, 2.73) Ho-SeongHan-2015 0 53 0 53 Notestimable KimH-2013 0 229 0 29 Notestimable LaeyK-2011 0 33 0 50 Notestimable Peng Zhu-2022 6 56 9 56 2.7% 0.63 (0.21, 1.96) Peng Zhu-2022 4 56 9 56 2.7% 0.48 (0.04, 2.5) Starm-YourYon-2014 20 58 33 174 3.6% Notestimable StefanoDisard-2015 17 116 43 19.2% 0.48 (0.04, 2.63) StefanoDisard-2015 42 397 36 387 10.8% 1.13 (0.42, 2.68) Notestimable StefanoDisard-2015 42 397 36 387 10.8% 1.13 (0.42, 2.63) WWW-2018 22 32 61 56 86 3.7% 0.48 (0.04, 2.63) WWW-2018 22 32 32 32 32 32 Notestimable WethilDum-2015 16 19 41 18 44 3.2% 1.10 (0.42, 4.35) WWW-2018 22 30 66 18 66 37 78 0.48 (0.04, 2.63) WWW-2018 22 32 16 16 38 1.27 1.13 (0.42, 2.63) WWW-2018 22 32 61 16 38 1.27 1.13 (0.42, 2.63) WWW-2018 22 32 61 16 38 1.27 1.13 (0.42, 2.63) WWW-2018 22 32 32 32 32 Notestimable WethilDum-2019 19 41 18 44 3.2% 1.10 (0.42, 4.35) WWW-2018 22 32 66 15 66 3.7% 1.13 (0.42, 2.63) WWW-2018 22 32 61 16 38 1.28 1.13 (0.42, 2.63) WWW-2018 22 32 61 16 34 1.2% 1.00 (0.23, 4.39) WWW-2018 22 32 32 32 32 Notestimable WethilDum-2019 19 19 77 33 16 33 2.6% 1.13 (0.42, 2.63) WWW-2018 22 32 32 32 32 Notestimable WethilDum-2019 19 19 77 12.4% 1.00 (0.68, 1.69) WWW-2018 22 32 32 32 32 Notestimable WethilDum-2019 19 19 77 18 157 12.4% 1.00 (0.68, 1.69) WWW-2018 22 32 32 32 32 Notestimable WethilDum-2019 19 19 77 18 157 12.4% 1.00 (0.68, 1.69) Wid-2018 22 31 157 12.4% 1.00 (0.68, 1.69) Wid-2018 22 32 32 32 32 Notestimable WethilDum-2019 19 19 77 88 157 12.4% 1.00 (0.68, 1.69) Wid-2018 22 32 32 32 Notestimable WethilDum-2019 19 19 19 70 88 157 12.4% 1.00 (0.68, 1.69) Wid-2018 22 32 32 32 Notestimable Notestimable Notestimable Notestimable Not	AntonellaDelvecchio-2020	38	38	84	84		Not estimable		
Chen-2017 34 91 32 81 62.9% 11.10 (58.9.207) DaiHoonHan-2015 16 99 30 198 56% 1.08 (56.2.09) Don-Hole-2019 4 58 52.5% 0.46 (D13,1.63) FelLu-2019 37 67 37 67 56% 1.00 (0.52,2.18) HadrienTranchart2010 32 42 22.6% 1.01 (0.37,2.73)	AoxiaoHe-2021	26	26	78	78		Not estimable		
DaiHoonHan-2015 16 16 99 30 198 5.6% 10.0 [65, 2.09] Doo-HoLee-2019 4 58 8 5.6% 10.0 [65, 2.09] HadrienTranchart-2010 32 42 32 42 2.6% 10.0 [0.51, 1.89] HadrienTranchart-2010 32 42 32 42 2.6% 10.0 [0.51, 1.99] HadrienTranchart-2010 32 42 32 42 2.6% 10.0 [0.51, 1.99] HadrienTranchart-2014 2 51 3 51 1.0% 0.65 [0.10, 4.09] KimH-2013 0 29 0 5.6% 0.52 (0.23, 1.18] Keun50oAhn-2014 2 51 3 51 1.0% 0.65 [0.10, 4.09] KimH-2013 0 29 0 5.6% 0.52 (0.23, 1.18] LanynuLuo-2015 0 53 0 53 Notestimable LeeKF-2011 0 33 0 50 Notestimable LeeKF-2011 0 33 0 50 Notestimable Peng Zhu-2022 6 56 9 56 2.7% 0.63 (0.21, 1.90] Peng Zhu-2022 6 56 9 56 2.7% 0.63 (0.21, 1.90] Peng Zhu-2022 7 4 56 9 56 2.7% 0.40 (0.11, 2, 1.39] Sam-YouYoon-2014 20 58 33 174 3.6% 2.25 (1.6, 4.35] StandanDiSandro-2018 1 75 2 75 0.7% 0.48 (0.01, 4.56] StandanDiSandro-2018 1 75 2 75 0.7% 0.48 (0.01, 4.56] Wuk-2018 X10 4 4 33 4 33 1.28 Notestimable WehtDiDum-2019 19 19 41 18 41 3.2% 110 (0.45, 56] Wuk-2018 X3 31 74 33 2.6% 11.31 (0.4, 5.6] Wuk-2018 X3 43 2.6% 11.31 (0.4, 5.6	Chen-2017	34	81	32	81	6.2%	1.11 (0.59, 2.07)		
Doc-HoLee-2019 4 58 8 508 2.5% 0.4 [0:13] [1:3] FelLu-2019 37 67 37 67 56% 1.00 [0:51] [1:3] HadrienTranchart-2010 32 42 2.6% 1.00 [0:51] [1:3]	DaiHoonHan-2015	16	99	30	198	5.6%	1.08 (0.56, 2.09)		
FelLu 2019 37 67 37 67 5.6% 10.0 [0.37, 2.73] HadrienTranchart-2010 32 42 26% 1.00 [0.37, 2.73] Ho-SeongHan-2015 31 88 28 6.1% 1.17 [0.62, 2.18] KeunSookhn-2014 2 51 3 61 1.0% 0.68 [0.10, 4.08] KirManHo-2021 10 45 32 90 5.6% 0.52 [0.23, 1.18] LanyouLuo-2015 0 53 0.50 Notestimable Peng Zhu-2022 6 56 9 56 2.7% 0.63 [0.21, 1.90] Peng Zhu-2022 4 56 9 56 2.7% 0.63 [0.21, 1.90] Sam-YouYoon-2014 20 58 33 174 3.6% 2.7% 0.48 [0.01, 1, 2.13] Sam-YouYoon-2014 20 58 33 174 3.6% 2.26% 0.40 [0.12, 1.39] Sam-YouYoon-2018 1 75 2.7% 0.48 [0.01, 7, 2.14] 4.16 4.16 4.16 4.16 4.16 4.23% 1.10 [0.46, 2.63] 4.117 [0.46, 2.63] 4.117 [0.46, 2	Doo-HoLee-2019	4	58	8	58	2.5%	0.46 [0.13, 1.63]		
HadrionTranchart 2010 Ho-SeongHan-2015 KeunSookhn-2014 KimH-2013 KeunSookhn-2014 LawymLuo-2015 LawymLuo-2015 LawymLuo-2015 LawymLuo-2015 LawymLuo-2015 LawymLuo-2015 LawymLuo-2015 LawymLuo-2015 LawymLuo-2015 LawymLuo-2015 LawymLuo-2015 LawymLuo-2015 LawymLuo-2015 LawymLuo-2015 LawymLuo-2015 Solution 2014 Spositic-2016 Sung-Jinkim-2014 Start-Vall 2015 Start-Vall 2015 Start 2015 Star	FeiLiu-2019	37	67	37	67	5.6%	1.00 (0.51, 1.98)		
Ho-SeongHan-2015 KeunSooAhn-2014 KimiH-2013 LeeKF-2011 LeeKF-2011 LeeKF-2011 Peng Zhu-2022 Sam-YouYton-2014 Starbandbi 20 Sam-YouYton-2014 Starbandbi 20 Sam-YouYton-2014 Starbandbi 20 Sam-YouYton-2014 Starbandbi 20 Sam-YouYton-2014 Starbandbi 20 Starbandbi 20	HadrienTranchart-2010	32	42	32	42	2.6%	1.00 (0.37, 2.73)		
KeunSooAn-2014 2 51 3 51 1.0% 0.85 [0.10, 4.06] KmH-2013 0 29 0 29 Not estimable KitHManHo-2021 10 45 32 90 56% 0.52 [0.23, 116] LaryunLuo-2015 0 53 0 53 Not estimable Peng Zhu-2022 6 66 9 56 2.7% 0.63 [0.21, 1.90] Peng Zhu-2022 4 56 9 56 2.25 [1.16, 4.35] Spositic-2016 0 46 0 46 Not estimable Stefano/Bandro-2018 1 75 2.76 0.63 (0.17, 2.14) TakeshiTakahara-2015 42 367 36 387 1.90 (0.46, 2.63) Wulk-2018 23 86 15 1.90 (4.6, 2.63) 1.19 (0.74, 1.90) Wulk-2018 23 23 23 1.13 (0.24, 3.90) 1.90 (1.6, 1.36) YulmPeng-2019 19 11 18 41 3.2% 1.00 (0.6, 1.36) YulmVu-2018 23 23 232 23 1.01 (0.4,	Ho-SeongHan-2015	31	88	28	88	6.1%	1.17 [0.62, 2.18]		<u> </u>
KimH-2013 0 29 0 29 Not estimable KiManHo-2021 10 45 32 90 56% 0.52(0.23,1.16) LaryouLuo-2015 0 53 0 Not estimable 10 Peng Zhu-2022 6 66 9 56 2.5% 0.40(0.12,1.39) Peng Zhu-2022 4 66 9 56 2.5% 0.40(0.12,1.39) Samr-Voir00n-2014 20 58 33 174 3.6% 2.25(11.6(0.45,56) Sung-Jinkin-2016 0 46 0 46 Not estimable Stamp-Vair00n-2014 20 58 33 174 3.6% 2.25(11.6(0.45,56) Sung-Jinkin-2014 4 70 7 76 2.1% 0.60(0.17,1.1.90) Tartocheung-2020 24 24 69 96 Not estimable Wuk-2018 23 68 1.5% 1.10(0.46,2.63) 1.00(0.23,3.60) Xaiver.Intereiner-2018 43 33 1.2% 1.10(0.42,2.96) 1.00(0.23,3.9) YuinPeng-2019 17	KeunSonAbn-2014	2	51	3	51	1.0%	0.65 (0.10, 4.08)		
With Manufo-2021 10 45 32 20 5.6% 0.52 [0.23, 1.18] LarryunLuc-2015 0 53 0 53 Not estimable Peng Zhu-2022 6 56 9 56 2.7% 0.63 [0.12, 1, 19] Peng Zhu-2022 6 56 9 56 2.7% 0.63 [0.12, 1, 19] Sam-YouYoon-2014 20 58 33 174 3.6% 2.04 [0.12, 1, 39] Sam-YouYoon-2014 20 58 33 174 3.6% 2.04 [0.12, 1, 39] Sumg-Jinkim-2016 0 46 0 46 Not estimable StefanoDiSandro-2018 1 75 2.7% 0.63 [0.17, 2.14] TarkeshiTakahara-2015 42 387 36 387 1.08 [0.17, 2.14] WehtDum-2019 19 14 18 41 3.2% 1.10 [0.45, 2.63] Wuk-2018 23 86 15 86 3.7% 1.73 [0.02, 3.49] Not estimable Young-Invoor-2019 19 17 33 16 33 2.8% 1.10 [0.42, 3.6]	KimH-2013	ñ	29	ň	29		Not estimable		
LanyunLuo-2015 0 53 0 53 Not estimable LeeKF-2011 0 33 0 50 Not estimable Peng Zhu-2022 6 56 9 56 2.8% 0.43 (0.21, 1.90) Peng Zhu-2022 4 56 9 56 2.8% 0.43 (0.21, 1.91) Sam-ValVon2014 20 58 33 174 3.6% 0.225 (1.16, 4.35) Spositic-2016 0 46 0 46 Not estimable StefanoDiSanto-2018 1 75 2 75 0.7% 0.49 (0.04, 5.56) Sung-JinKim-2014 4 70 7 76 2.18 0.60 (0.17, 2.14) TakeshTakahara-2015 42 397 36 387 10.8% 1.19 (0.46, 2.63) Www.2018 23 86 15 86 3.7% 1.73 (0.83, 3.60) Www.2018 23 86 15 86 3.7% 1.73 (0.83, 3.60) XawierUntereiner-2018 4 33 4 33 1.2% 1.00 (0.23, 4.39) XuHW-2018 22 32 32 32 Not estimable Young-Infron-2019 17 33 16 33 2.6% 1.13 (0.43, 2.96) Zhi-ChengDeng-2018 91 157 88 157 12.4% 1.08 (0.69, 1.69) Zhi-ChengDeng-2018 91 157 88 157 12.4% 1.08 (0.69, 1.69) MH OH	Kit-ManHo-2021	10	45	32	90	5.6%	0.52 (0.23, 1.18)		-
LeekF-2011 0 0 33 0 50 Notestimable Peng Zhu-2022 6 56 9 56 27% 0.63 (0.112, 1.39) Peng Zhu-2022 4 56 9 56 2.2% 0.40 (0.112, 1.39) Sam-YouYoon-2014 20 58 33 174 3.6% 2.25 (1.6, 3.5) Spositic-2016 0 46 0 46 Notestimable StefanoDiSandro-2018 1 75 2 75 0.7% 0.48 (0.01, 7, 1.4) Stephinzent 2015 42 387 36 387 10.8% 1.19 (0.4, 5.6) Sung-JinKu-2014 4 70 7 76 2.1% 0.66 (0.17, 2.14) TartoCheung-2020 24 24 96 96 Notestimable WethDum-2014 1 18 41 3.2% 1.10 (0.4, 5.6) Wuk-2018 23 86 15 86 3.7% 1.73 (0.4, 9.0) Yuu-2018 23 86 15 86 3.7% 1.73 (0.12, 3.49) Xawter/Intereiner-2018 4 33 4 33 1.2% 1.10 (0.46, 2.63) Yuu-2018 21 23 86 15 86 3.7% 1.73 (0.10, 0.2, 3.49) XuHW-2018 32 32 32 32 Notestimable Young-Infvoon-2019 56 217 116 434 192% 0.95 (0.66, 1.38) Yuu-2019 17 33 16 33 2.6% 1.13 (0.43, 2.96) Zhi-Cheng Deng-2018 91 157 88 157 12.4% 1.08 (0.69, 1.69) Zhi-Cheng Deng-2018 91 157 88 157 12.4% 1.08 (0.69, 1.69) Total (95% CI) 2063 2751 100.0% 1.04 (0.89, 1.22) Total (95% CI) 2063 773 845 Heterogeneity: ChF = 16.59, dF = 19 (P = 0.62); P = 0% Testfor overall effect Z = 0.47 (P = 0.64)	Lanvuni un-2015	n i	53	0	53	0.070	Not estimable		
Peng Zhu-2022 6 58 9 56 2.7% 0.63 (0.21, 1.90) Peng Zhu-2022 4 56 9 56 2.8% 0.40 (0.12, 1.39) Sam-Your/yono-2014 20 58 33 174 3.6% 0.40 (0.12, 1.39) Spositic-2:016 0 46 0 46 Not estimable Stefano/Biandro-2018 1 75 2.75 0.7% 0.48 (0.04, 5.63) Sung-JinK/m-2014 4 70 7 76 2.1% 0.60 (0.17, 2.14) Tahto-Cheung-2020 24 24 96 96 Not estimable WethilDum-2019 19 41 18 41 3.2% 1.19 (0.45, 2.63) Wuk-2018 23 36 15 16 33 1.2% 10.04 (0.8, 3.63) Yuung-inforon-2019 Young-inforo-2019 32 32 32 32 32 32 1.30 (0.23, 4.39) Yuung-inforon-2019 Young-inforo-2019 17 13 16 33 2.6% 1.13 (0.43, 2.96) Yuung-inforon-2019 Young-inforo-2019 17 33	LeeKE-2011	ň	33	ň	50		Not estimable		
Peng Zhu2-2022 4 56 9 56 2.8% 0.40 [0.12, 1.36] Sam-YouYton-2014 20 58 33 174 3.6% 2.25 [1.6, 4.35] Sposito-2016 0 46 0 46 Notestimable StefanoDiSandro-2018 1 75 2 75 0.7% 0.48 [0.04, 5.56] Sung-JinKim-2014 4 70 7 76 2.1% 0.60 [0.17, 2.14] TakeshiTakahara-2015 42 397 36 387 10.8% 1.19 [0.46, 2.63] TanToCheuro-2020 24 24 96 Notestimable	Peng Zhu-2022	6	56	q	56	2.7%	0.63/0.21/1.901		
Sam-YaulYoon-2014 20 58 33 174 3.6% 2.25 [1.16, 4.35] SpositioC-2016 0 46 0 46 Not estimable StefanoDisandro-2018 1 75 2 75 0.7% 0.48 [0.04, 5.63] Sup-JinKim-2014 4 70 7 76 2.1% 0.60 [0.17, 2.14] TakeshiTakahara-2015 42 24 96 96 Not estimable WethiDum-2019 19 41 18 41 3.2% 1.10 [0.7, 4, 190] TanToCheung-2020 24 24 96 96 Not estimable 96 WethiDum-2019 19 41 18 41 3.2% 1.10 [0.4, 2, 63] XaierUntereiner-2018 2 32 32 32 Not estimable Young-InYoon-2019 Young-InYoon-2019 56 217 116 43 19.2% 0.95 [0.66, 1.36] YufuPeng-2018 17 33 16 33 2.6% 1.13 [0.43, 2.96] ZhickengDeng-2018 91 157 81.57 12.4% 1.08 [0.68], 1.69]	Peng Zhu 2022	4	56	ğ	56	2.8%	0.40 (0.12, 1.39)		_
SpositoC-2016 0 46 0 46 0 46 Not estimable StefanoDiSandro-2018 1 75 2 75 0.7% 0.49 (0.45,56) Sung-JinKim-2014 4 70 7 76 2.1% 0.60 (0.17, 21.4) TakeshTakahara-2015 42 387 36 387 10.8% 1.19 (0.46, 26.3) TanToCheung-2020 24 24 66 66 Notestimable	Sam-YoulYoon-2014	20	58	33	174	3.6%	2 25 [1 16 4 35]		
StefanoDiSandro-2018 1 75 2 75 0.7% 0.49 (0.04, 5.56) Sung-JinKim-2014 4 70 7 76 21% 0.60 (0.17, 2.14) Takes/Tiskhara-2015 42 387 36 387 10.80 119 (0.74, 1.90) TantoCheung-2020 24 24 96 96 Not restimable WethilDum-2019 19 41 8 41 3.2% 1.10 (0.46, 2.63) Wuk-2018 23 26 15 86 3.7% 1.00 (0.43, 2.96) XawerUntereiner-2018 4 33 4 33 1.2% 1.01 (0.46, 2.63) Vuk-2018 23 23 23 23 24 1.00 (0.43, 2.96) Young-InVoon-2019 Young-InVoon-2019 56 217 116 434 19.2% 0.95 (0.66, 1.38) YufuPeng-2019 17 31 16 33 2.6% 1.13 (0.43, 2.96) Zhi-chengDeng-2018 117 845 1.04 (0.89, 1.62) 1.04 (0.89, 1.62) Total (95% CI) 2061 2751 100.0% 1.04 (0.89, 1.62)	SpositoC-2016	0	46	0	46	0.010	Not estimable		
Sung-Jinkim-2014 4 70 7 76 2.1% 0.60 [0.17, 2.14] TakeshTrakahara-2015 42 397 36 387 10.6% 1.19 [0.74, 1.90] TanToCheung-2020 24 24 96 96 Notestimable WethInDum-2019 19 41 18 41 3.2% 1.10 [0.42, 6.23] WuX-2018 23 36 15 86 15 86 1.73 [0.83, 3.60] XavetUntereiner-2018 4 33 4 33 1.2% 1.00 [0.23, 4.39] Young-inYoon-2019 Young-InYoon-2019 17 33 16 33 2.6% 1.13 [0.43, 2.96] YufuPeng-2019 17 33 16 33 2.6% 1.13 [0.43, 2.96] Zhi-chengDeng-2018 91 157 81 157 1.2.4% 1.08 [0.69, 1.69] Total (95% CI) 2061 2751 100.0% 1.04 [0.89, 1.22] 1.01 Total events 573 845 1.01 0.1 0.2 0.5 2 5 Testfor overall effect Z = 0.47 (P = 0.64) MH<	StefanoDiSandro-2018	ĭ	75	2	75	0.7%	0 49 10 04 5 561	•	
TakeshiTakahara-2015 42 387 38 387 10.8% 1.19 [0.74, 1.90] TanToCheung-2020 24 24 96 96 Not estimable WethDUm-2019 19 41 18 41 3.2% 1.10 [0.74, 1.90] Wuk-2018 23 86 15 86 3.7% 1.73 [0.83, 8.60] Xawter/Intereiner-2018 43 32 32 32 Not estimable Young-InVoor-2019 Young-InVoor-2019 17 33 16 33 2.6% 1.13 [0.43, 2.96] Young-InVoor-2018 91 157 88 157 12.4% 1.08 [0.69, 1.69] Total (95% CI) 2081 2751 100.0% 1.04 [0.89, 1.22] Total (95% CI) 573 845 Heterogeneity: ChF= 16.59, dF= 19 (P = 0.62); P = 0% 845 Testfor overall effect Z = 0.47 (P = 0.64) MiH OH	Sung-Jinkim-2014	4	70	7	76	21%	0.60 [0.17, 2.14]		
TanToCheung-2020 24 24 96 96 Notestimable WehthDum-2019 19 41 18 41 3.2% 1.101(0.42,6.3) Wuk/2018 23 96 15 86 3.7% 1.73(0.83,3.60) XavierUntereiner-2018 4 33 4 33 1.2% 100(0.23,4.39) Young-inYoon-2019Young-inYoon-2019 56 217 116 434 19.2% 0.95(0.66,1.36) Ynung-inYoon-2019 56 217 116 433 2.6% 1.13(0.43,2.96) Zhi-chengDeng-2018 91 157 88 157 12.4% 1.08(0.69,1.69) Total (95% CI) 2081 2751 100.0% 1.04(0.89, 1.62) Total events 573 845 845 Heterogeneity: Chi² = 16.59, df = 19 (P = 0.62); P = 0% 845 1.01 0.2 0.5 2 5 Testfor overall effect Z = 0.47 (P = 0.64) MH OH MH OH 4 3 3 3 3 3 3 3 4 3 4 3 3 4 3 4	TakeshiTakahara-2015	42	387	36	387	10.8%	1 19 [0 74 1 90]		
Weth/IDUm:2019 19 41 18 41 3.2% 1.10 [0.46, 26.3] WW-2018 23 86 15 86 3.7% 1.73 [0.83, 3.60] XuHV-2018 32 32 32 32 Not estimable Young, invoor.2019 Young, invoor.2019 17 33 16 33 2.6% 1.13 [0.43, 2.96] Young, invoor.2019 Young, invoor.2019 17 33 16 33 2.6% 1.13 [0.43, 2.96] Total (95% CI) 2081 2751 100.0% 1.04 [0.89, 1.22] Total (95% CI) 573 845 Heterogeneity, ChP= 16.59, dr= 19 (P = 0.62), P= 0% 845 Testfor overall effect Z = 0.47 (P = 0.64) MiH OH	TanToCheung-2010	24	24	96	90	10.030	Not estimable		
Viewindzul Poli 5 15 4 15 4 16 16 173 (18,3,3,60) XavierUntereiner-2018 2 3 3 1,33 1,23 100 (12,3,43) XuHVV-2018 2 32 32 32 Not estimation Young-InVoon-2019 Young-InVoon-2019 56 217 116 434 19,2% 0.95 (66,138) YufuPeng-2019 17 33 16 33 2.6% 1.13 (0.43,2.96) Zhi-chengDong-2019 17 88 157 12.4% 1.08 (0.68,1.36) Zhi-chengDong-2019 19 167 88 1.5% 1.01 (0.68,1.69) Zhi-chengDong-2019 2081 2751 100.0% 1.04 (0.89, 1.22) Total (95% Cl) 2081 2751 100.0% 1.04 (0.89, 1.22) Total events 573 845 Heterogeneity: Chi ² = 16.59, df = 19 (P = 0.62); P = 0% 1.01 0.2 0.5 2 Testfor overall effect Z = 0.47 (P = 0.64) MH OH	WathitDum-2019	10	41	19	41	2 2%	1 10 00 46 2 621		
Vide/2018 23 60 13 60 6.7.67 1.7.0 [0.23, 4.30] Xia/ef/Intereiner-2018 43 32 32 32 Not estimable Young-In/Yoon-2019 32 32 32 Not estimable Young-In/Yoon-2019 17 33 16 33 2.6% 1.13 [0.43, 2.96] YufuPeng-2019 17 33 16 33 2.6% 1.13 [0.43, 2.96] Zhi-chengDeng-2018 91 157 88 157 1.2.4% 1.08 [0.69, 1.69] Total (95% CI) 2081 2751 100.0% 1.04 [0.89, 1.22] Total events 573 845 Heterogeneity: ChP= 16.59, df= 19 (P = 0.62); P = 0% 0.1 0.2 0.5 2 5 MiH OH MiH OH 5	Weining diff 2013	22	90	16	06	3.2.10	1 72 [0.40, 2.00]	-	
XuH4V2016 Status Young-InVoor-2019 Yo	Youke2016 Youige Interciner 2019	2.5	22	13	22	1 206	1.00 [0.00, 3.00]		1 A.
XumP+2018 32 32 32 32 32 32 32 32 32 32 32 16 33 16 33 16 33 2.6% 1.13 [0.43, 2.96] 17 33 16 33 2.6% 1.13 [0.43, 2.96] 17 16 17 18 15 17 17 18 15 17 1.08 [0.69, 1.69] 16 1.08 [0.69, 1.69] 1.08 [0.69, 1.69] 16 10 1.08 [0.69, 1.69] 16 1.04 [0.38, 1.22] 1.08 [0.69, 1.69] 10 1.02 [0.5, 1, 2] 1.08 [0.69, 1.69] 1.08 [0.69, 1.69] 1.02 [0.5, 1, 2] 1.08 [0.69, 1.69] 1.02 [0.5, 1, 2] 1.08 [0.69, 1.69] 1.02 [0.5, 1, 2] 1.08 [0.69, 1.69] 1.02 [0.5, 1, 2] 1.08 [0.69, 1.69] 1.02 [0.5, 1, 2] 1.08 [0.69, 1.69] 1.02 [0.5, 1, 2] 1.02 [0.5, 1, 2] 1.02 [0.5, 1, 2] 1.02 [0.5, 1, 2] 1.02 [0.5, 1, 2] 1.03 [0.69, 1.69] 1.02 [0.5, 1, 2] 1.03 [0.69, 1.69] 1.02 [0.5, 1, 2] 1.02 [0.5, 1, 2] 1.03 [0.5, 1] 1.02 [0.5, 1] 1.02 [0.5, 1] 1.02 [0.5, 1] 1.02 [0.5, 1] 1.03 [0.69, 1] 1.03 [0.69, 1] 1.02 [0.5, 1] 1.03 [0.5, 1] 1.03 [0.5, 1] 1	Value onterenter-2010	22	22	22	22	1.2.0	Not actimable		
Total (95% Cl) 2081 2751 100.0% 1.04 [0.89, 1.22] Total (95% Cl) 2081 2751 100.0% 1.04 [0.89, 1.22] Total events 573 845 Heterogeneity: ChP = 16.59, df = 19 (P = 0.62); P = 0% 1.01 0.2 0.5 1 Test for overall effect Z = 0.47 (P = 0.64) MIH OH	Voune InVeen 2010Voune InVeen 2010	52	347	110	424	10.20			· · · · · · · · · · · · · · · · · · ·
Total (95% CI) 2081 2751 100.0% 1.04 [0.89, 1.22] Total (95% CI) 2081 2751 100.0% 1.04 [0.89, 1.22] Total events 573 845 Heterogeneity: Chi ² = 16.59, df = 19 (P = 0.62); P = 0% 0.1 0.2 0.5 1 2 Testfor overall effect Z = 0.47 (P = 0.64); MIH OH	YufuDong 2010	17	217	10	434	3.2.10	1 1 2 10 12 2 001		
Zini-thering/Dering-2016 91 157 66 157 12.4 % 1.00 (0.09, 1.09) Total (95% CI) 2081 2751 100.0% 1.04 (0.89, 1.22) Total events 573 845 Heterogeneity: ChP= 16.59, df= 19 (P = 0.62); P = 0% 0.1 0.2 0.5 1 2 5 Test for overall effect: Z = 0.47 (P = 0.64) MIH OH MIH OH MIH OH	Tulur eng-2019 7bi shana Dana 2010		33	10	33	2.070	1.13 [0.43, 2.90]		<u> </u>
Total (95% CI) 2081 2751 100.0% 1.04 [0.89, 1.22] Total events 573 845 Heterogeneity: Chi# = 16.59, df = 19 (P = 0.62); # = 0% 0.1 0.2 0.5 1 2 5 Test for overall effect: Z = 0.47 (P = 0.64) MIH OH MIH OH MIH OH MIH OH	Zni-chengDeng-2018	91	107	88	107	12.4%	1.08 [0.69, 1.69]	-	
Total events Total events Heterogeneity: Chi ² = 16.59, df = 19 (P = 0.62); i ² = 0% Testfor overall effect Z = 0.47 (P = 0.64); i ² = 0% MIH OH	Total (05% CI)		2081		2751	100.0%	1 04 [0 89 1 22]	•	•
Heterogeneity: Chi ² = 16.59, df = 19 (P = 0.62); P = 0% Test for overall effect: Z = 0.47 (P = 0.64) MIH OH	Total events	573	2001	845		1001070	no i loide, neel	ſ	
Test for overall effect Z = 0.47 (P = 0.64) 0.1 0.2 0.5 1 2 5	Heterogeneitr: Chille 16 59 df = 19 (P = 0)	62): F = 09	6	040			-	+ + + + +	
MIH OH	Test for overall effect: $7 = 0.47$ (P = 0.64)	02/11 - 0	~				1	0.1 0.2 0.5 1	2 5 1
	1001101 010101 01000 2 = 0.41 (i = 0.04)							MIH (OH

			UII.			Odds Ratio	Ouusr	Catto
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed	, 95% CI
AntonellaDelvecchio-2020	5	38	21	84	3.4%	0.45 [0.16, 1.32]		•
AoxiaoHe-2021	7	26	23	78	2.5%	0.88 [0.33, 2.38]		_
Chen-2017	6	81	3	81	0.8%	2.08 (0.50, 8.62)		
CheungTT-2013	0	32	3	64	0.7%	0.27 [0.01, 5.39]		
ChongLAI-2016	7	28	17	33	3.5%	0.31 (0.11, 0.94)		
DaiHoonHan-2015	11	99	27	198	4.8%	0.79 [0.38, 1.67]	-+	-
Doo-HoLee-2019	11	58	16	58	3.9%	0.61 [0.26, 1.47]		-
FeiLiu-2019	3	67	8	67	2.3%	0.35 (0.09, 1.36)	· · · · · ·	
HadrienTranchart-2010	4	42	7	42	1.9%	0.53 [0.14, 1.95]		_
Ho-SeongHan-2015	18	88	23	88	5.5%	0 73 10 36 1 471		-
JongManKim-2018	2	37	2	37	0.6%	1 00 0 13 7 50		
KeChen-2019	4	38	â	38	2.4%	0.38 [0.11, 1.36]		
KeunSonähn-2014	3	51	5	51	1.4%	0.57 [0.13, 2.54]		
KimH-2013	3	29	0	20	0.1%	3 11 [0 12 79 42]		
Kiti ManHo-2021	11	45	30	20	4.6%	0.65.00.29.1.451		-
Komateus-2016	1	30	20	30	0.6%	0.00 [0.20, 1.40]		
Viana-2016	22	129	12	207	9.0%	0.96 [0.04, 3.00]		-
Look/E 2011	23	22	42	207	1 1 0	0.60 [0.45, 1.51]		
Leenr-2011 MoguroM 2015	2	25	4	26	1.1.20	0.38 [0.11, 3.15]		
Regular 2013	1 8	55	1	55	0.2%	6 60 10 77 66 74		
Peng Zhu2 2022	0	56	1	56	0.3%	4 22 [0.77, 30.74]		
Peng Zhu2-2022	4	50	12	174	1.00	4.23 [0.40, 39.10]		_
Sam-Tourtour-2014 StafanaDiCondra 2010	2	26	13	75	1.9%	1.00 [0.10, 2.02]		
SteranoDISandro-2018	9	/5		/5	1.9%	1.32 [0.47, 3.76]		
Sung-Jinkim-2014	17	207	31	/0	0.8%	0.47 [0.23, 0.95]		
Takeshi Takanara-2015	28	387	38	387	10.7%	0.72 [0.43, 1.19]		
TanToCheung-2020	3	24	11	96	1.2%	1.10 [0.28, 4.31]		
TruantS-2011	1	36	2	53	0.5%	0.73 [0.06, 8.35]		
Tsutomulwata-2018	3	30	5	30	1.4%	0.56 [0.12, 2.57]		
WeiLi-2018	2	41	28	307	1.9%	0.51 [0.12, 2.23]		
WethitDum-2019	11	41	14	41	3.1%	0.71 [0.27, 1.82]		
WuX-2018	9	86	13	86	3.5%	0.66 [0.26, 1.63]		
XavierUntereiner-2018	3	33	6	33	1.7%	0.45 [0.10, 1.98]		
XuHW-2018	1	32	3	32	0.9%	0.31 [0.03, 3.17]		
Young-InYoon-2019Young-In	iYoon-2019 4	217	15	434	3.0%	0.52 [0.17, 1.60]		_
YufuPeng-2019	1	33	4	33	1.2%	0.23 [0.02, 2.15]	100	
Zhi-chengDeng-2018	15	157	38	157	10.4%	0.33 [0.17, 0.63]		
Total (95% CI)		2425		3494	100.0%	0.64 [0.54, 0.76]	•	
Total events	239		477					
Heterogeneity: Chi ² = 27.06.	df = 35 (P = 0.83); I ² = 0	%					1	
Test for overall effect: Z = 5.0	6 (P < 0.00001)						0.01 0.1 1	10 100 아버
							WIT	VII
6								
plot of blood transfusion.								

Postoperative complication

43 studies (n = 6562 patients) compared postoperative complication in the meta-analysis. The results of the analysis showed that the overall morbidity in (14.3%) MIH group was significantly better than that in (25.7%) OH group (Z=9.24, p<0.00001, OR = 0.46, 95% CI 0.39 to 0.55, I^2 =

Major morbidity

34 studies (n = 5094 patients) compared major morbidity (ClavienIII–IV) in the meta-analysis. The results of the analysis showed that the major morbidity in (5.3%) MIH group was significantly better than that in (9.6%) OH group (Z=6.11, p<0.00001, OR = 0.46, 95% CI 0.39 to 0.59, $I^2 = 0\%$) (Figure 12).

21%) (Figure 11).

	MIH		OH			Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl		M-H, Fixed, 95% Cl	
Chen-2017	3	81	7	81	7.2%	0.41 [0.10, 1.63]	•	• • • • •	
Doo-HoLee-2019	3	58	4	58	4.0%	0.74 [0.16, 3.45]	+		-
FeiLiu-2019	9	67	3	67	2.8%	3.31 [0.85, 12.82]			· · ·
HadrienTranchart-2010	16	42	21	42	13.8%	0.62 [0.26, 1.47]			
Ho-SeongHan-2015	14	88	13	88	11.6%	1.09 [0.48, 2.48]			
Kit-ManHo-2021	4	45	8	90	5.2%	1.00 [0.28, 3.52]	-		_
Peng Zhu-2022	5	56	3	56	2.9%	1.73 [0.39, 7.62]			
Peng Zhu2-2022	4	56	3	56	3.0%	1.36 [0.29, 6.37]			
SpositoC-2016	7	46	9	46	8.1%	0.74 [0.25, 2.18]			
StefanoDiSandro-2018	13	75	12	75	10.5%	1.10 [0.47, 2.60]			
WethitDum-2019	4	41	6	41	5.8%	0.63 [0.16, 2.43]		•	
XuHW-2018	3	32	7	32	6.7%	0.37 [0.09, 1.58]	+	· · · · · ·	
Young-InYoon-2019Young-InYoon-2019	9 10	217	22	434	14.9%	0.90 [0.42, 1.95]			
YufuPeng-2019	5	33	4	33	3.6%	1.29 [0.31, 5.32]	1		
Total (95% CI)		937		1199	100.0%	0.92 [0.69, 1.23]		-	
Total events	100		122			• • •			
Heterogeneity: Chi ² = 9.16. df = 13 (P = 1	0.76): ² = 0%						+		<u> </u>
Test for overall effect: Z = 0.54 (P = 0.59)						0.2	0.5 1 2	5
	·							MIH OH	
EICLIDE 9									
Forest plot of satellite nodules.									

Recurrence

18 studies (n = 2178 patients) compared recurrence in the metaanalysis. The results of the analysis showed no significant difference between the two groups, with cases of 364(936) in the MIH group and 483(1242) in the OH group (Z=0.71, p=0.48, OR =0.94, 95% CI 0.78 to 1.12, $I^2 = 19\%$) (Supplementary Figure 4).

Overall survival

All the studies reported the overall survival in the metaanalysis. The results of the analysis showed that the OS of MIH group was inferior to OH group (Z=2.25, p=0.02, HR = 1.17, 95% CI 1.02 to 1.35, $I^2 = 0\%$) (Figure 13).

Disease free survival

All the studies reported the disease-free survival in the metaanalysis. The results of the analysis showed that the DFS of MIH group was inferior also to OH group (Z=3.04, p=0.002, HR = 1.15, 95% CI 1.05 to 1.26, $I^2 = 0\%$) (Figure 14).

Discussion

The results of this systematic review and meta-analysis clearly illustrate the long-term survival outcomes of HCC treated with MIH and OH, which have been ambiguous for a long time. By integrating 43 high- quality case-control studies after propensity score matching, this paper found that traditional OH method had certain advantages over MIH in terms of long-term survival outcomes (OS and DFS). Although the gap between the two groups was not very obvious, it was still statistically significant. In the aspect of surgery, the results found that MIH has longer operation time, less blood loss and lower blood transfusion rate. In addition, there was no significant difference in major hepatectomy rate, anatomical resection rate between the two groups. In oncology, the results showed that there was no significant difference in satellite nodules rate and microvascular invasion rate between the two groups, but the R0 rate in MIH group was higher than that in OH group, and recurrence rate was lower than that in OH group. In terms of short-term postoperative results, the results showed that the length of hospital stay, postoperative complication rate and major morbidity rate in MIH group were lower than those in OH group.

		MI		OH			Odds Ratio		Odd	Is Ratio		
	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl		M-H, Fi	xed, 95% (CI	
	AntonellaDelvecchio-2020	1	38	13	84	3.7%	0.15 [0.02, 1.17]	_	•	+		
	Chen-2017	0	81	0	81		Not estimable					
	CheungTT-2013	1	32	12	64	3.6%	0.14 [0.02, 1.13]			+		
	DaiHoonHan-2015	3	99	10	198	3.0%	0.59 (0.16, 2.18)			-		
	Doo-HoLee-2019	2	58	6	58	2.7%	0.31 (0.06, 1.60)		<u> </u>	+		
	FeiLiu-2019	2	67	7	67	3.2%	0.26 (0.05, 1.32)			+		
	HadrienTranchart-2010	4	42	5	42	2.1%	0.78 (0.19. 3.13)		_	-		
	Ho-SeongHan-2015	8	88	13	88	5.5%	0.58 (0.23, 1.47)			+		
	Jonghund Lee-2015	0	43	9	86	3.0%	0.09 (0.01, 1.65)	+		-		
	JongMankim-2018	ň	37	ñ	37	0.070	Not estimable					
	KeunSooAhn-2014	1	51	1	51	0.5%	1.00 (0.06, 16 43)		_			
	KimH-2013	1	29	3	29	1.4%	0.31 (0.03, 3.17)	_		+		
	Kit-ManHo-2021	1	45	2	90	0.6%	1 00 00 09 11 33					
	KomatsuS-2016	7	38	5	38	1 9%	1 49 (0 43, 5 19)		_		-	
	Viano-2016	13	128	30	207	12.6%	0.40 (0.25 0.05)			_		
	Lanvuni un. 2015	13	53	4	53	1.8%	0.73 [0.25, 0.35]					
	Macateru Vamamoto 2019	2	50	2	50	1 296	1 00 [0 10 5 17]			_	-	
	MeguroM-2015	6	25	6	26	2.2%	1 00 [0 20 2 47]			<u> </u>		
	Peng 7hu-2012	2	56	2	56	1.4%	0.65 [0.11 4.07]					
	Pong Zhu22022	1	56	3	56	1.4%	0.32 [0.03 3.10]	-				
	Sam-YoulYoon-2014	1	59	5	174	1.7%	0.52 [0.03, 5.13]			_	-	
	SnositoC-2016	1	46	1	46	0.5%	1 00 00 06 16 48					
	StofanoDiCandro 2019	- 1	76	14	76	6.2%	0.25 (0.00, 10.40)			-		
	Tanaka9, 2015		20	6	20	2.00	0.25 [0.00, 0.75]	+	<u></u>	_		
	TonToChoung 2020	1	20	16	20	3.0%	0.00 [0.00, 1.04]		-	_		
	Trucete 2011	-	24	7	50	2.970	0.22 [0.03, 1.73]			_		
	Truarits-2011		30	-	53	2.0%	0.19 [0.02, 1.60]					
	Tsutomulwata-2018	1	30	5	30	2.3%	0.17 [0.02, 1.58]				-	
	WelLI-2018	40	41	13	307	1.4%	1.16 [0.25, 5.33]					
	Wetnitbum-2019	10	41	14	41	5.0%	0.62 [0.24, 1.63]					
	Wux-2018	5	86	1	86	3.1%	0.70 [0.21, 2.29]		1.14			
	xavieron(ereiher-2018	1	33	14	33	5.2%	0.37 [0.12, 1.08]		14 C 1			
	Yosninirolnoue-2020	1	28	10	28	4.5%	0.07 [0.01, 0.57]			-		
	Young-InYoon-2019Young-InYoon-2019	6	217	16	434	4.9%	U.74 [U.29, 1.93]					
	YutuPeng-2019	1	33	1	33	0.5%	1.00 [0.06, 16.69]		191			
	∠hi-chengDeng-2018	2	157	11	157	5.1%	U.17 [0.04, 0.79]		100	-		
	Total (95% CI)		2059		3091	100.0%	0.45 (0.35, 0.57)		•			
	Total events	102	2000	284								
	Heterogeneity Chi ² = 26.51 df = 32 (P = 0	74): P= 0	%	204				H			- 1	
	Test for overall effect: $7 = 6.49$ (P < 0.000))	~					0.01	0.1	1	10	100
	1001101 010101 01002 Z = 0.43 (j 14 0.0000	/							MI	н он		
IDE 12												
KE 12												

The research results obtained from this meta-analysis verify the view put forward by most clinicians -MIH was a more challenging, complicated and delicate surgical operation, and it also reflects from the side that MIH can complete the surgical operation which is quite difficult as OH. And under the condition of the same oncology results, MIH has a better short-term postoperative effect. With the continuous progress of the times, surgical methods and instruments are also constantly evolving and developing, but the traditional hepatectomy still plays an irreplaceable role in some aspects at this present. At the same time, the narrow difference in survival outcomes between the two groups also proves that MIH has achieved good results after decades of development. However, at present, MIH technology has not fully reached the height of OH,

Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% Cl	IV,	Fixed, 95% Cl
AntonellaDelvecchio-2020	1.04204	0.399102	1.3%	2.83 [1.30, 6.20]		
AoxiaoHe-2021	0.30549	0.503398	0.8%	1.36 [0.51, 3.64]		-
Chen-2017	-0.31952	0.612061	0.6%	0.73 [0.22, 2.41]	. A	
CheungTT-2013	-0.07491	0.561733	0.7%	0.93 [0.31, 2.79]		
ChongLAI-2016	0.424291	1.059329	0.2%	1.53 [0.19, 12.19]		
DaiHoonHan-2015	0.469423	0.189075	5.9%	1.60 [1.10, 2.32]		
Doo-HoLee-2019	0.043164	0.692628	0.4%	1.04 [0.27, 4.06]		
FeiLiu-2019	0.549937	0.513358	0.8%	1.73 [0.63, 4.74]	_	
HadrienTranchart-2010	-0.09047	0.446525	1.1%	0.91 [0.38, 2.19]		
Ho-SeongHan-2015	0.166775	0.230663	3.9%	1.18 (0.75, 1.86)		
JiangX-2016	-0.0662	0.313984	21%	0.94 (0.51, 1.73)		
Jonghun II.ee-2015	1.059646	0.457317	1.0%	2 89 [1 18 7 07]		
JongMankim-2018	0.429238	0.799021	0.3%	1 54 [0 32 7 35]		
KeChen-2019	0.213134	0.61572	0.6%	1.24 [0.37, 4.14]		
KeunSonabn-2014	0.262782	0.01312	0.010	1.30 [0.50, 3.41]		
Keunoodanin-2014 Vimu 2012	0.202202	0.451027	0.5%	1.00 [0.00, 0.41]	-	
Kit MonUo 2021	0.073723	0.004123	4.40	1.37 [0.30, 10.73]	-	
Kit-MailTio-2021	0.130479	0.210003	4.470	1.14 [0.74, 1.70]		-
Kullialsus-2010	-0.17237	0.070270	0.070	0.04 [0.27, 2.01]	_	
L.Alang-2016	0.109279	0.2721	2.070	1.17 [0.09, 2.00]		
Larl/E 2015	0.19489	0.337055	1.8%	1.22 [0.03, 2.35]		
Leekr-2011	0.125266	0.403050	1.0%	1.13 [0.46, 2.81]		
Masateru Yamamoto-2019	0.119259	0.34/40/	1.7%	1.13 [0.57, 2.23]		
Megurom-2015	0.009698	0.393904	1.4%	1.01 [0.47, 2.19]		
MemeoR-2014	-0.08208	0.319177	2.1%	0.92 [0.49, 1.72]		
Peng Zhu-2022	-0.18069	0.419048	1.2%	0.83 [0.37, 1.90]	_	
Peng Zhu2-2022	0.389848	0.412333	1.2%	1.48 [0.66, 3.31]	_	
Sam-YoulYoon-2014	0.760939	0.324477	2.0%	2.14 [1.13, 4.04]		
SpositoC-2016	-0.01733	0.481272	0.9%	0.98 [0.38, 2.52]		
StefanoDiSandro-2018	0.078991	0.260377	3.1%	1.08 [0.65, 1.80]		
Sung-JinKim-2014	0.120291	0.324448	2.0%	1.13 [0.60, 2.13]		
TakeshiTakahara-2015	-0.07175	0.094316	23.6%	0.93 [0.77, 1.12]		
TanakaS-2015	-0.38739	0.684635	0.4%	0.68 [0.18, 2.60]	· · · · · ·	-
TanToCheung-2020	0.571193	0.564037	0.7%	1.77 [0.59, 5.35]		
TruantS-2011	0.704023	0.40617	1.3%	2.02 [0.91, 4.48]		
Tsutomulwata-2018	-0.24675	0.830095	0.3%	0.78 [0.15, 3.98]		1
WeiLi-2018	1.386082	0.859261	0.3%	4.00 [0.74, 21.55]	-	-
WethitDum-2019	-0.0951	0.405236	1.3%	0.91 [0.41, 2.01]	-	
WuX-2018	-0.12237	0.263804	3.0%	0.88 [0.53, 1.48]		
XavierUntereiner-2018	-0.34456	0.719471	0.4%	0.71 [0.17, 2.90]		
XuHW-2018	-2.34204	232,496	0.0%	0.10 (0.00, 7.653E196)		
YoonYI-2017	-0.20066	272.1657	0.0%	0.82 (0.00, 3.808E231)		
Young-InYoon-2019Young-InYoon-2019	0.345969	0.130954	12.2%	1.41 [1.09, 1.83]		
YufuPeng-2019	0.097521	0.735618	0.4%	1 10 10 26 4 661		
Zhi-chengDeng-2018	0.003392	0.151331	9.2%	1 00 10 75 1 351		
zero	0.000002	2.101001	0.2.10	100 [0110] 1.00]		
Total (95% CI)			100.0%	1.15 [1.05, 1.26]		•
Heterogeneity Chi ² = 36 29 df = 43 /P = 0	76): P= 0%					
Test for overall effect 7 = 3.04 (P = 0.002)					0.5 0.7	1 1.5 2
100101 Overall energy 2 = 0.04 (F = 0.002)						MIH OH

and needs further improvement or change. For example, in some difficult operations, although MIH can complete the whole operation, the operation time is long; the intraoperative visual field is not as good as OH, and some complex situations cannot be seen; the operation space in the body is limited, and the complex surgical process cannot be completed; all these will affect the patient's OS and DFS. In addition, open hepatectomy can touch organs more intuitively. If there is more local bleeding during the operation, we can use hand compression to stop bleeding quickly and effectively, and local adhesion can also be touched by hand to separate adhesion in time, so as to avoid other unnecessary injuries. For now, traditional OH has certain advantage in survival outcomes, but we do not know the future results. We will continue to pay attention to and study whether this advantage will continue. In this study, we found that the R0 rate of MIH is higher than that of OH, and it is statistically significant. This may be due to the continuous improvement of other auxiliary surgical equipment, such as the widespread application of intraoperative ultrasound technology in major centers. In addition, although MIH sacrifices a wide surgical field of vision, enlarged intraoperative vision and clear intraoperative images can promote surgeons to perform surgical operations more accurately, which is conducive to the resection of tumor tissue; However, it must be stated that the literatures included in this study are not RCT studies, and there may be bias in the selection of patients, which may affect the R0 results.

From the first case of OH in 1886 to the successful implementation of LH in 1991 to the first reported RD in 2006, human beings have created miracles again and again, amazing the world (50). As the most primitive procedure of hepatectomy, OH technology has been skillfully mastered by surgeons and widely used in clinical practice. However, its shortcomings such as high intraoperative blood loss, large postoperative trauma and high incidence of complications are becoming more and more obvious, and permanent large incision scars will undoubtedly bring physical and mental pressure to young women (51). As we all know, since the 21st century, "precise and minimally invasive surgery" has become a trend in the field of surgery. In 2008, the first international consensus conference of laparoscopic hepatectomy put forward the basic indications of LH: the single lesion range ≤5cm, and the lesion is mainly located around the liver (2-6 segments) (52). In 2014, the second international consensus conference of abdominal hepatectomy proposed that laparoscopic small-scale hepatectomy can become a standard operation, and laparoscopic large-scale hepatectomy needs further exploration

(53). Nowadays, more and more patients are interested in MIH technology, and MIH has been unanimously recognized and widely accepted. Compared with OH, LH has a flexible and clear vision, which makes it possible to dissect blood vessels, bile duct structures and ligaments around the liver in detail, thus reducing intraoperative bleeding and postoperative complications such as bile leakage, ascites and bleeding (54). Robot technology began to be used in general surgery in the 1990s. Since its establishment, DaVSS has been widely used in a variety of clinical diseases, including gastrointestinal tract, hepatobiliary pancreas, genitourinary and other disciplines. DaVSS can provide surgeons with 10-15 times of three-dimensional and clear surgical vision (55). Moreover, the flexible robotic arms can " fight left and right", and the seven degrees of freedom can break the limit of manual wrist rotation operation, so as to complete the delicate operation in the narrow anatomical area. However, a series of problems, such as the defect of touch temperature feedback system, the inconsistency between surgical instruments and surgical methods, and the standardization of surgical techniques, need to be further explored and improved by clinicians. At present, there are few literature reports on the application of RH in HCC, and RCT studies are even less. It is believed that major centers are in the period of summarizing experience, and more high-quality studies on RH in the treatment of HCC are expected to be reported.

As far as we know, this study is the first to compare the clinical efficacy of MIH and OH in the treatment of HCC based on high-quality propensity score matching studies. However, there are still some limitations in this study. First of all, the included literature is observational case-control studies and lacks substantial evidence from randomized controlled trials, which may lead to the occurrence of patient selection bias. Secondly, some data need to be converted by the formulas of Wan X and Tierney JF to meet the input requirements, which may cause errors, but we choose the conversion formulas recommended by PRISMA. Third, there are few reports about the application of RH in HCC, and most of the data included in this study are LH, so there is no further subgroup analysis of MIH, and it is not clear whether there is a difference between RH and LH. Finally, most of the studies included in this paper are post-2010 articles, which may produce some impacts on the results, but most of the previous literature contain mixed data that do not meet the inclusion criteria and are excluded because of low quality.

Through the efforts of several generations of hepatobiliary surgeons, MIH technology has been widely used in related liver diseases, and its feasibility, safety and efficacy have significant advantages. Of course, OH, as the original basic surgical method, still plays an irreplaceable role in some specific situations.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.

Author contributions

BF: literature review, statistical analysis, drafting of manuscript. P-SH: literature review, data extraction. J-RZ: literature review, adjudication, data extraction. Y-MZ: concept and design, critical revision of manuscript. All authors contributed to the article and approved the submitted version.

Funding

This work is supported by the Tianjin Health Science and technology project, No. TJWJ2021ZD002; Science and Technology Planning Projects of Tianjin, No. 19ZXDBSY00010; Science and Technology Project of Tianjin Health Commission, No. ZC20174; Tianjin Natural Science Foundation, No. 20JCYBJC01310; Tianjin Health Science and technology project, No. ZC20218; Tianjin Health Science and technology project, No. ZC20064.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/ fonc.2022.1021804/full#supplementary-material

References

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin* (2021) 71:209–49. doi: 10.3322/caac.21660

2. Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. Hepatocellular carcinoma. *Nat Rev Dis Primers.* (2021) 7:6. doi: 10.1038/s41572-020-00240-3

3. Reich H, McGlynn F, DeCaprio J, Budin R. Laparoscopic excision of benign liver lesions. *Obstet Gynecol* (1991) 78:956–8.

4. Ryska M, Fronek J, Rudis J, Jurenka B, Langer D, Pudil J. [Manual and robotic laparoscopic liver resection. two case-reviews]. *Rozhl Chir* (2006) 85:511–6.

5. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. *BMC Med Res Methodol* (2014) 14:135. doi: 10.1186/1471-2288-14-135

6. Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. *Trials* (2007) 8:16. doi: 10.1186/1745-6215-8-16

7. Zhu P, Liao W, Zhang WG, Chen L, Shu C, Zhang ZW, et al. A prospective study using propensity score matching to compare long-term survival outcomes after robotic-assisted, laparoscopic or open liver resection for patients with BCLC stage 0-a hepatocellular carcinoma. *Ann Surg* (2022). doi: 10.1097/SLA.00000000005380

8. Delvecchio A, Conticchio M, Ratti F, Gelli M, Anelli FM, Laurent A, et al. Laparoscopic major hepatectomy for hepatocellular carcinoma in elderly patients: a multicentric propensity score–based analysis. *Surg Endosc* (2021) 35:3642–52. doi: 10.1007/s00464-020-07843-7

9. He A, Huang Z, Wang J, Feng Q, Zhang R, Lu H, et al. Laparoscopic versus open major liver resection for hepatocellular carcinoma: A case-matched analysis of short- and long-term outcomes. *Open Med (Wars)* (2021) 16:964–72. doi: 10.1515/med-2021-0308

10. Cheung TT, Poon RT, Yuen WK, Chok KS, Jenkins CR, Chan SC, et al. Long-term survival analysis of pure laparoscopic versus open hepatectomy for hepatocellular carcinoma in patients with cirrhosis: a single-center experience. *Ann Surg* (2013) 257:506–11. doi: 10.1097/SLA.0b013e31827b947a

11. Lai C, Jin RA, Liang X, Cai XJ. Comparison of laparoscopic hepatectomy, percutaneous radiofrequency ablation and open hepatectomy in the treatment of small hepatocellular carcinoma. *J Zhejiang Univ Sci B* (2016) 17:236–46. doi: 10.1631/jzus.B1500322

12. Han DH, Choi SH, Park EJ, Kang DR, Choi GH, Choi JS. Surgical outcomes after laparoscopic or robotic liver resection in hepatocellular carcinoma: a propensity-score matched analysis with conventional open liver resection. *Int J Med Robot* (2016) 12:735–42. doi: 10.1002/rcs.1714

13. Lee DH, Kim D, Park YH, Yoon J, Kim JS. Long-term surgical outcomes in patients with hepatocellular carcinoma undergoing laparoscopic vs. open liver resection: A retrospective and propensity score-matched study. *Asian J Surg* (2021) 44:206–12. doi: 10.1016/j.asjsur.2020.05.028

14. Liu F, Xu H, Li Q, Wei Y, Li H, Wang W, et al. Outcomes of pure laparoscopic glissonian pedicle approach hepatectomy for hepatocellular carcinoma: a propensity score matching analysis. *Surg Endosc* (2019) 33:1155-66. doi: 10.1007/s00464-018-6380-0

15. Tranchart H, Di Giuro G, Lainas P, Roudie J, Agostini H, Franco D, et al. Laparoscopic resection for hepatocellular carcinoma: a matched-pair comparative study. *Surg Endosc* (2010) 24:1170–6. doi: 10.1007/s00464-009-0745-3

16. Han HS, Shehta A, Ahn S, Yoon YS, Cho JY, Choi Y. Laparoscopic versus open liver resection for hepatocellular carcinoma: Case-matched study with propensity score matching. *J Hepatol* (2015) 63:643–50. doi: 10.1016/j.jhep.2015.04.005

17. Jiang X, Liu L, Zhang Q, Jiang Y, Huang J, Zhou H, et al. Laparoscopic versus open hepatectomy for hepatocellular carcinoma: long-term outcomes. *J BUON* (2016) 21:135–41.

18. Lee JJ, Conneely JB, Smoot RL, Gallinger S, Greig PD, Moulton CA, et al. Laparoscopic versus open liver resection for hepatocellular carcinoma at a north-American centre: a 2-to-1 matched pair analysis. *HPB (Oxford)* (2015) 17:304–10. doi: 10.1111/hpb.12342

19. Kim JM, Kwon C, Yoo H, Kim KS, Lee J, Kim K, et al. Which approach is preferred in left hepatocellular carcinoma? laparoscopic versus open hepatectomy using propensity score matching. *BMC Cancer* (2018) 18:668. doi: 10.1186/s12885-018-4506-3

20. Chen K, Pan Y, Wang YF, Zheng XY, Liang X, Yu H, et al. Laparoscopic right hepatectomy for hepatocellular carcinoma: A propensity score matching

analysis of outcomes compared with conventional open surgery. J Laparoendosc Adv Surg Tech A. (2019) 29:503-12. doi: 10.1089/lap.2018.0480

21. Ahn KS, Kang KJ, Kim YH, Kim TS, Lim TJ. A propensity score-matched case-control comparative study of laparoscopic and open liver resection for hepatocellular carcinoma. *J Laparoendosc Adv Surg Tech A*. (2014) 24:872–7. doi: 10.1089/lap.2014.0273

22. Kim H, Suh KS, Lee KW, Yi NJ, Hong G, Suh SW, et al. Long-term outcome of laparoscopic versus open liver resection for hepatocellular carcinoma: a casecontrolled study with propensity score matching. *Surg Endosc* (2014) 28:950–60. doi: 10.1007/s00464-013-3254-3

23. Ho KM, Cheng KC, Chan FK, Yeung YP. Laparoscopic hepatectomy versus open hepatectomy for hepatocellular carcinoma: A propensity case-matched analysis of the long-term survival. *Ann Hepatobiliary Pancreat Surg* (2021) 25:1–7. doi: 10.14701/ahbps.2021.25.1.1

24. Komatsu S, Brustia R, Goumard C, Perdigao F, Soubrane O, Scatton O. Laparoscopic versus open major hepatectomy for hepatocellular carcinoma: a matched pair analysis. *Surg Endosc* (2016) 30:1965–74. doi: 10.1007/s00464-015-4422-4

25. Xiang L, Li J, Chen J, Wang X, Guo P, Fan Y, et al. Prospective cohort study of laparoscopic and open hepatectomy for hepatocellular carcinoma. *Br J Surg* (2016) 103:1895–901. doi: 10.1002/bjs.10294

26. Luo L, Zou H, Yao Y, Huang X. Laparoscopic versus open hepatectomy for hepatocellular carcinoma: short- and long-term outcomes comparison. *Int J Clin Exp Med* (2015) 8:18772–8.

27. Lee KF, Chong CN, Wong J, Cheung YS, Wong J, Lai P. Long-term results of laparoscopic hepatectomy versus open hepatectomy for hepatocellular carcinoma: a case-matched analysis. *World J Surg* (2011) 35:2268–74. doi: 10.1007/s00268-011-1212-6

28. Yamamoto M, Kobayashi T, Oshita A, Abe T, Kohashi T, Onoe T, et al. Laparoscopic versus open limited liver resection for hepatocellular carcinoma with liver cirrhosis: a propensity score matching study with the Hiroshima surgical study group of clinical oncology (HiSCO). *Surg Endosc* (2020) 34:5055–61. doi: 10.1007/s00464-019-07302-y

29. Meguro M, Mizuguchi T, Kawamoto M, Ota S, Ishii M, Nishidate T, et al. Clinical comparison of laparoscopic and open liver resection after propensity matching selection. *Surgery* (2015) 158:573–87. doi: 10.1016/j.surg.2015.02.031

30. Memeo R, de'Angelis N, Compagnon P, Salloum C, Cherqui D, Laurent A, et al. Laparoscopic vs. open liver resection for hepatocellular carcinoma of cirrhotic liver: a case-control study. . *World J Surg* (2014) 38:2919–26. doi: 10.1007/s00268-014-2659-z

31. Yoon SY, Kim KH, Jung DH, Yu A, Lee SG. Oncological and surgical results of laparoscopic versus open liver resection for HCC less than 5 cm: case-matched analysis. *Surg Endosc* (2015) 29:2628–34. doi: 10.1007/s00464-014-3980-1

32. Sposito C, Battiston C, Facciorusso A, Mazzola M, Muscarà C, Scotti M, et al. Propensity score analysis of outcomes following laparoscopic or open liver resection for hepatocellular carcinoma. *Br J Surg* (2016) 103:871–80. doi: 10.1002/ bjs.10137

33. Di Sandro S, Bagnardi V, Najjar M, Buscemi V, Lauterio A, De Carlis R, et al. Minor laparoscopic liver resection for hepatocellular carcinoma is safer than minor open resection, especially for less compensated cirrhotic patients: Propensity score analysis. *Surg Oncol* (2018) 27:722–9. doi: 10.1016/j.suronc.2018.10.001

34. Kim SJ, Jung HK, Lee DS, Yun SS, Kim HJ. The comparison of oncologic and clinical outcomes of laparoscopic liver resection for hepatocellular carcinoma. *Ann Surg Treat Res* (2014) 86:61–7. doi: 10.4174/astr.2014.86.2.61

35. Takahara T, Wakabayashi G, Beppu T, Aihara A, Hasegawa K, Gotohda N, et al. Long-term and perioperative outcomes of laparoscopic versus open liver resection for hepatocellular carcinoma with propensity score matching: A multiinstitutional Japanese study. *J Hepatobiliary Pancreat Sci* (2015) 22:721–7. doi: 10.1002/jhbp.276

36. Tanaka S, Takemura S, Shinkawa H, Nishioka T, Hamano G, Kinoshita M, et al. Outcomes of pure laparoscopic versus open hepatic resection for hepatocellular carcinoma in cirrhotic patients: A case-control study with propensity score matching. *Eur Surg Res* (2015) 55:291–301. doi: 10.1159/000439274

37. Cheung TT, Ma KW, She WH, Dai WC, Tsang S, Chan A, et al. Pure laparoscopic versus open major hepatectomy for hepatocellular carcinoma with liver F4 cirrhosis without routine Pringle maneuver - a propensity analysis in a single center. *Surg Oncol* (2020) 35:315–20. doi: 10.1016/j.suronc.2020.09.012

38. Truant S, Bouras AF, Hebbar M, Boleslawski E, Fromont G, Dharancy S, et al. Laparoscopic resection vs. open liver resection for peripheral hepatocellular carcinoma in patients with chronic liver disease: A case-matched study. *Surg Endosc* (2011) 25:3668–77. doi: 10.1007/s00464-011-1775-1

39. Iwata T, Murotani K, Komatsu S, Mishima H, Arikawa T. Surgical outcome of laparoscopic hepatic resection for hepatocellular carcinoma: A matched casecontrol study with propensity score matching. *J Minim Access Surg* (2018) 14:277– 84. doi: 10.4103/jmas.JMAS_116_17

40. Li W, Han J, Xie G, Xiao Y, Sun K, Yuan K, et al. Laparoscopic versus open mesohepatectomy for patients with centrally located hepatocellular carcinoma: A propensity score matched analysis. *Surg Endosc* (2019) 33:2916–26. doi: 10.1007/s00464-018-6593-2

41. Dumronggittigule W, Han HS, Ahn S, Yoon YS, Cho JY, Choi Y. Laparoscopic versus open hepatectomy for hepatocellular carcinoma in elderly patients: A single-institutional propensity score matching comparison. *Dig Surg* (2020) 37:495–504. doi: 10.1159/000510960

42. Wu X, Huang Z, Lau WY, Li W, Lin P, Zhang L, et al. Perioperative and long-term outcomes of laparoscopic versus open liver resection for hepatocellular carcinoma with well-preserved liver function and cirrhotic background: a propensity score matching study. *Surg Endosc* (2019) 33:206–15. doi: 10.1007/ s00464-018-6296-8

43. Untereiner X, Cagniet A, Memeo R, Cherkaoui Z, Piardi T, Severac F, et al. Laparoscopic hepatectomy versus open hepatectomy for the management of hepatocellular carcinoma: A comparative study using a propensity score matching. *World J Surg* (2019) 43:615–25. doi: 10.1007/s00268-018-4827-z

44. Xu HW, Liu F, Li HY, Wei YG, Li B. Outcomes following laparoscopic versus open major hepatectomy for hepatocellular carcinoma in patients with cirrhosis: a propensity score-matched analysis. *Surg Endosc* (2018) 32:712–9. doi: 10.1007/s00464-017-5727-2

45. Yoon YI, Kim KH, Kang SH, Kim WJ, Shin MH, Lee SK, et al. Pure laparoscopic versus open right hepatectomy for hepatocellular carcinoma in patients with cirrhosis: A propensity score matched analysis. *Ann Surg* (2017) 265:856–63. doi: 10.1097/SLA.00000000002072

46. Yoon YI, Kim KH, Cho HD, Kwon JH, Jung DH, Park GC, et al. Long-term perioperative outcomes of pure laparoscopic liver resection versus open liver resection for hepatocellular carcinoma: a retrospective study. *Surg Endosc* (2020) 34:796–805. doi: 10.1007/s00464-019-06831-w

47. Peng Y, Liu F, Xu H, Lan X, Wei Y, Li B. Outcomes of laparoscopic liver resection for patients with multiple hepatocellular carcinomas meeting the Milan criteria: A propensity score-matched analysis. *J Laparoendosc Adv Surg Tech A*. (2019) 29:1144–51. doi: 10.1089/lap.2019.0362

48. Deng ZC, Jiang WZ, Tang XD, Liu SH, Qin L, Qian HX. Laparoscopic hepatectomy versus open hepatectomy for hepatocellular carcinoma in 157 patients: A case controlled study with propensity score matching at two Chinese centres. *Int J Surg* (2018) 56:203–7. doi: 10.1016/j.ijsu.2018.06.026

49. Chen PD, Wu CY, Hu RH, Chou WH, Lai HS, Liang JT, et al. Robotic versus open hepatectomy for hepatocellular carcinoma: A matched comparison. *Ann Surg Oncol* (2017) 24:1021–8. doi: 10.1245/s10434-016-5638-9

50. Kokudo N, Takemura N, Ito K, Mihara F. The history of liver surgery: Achievements over the past 50 years. *Ann Gastroenterol Surg* (2020) 4:109–17. doi: 10.1002/ags3.12322

51. Ziogas IA, Evangeliou AP, Mylonas KS, Athanasiadis DI, Cherouveim P, Geller DA, et al. Economic analysis of open versus laparoscopic versus robotic hepatectomy: a systematic review and meta-analysis. *Eur J Health Econ* (2021) 22:585–604. doi: 10.1007/s10198-021-01277-1

52. Buell JF, Cherqui D, Geller DA, O'Rourke N, Iannitti D, Dagher I, et al. The international position on laparoscopic liver surgery: The Louisville statement, 2008. *Ann Surg* (2009) 250:825–30. doi: 10.1097/sla.0b013e3181b3b2d8

53. Wakabayashi G, Cherqui D, Geller DA, Buell JF, Kaneko H, Han HS, et al. Recommendations for laparoscopic liver resection: A report from the second international consensus conference held in morioka. *Ann Surg* (2015) 261:619– 29. doi: 10.1097/SLA.00000000001184

54. Goh B, Syn N, Koh YX, Teo JY, Cheow PC, Jeyaraj PR, et al. Comparison between short and long-term outcomes after minimally invasive versus open primary liver resections for hepatocellular carcinoma: A 1:1 matched analysis. *J Surg Oncol* (2021) 124:560–71. doi: 10.1002/jso.26556

55. Suh KS, Hong SK, Lee S, Hong SY, Suh S, Han ES, et al. Purely laparoscopic explant hepatectomy and hybrid laparoscopic/robotic graft implantation in living donor liver transplantation. *Br J Surg* (2022) 109:162–4. doi: 10.1093/bjs/znab322