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Pilar López-Larrubia,
Spanish National Research Council
(CSIC), Spain

REVIEWED BY

Yan Zhou,
Tianjin Third Central Hospital, China
Fei Peng Zhu,
Nanjing Medical University, China

*CORRESPONDENCE

Daobing Zeng
dao_zeng@aliyun.com
Hongjun Li
lihongjun00113@ccmu.edu.cn

SPECIALTY SECTION

This article was submitted to
Cancer Imaging and
Image-directed Interventions,
a section of the journal
Frontiers in Oncology

RECEIVED 17 August 2022
ACCEPTED 19 October 2022

PUBLISHED 08 November 2022

CITATION

Yang X, Shao G, Liu J, Liu B, Cai C,
Zeng D and Li H (2022) Predictive
machine learning model for
microvascular invasion identification in
hepatocellular carcinoma based on
the LI-RADS system.
Front. Oncol. 12:1021570.
doi: 10.3389/fonc.2022.1021570

COPYRIGHT

© 2022 Yang, Shao, Liu, Liu, Cai, Zeng
and Li. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 08 November 2022

DOI 10.3389/fonc.2022.1021570
Predictive machine learning
model for microvascular
invasion identification in
hepatocellular carcinoma based
on the LI-RADS system

Xue Yang1, Guoqing Shao2, Jiaojiao Liu1, Bin Liu3, Chao Cai1,
Daobing Zeng4,5* and Hongjun Li1*

1Department of Radiology, Beijing You’an Hospital, Capital Medical University, Beijing, China,
2Department of Radiology, Xuzhou Central Hospital, Xuzhou, China, 3Department of Radiology,
Civil Aviation General Hospital, Beijing, China, 4General Surgery Department, Beijing Youan
Hospital, Capital Medical University, Beijing, China, 5Clinical Center for Liver Cancer, Capital
Medical University, Beijing, China
Purposes: This study aimed to establish a predictive model of microvascular

invasion (MVI) in hepatocellular carcinoma (HCC) by contrast-enhanced

computed tomography (CT), which relied on a combination of machine

learning approach and imaging features covering Liver Imaging and

Reporting and Data System (LI-RADS) features.

Methods: The retrospective study included 279 patients with surgery who

underwent preoperative enhanced CT. They were randomly allocated to

training set, validation set, and test set (167 patients vs. 56 patients vs. 56

patients, respectively). Significant imaging findings for predicting MVI were

identified through the Least Absolute Shrinkage and Selection Operator

(LASSO) logistic regression method. Predictive models were performed by

machine learning algorithm, support vector machine (SVM), in the training set

and validation set, and evaluated in the test set. Further, a combined model

adding clinical findings to the radiologic model was developed. Based on the

LI-RADS category, subgroup analyses were conducted.

Results: We included 116 patients with MVI which were diagnosed through

pathological confirmation. Six imaging features were selected about MVI

prediction: four LI-RADS features (corona enhancement, enhancing capsule,

non-rim aterial phase hyperehancement, tumor size) and two non-LI-RADS

features (internal arteries, non-smooth tumor margin). The radiological feature

with the best accuracy was corona enhancement followed by internal arteries

and tumor size. The accuracies of the radiological model and combined model

were 0.725–0.714 and 0.802–0.732 in the training set, validation set, and test

set, respectively. In the LR-4/5 subgroup, a sensitivity of 100% and an NPV of

100% were obtained by the high-sensitivity threshold. A specificity of 100%

and a PPV of 100% were acquired through the high specificity threshold in the

LR-M subgroup.
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Conclusion: A combination of LI-RADS features and non-LI-RADS features and

serum alpha-fetoprotein value could be applied as a preoperative biomarker

for predicting MVI by the machine learning approach. Furthermore, its good

performance in the subgroup by LI-RADS category may help optimize the

management of HCC patients.
KEYWORDS
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1 Introduction

Hepatocellular carcinoma (HCC) represents the third leading

cause of cancer-related mortality worldwide and remains a growing

tendency (1). Microvascular invasion (MVI) indicates the frequent

recurrence, extrahepaticmetastases, andpoorprognosis after surgical

resection and transplantation in HCC patients (2–4). It is critical to

detect the presence ofMVI at the time of the diagnosis of liver lesion,

which impact the choice involving wide margin hepatectomy or

combined with intraoperative electron radiotherapy, or liver

transplantation, or tumor ablation (3–6). Thus, MVI urgently

requires preoperative prediction to apply the optimal therapeutic

strategy, rather than being diagnosed through microscopic

examination of a pathological specimen after hepatectomy (7, 8).

Adequate number of sampling sites (NUSS) and sampling location

affect thedetection rate ofMVI.Chenet al. suggested that at least four

toeightNUSSwithinparacancerousparenchyma≤1cmwereneeded

for assessing MVI according to tumor size (9). Thus, pathological

biopsy is likely to increase false-negative rates before surgery due to

sampling errors and number of NUSS.

With increasing attention to MVI, serum markers (i.e., AFP)

and imaging features as non-invasive examinations before

surgery, such as internal arteries and tumor margin, have been

used to predict MVI (10–12). However, prior studies showed

heterogeneous standards and varied accuracies, which require

further research (10–12). The Liver Imaging Reporting and Data

System (LI-RADS) has been recognized for HCC diagnosis (13).

Regarding its advantages of standardized criteria and being easy

to generalize, few studies have also attempted to explore the

relationship between LI-RADS features and MVI in HCC. For

example, ancillary features of LI-RADS including absence of

nodule-in-nodule architecture, coronal enhancement, mosaic

architecture, and LR-M features including marked diffusion

restriction and rim arterial enhancement have been reported

as predictive factors of MVI (12, 14–16). These studies are

mainly derived from magnetic resonance imaging (MRI)

features, whereas there was shortage of computed tomography

(CT)-driven results (12, 14–19). Additional studies are needed to

determine whether predictive MRI features are still applicable
02
for CT. Compared with MRI, CT has some advantages which are

shorter scanning time and lower cost, more stability, and not

being limited by the presence of metal objects implanted in the

human body. Therefore, research of CT deserves further study.

This may also help in expanding the power of LI-RADS features

in clinical decision making and obtaining predictive models of

MVI based on standardized CT imaging features.

Machine learning has been used to extract radiomics features

and develop corresponding models for MVI prediction (20–22).

Although models with radiomics features presented good

performance, the interpretability and generalizability limit

clinical application. The machine learning approach could

identify complicated interactions among predictive factors and

be able to avoid overfitting as well as improve the performance of

the model (23, 24). However, it is underused in interpretable

imaging features. The combination of interpretable imaging

features and machine learning method may find functional

information and aid in the identification of MVI.

By machine learning algorithms, our purpose is to establish

and evaluate visibly standardized CT feature-based models for

MVI detection. Additionally, subgroup analyses are used to

evaluate model performance for risk stratification of HCC

patients according to LI-RADS category.
2 Materials and methods

The single-center study was approved by the ethical committees

of the Beijing Youan Hospital, Capital Medical University, and

complied with the ethical guidelines of the Declaration of Helsinki.

Owing to the retrospective nature of our study, the institutional

review board waived the patients’ informed consent.
2.1 Patient selection

Consecutive adult patients were recruited from January 2015 to

December 2021. A total of 1,581 patients were screened according

to the selection criteria, which were as follows: 1) diagnosed by
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histological evaluation in accordance with the American

Association for the Study of Liver Diseases (AASLD) or

European Association for the Study of the Liver (EASL)

guidelines for HCC (25); 2) underwent enhanced CT

examinations within 1 month before surgery; 3) patients whose

state of MVI was evaluated by histological results. The excluded

criteria included the following: 1) any preoperative treatment; 2)

macrovascular or biliary duct invasion; 3) positive resection margin

through pathological assessment; 4) extrahepatic propagation or

spontaneous tumor rupture; 5) absence of quality imaging

information. A flowchart for subjects is provided in Figure 1.

Finally, we selected 279 patients, who were randomly allocated to

training set, validation set, and test set through a 6:2:2 split (training

set: 167 patients, validation set and test set: both 56 patients).
2.2 Imaging protocol

A contrast-enhanced multiphase CT examination was

performed on a 64-multidetector CT scanner (GE LightSpeed

VCT, USA). Intravenous administration of an iodine contrast

agent (370 mg I/ml of iopromide 370, Schering, Berlin, German)

with a dose of 1.5 ml/kg was provided at a rate of 3 ml/s using the

automatic bolus-tracking program. The experienced radiology

technician controlled the celiac artery attenuation and placed the

region of interest in the abdominal aorta. The trigger threshold

level-based SmartPrep contrast was set at 100 Hounsfield units.

The contrast-enhanced CT scanning protocol is summarized in

the Supplemental Table 1.
2.3 Features

2.3.1 Imaging features
Three board-certified gastrointestinal radiologists

independently and retrospectively reviewed the enhanced CT

images, who were informed the diagnosis of HCC, but unaware

of other outcomes of pathologic examinations and clinical

information. For multifocal HCC, the lesion with the largest

diameter was selected for assessment. According to LI-RADS

version 2018 (13), reviewers determined the imaging

characteristics of tumors: major features (non-rim arterial phase

hyperenhancement (APHE), non-peripheral washout, tumor size,

and enhancing capsule), ancillary features (corona enhancement,

nodule-in-nodule architecture, mosaic architecture, blood products

in mass), and LR-M features (targetoid features including rim

APHE and peripheral washout and delayed enhancement,

intratumor necrosis). Moreover, non-LI-RADS features based on

previous studies were also evaluated: tumor number, internal

arteries, non-smooth tumor margin, peritumoral hypoattenuating

halo, and tumor–liver difference. Supplemental Table 2 shows the

definition of imaging features in detail. The LI-RADS category was

also allocated to tumor lesions. When there was a difference of
Frontiers in Oncology 03
opinion about the evaluation of any imaging characteristic, a second

review was done until agreement was reached.

2.3.2 Clinical features
The clinical characteristics included age, gender, etiology of

chronic liver disease, Child–Pugh grade, and blood variables

(shown in Table 1).
2.4 Statistical analysis

Feature selection could affect learning accuracy and result in

comprehensibility. We applied the Least Absolute Shrinkage and

Selection Operator (LASSO) for imaging feature selection. Support

vector machine (SVM) was used to develop the machine learning

model for MVI prediction in HCC. In addition, continuous blood

signatures were translated into categorical variables and compared

via chi-squared test or Fisher’s exact test (with p < 0.05).

Demographic variables were compared by chi-squared test or

Student t test (p < 0.05). Then, we found the significant clinical

variables based on logistic regression (p < 0.05) which were

combined with radiologic features to develop combined model.

2.4.1 Feature preprocessing and selection
Minimization of the empirical error penalized by a

regularization term, namely, totality of the empirical error

(loss term) and regularization term (penalty term), is applied

to construct a sparse learning model for feature selection (24).

The LASSO logistic regression algorithm is frequently used as

the standard sparse regression approach on the basis of the

regularization framework. The regularization parameter l is the

balance between the loss term and the penalty term (26).

We standardized features with the z score. The value of

regularization parameter l was selected via 10-fold cross-

validation in the training set, which resulted in the sparsest model

remaining within one standardized error of the minimum loss.

Imaging features were selected which yielded non-zero coefficients

(27). The multicollinearity of the significant attributes were

evaluated using the variation inflation factor (VIF<5).
2.4.2 Training and evaluation processes of the
predictive model for MVI

We developed radiological predictive model using SVM and

optimized hyperparameters through learning curves and grid

searches in the training set and validation set. Furthermore, a

combined model using features in the radiologic model with a

serum alpha-fetoprotein (AFP) value was also used in the

training set and the validation set and assessed in the test set.

The sensitivity, specificity, accuracy, positive predictive value

(PPV), and negative predictive value (NPV) of the MVI were

compared using the McNemar test. Areas under the curve (AUC)

of twomodels forMVI detection were compared by the Delong test.
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Moreover, we made the decision curve analysis (DCA) counting the

net benefits under different threshold probabilities, which indicated

the clinical relevance of the prediction model (28). The calibration

curve was used to evaluate the goodness of models.

We defined three thresholds from the results of the training set:

Youden’s index, high specificity threshold (95% specificity), and

high sensitivity threshold (95% sensitivity). Performance matrices

were evaluated according to three thresholds ofMVI probabilities in

the test set, namely, the whole set, LR 4/5 group, and LR-M group.

Statistical analyses were performed using Python ver. 3.8 and SPSS

software ver. 26.0. Inter-reader agreement among three observers

for the CT features was assessed by a Fleiss’ kappa value of ≤0.20

which means poor level, 0.21–0.40 which is fair level, 0.41–0.60

which is moderate level, 0.61–0.80 which is substantial level, and

≥0.80 which means nearly best level.
3 Results

3.1 Patients’ characteristics

A total of 279 patients were enrolled in this study (Table 1).

One hundred sixty-seven patients, 56 patients, and 56 patients

constituted the training set, validation set, and test set, which

involved 70 (41.9%), 23 (41.1%), and 23 (41.1%) patients with

presence of MVI, respectively (p = 0.990). The clinical variables

were similar among the training set, validation set, and test set

(p = 0.278–0.97). Between MVI-positive patients and MVI-

negative patients, clinical factors including AFP and gender

were significantly different in the training set and the test set,
Frontiers in Oncology 04
separately. Many radiologic features were also different between

the MVI-positive group andMVI-negative group in the training,

validation, and test sets which are shown in detail in Table 1.
3.2 Feature selection

Six radiological features were selected via the LASSO logistic

regression approach with the optimal l (l = 0.0129). There are

four LI-RADS features (corona enhancement, enhancing

capsule, non-rim aterial phase hyperehancement, tumor size)

and two non-LI-RADS features (internal arteries, non-smooth

tumor margin) (Figure 2). Misclassification errors and

coefficients are shown in Figure 3. The VIF values of those

features ranged 1.10–1.49 (all <5), which were proved without

multicollinearity. Their Fleiss’ kappa values ranged from 0.331-

0.974 (listed in Supplementary Table 3). At the aspect of blood

signatures and demographic variables, we only found that AFP

was related to MVI using multivariate logistic regression in the

training set (p < 0.05) (Supplementary Table 4).
3.3 Development and validation of MVI
prediction models

A radiological model using the SVM approach that

integrated corresponding radiologic predictors was built and

optimized in the training set and validation set, which presented

an AUC and accuracy of 0.795/0.793 and 0.725/0.714,

respectively (Supplementary Table 5). The AUC and accuracy
FIGURE 1

The flowchart for patient selection.
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TABLE 1 Participant characteristics.

Variable Training set (n = 167) Validation set (n = 56) Test set (n = 56)

MVI
positive

MVI
negative

P
value

MVI
positive

MVI
negative

P
value

MVI
positive

MVI
negative

P
value

Demographic variables

Age (years) 54.99 ± 10.77 57.30 ± 9.07 0.135 58 (49-64) 58 (48-64) 0.739 54.09 ± 10.56 55.91 ± 12.00 0.560

Gender (male (%)) 52 (74.3%) 84 (86.6%) 0.043* 20 (87%) 27 (81.8%) 0.723 15 (65.2%) 30 (90.9%) 0.037*

Blood signatures

Etiology (HBV (%)) 64 (91.3%) 84 (86.6%) 0.332 21 (91.3%) 28 (84.8%) 0.688 22 (95.7%) 31 (93.9%) 1.000

Child–Pugh (A (%)) 68 (97.1%) 93 (95.8%) 1.000 22 (95.7%) 33 (100%) 0.411 23 (100%) 31 (93.9%) 0.507

AFP (>400 ng/ml (%)) 21 (30%) 10 (10.3%) 0.001* 7 (30.4%) 4 (12.1%) 0.170 7 (30.4%) 3 (9.1%) 0.073

ALT (>50 U/l (%)) 14 (20%) 14 (14.4%) 0.342 5 (21.7%) 5 (15.2%) 0.725 3 (13%) 6 (18.2%) 0.723

AST (>40 U/l (%)) 22 (31.4%) 21 (21.6%) 0.154 7 (30.4%) 9 (27.3%) 1.000 5 (21.7%) 6 (18.2%) 0.746

TBIL (>21 µmol/l (%)) 13 (18.6%) 25 (25.8%) 0.273 7 (30.4%) 11 (33.3%) 1.000 7 (30.4%) 9 (27.3%) 0.797

ALB (<40 g/l (%)) 28 (40%) 34 (35.1%) 0.514 12 (52.2%) 13 (39.4%) 0.344 8 (34.8%) 12 (36.4%) 1.000

PT (>12 s (%)) 13 (18.6%) 25 (25.8%) 0.273 7 (30.4%) 9 (27.3%) 0.797 3 (13%) 8 (24.2%) 0.496

PLT (<125 * 109/l (%)) 18 (25.7%) 38 (39.2%) 0.069 9 (39.1%) 14 (42.4%) 0.805 4 (17.4%) 11 (33.3%) 0.185

WBCs (<3.5 * 1012/l (%)) 6 (8.6%) 15 (15.5%) 0.185 2 (8.7%) 5 (15.2%) 0.688 3 (13.0%) 4 (12.1%) 1.000

DNA load (>104 IU/ml (%)) 12 (17.1%) 21 (21.6%) 0.471 4 (17.4%) 8 (24.2%) 0.743 4 (17.4%) 7 (21.2%) 1.000

Radiologic features

Tumor number (single (%)) 64 (91.4%) 95 (97.9%) 0.070 22 (95.7%) 30 (90.9%) 0.636 23 (100%) 32 (97%) 1.000

Non-smooth tumor margin (%) 55 (78.6%) 47 (48.5%) 0.000* 21 (91.3%) 21 (63.6%) 0.019* 19 (82.6%) 18 (54.5%) 0.029*

Internal arteries (%) 53 (75.7%) 42 (43.3%) 0.000* 17 (73.9%) 11 (33.3%) 0.003* 18 (78.3%) 15 (45.5%) 0.014*

Peritumoral hypoattenuating
halo (%)

10 (14.3%) 17 (17.5%) 0.575 3 (13%) 3 (9.1%) 0.681 7 (30.4%) 2 (6.1%) 0.024*

Tumor-liver difference (%) 12 (17.1%) 14 (14.4%) 0.634 8 (34.8%) 4 (12.1%) 0.054 7 (30.4%) 5 (15.2%) 0.200

LI-RADS features

Major features

Non-rim AP hyperenhancement
(%)

50 (71.4%) 81 (83.5%) 0.061 15 (65.2%) 27 (81.8%) 0.158 14 (60.9%) 25 (75.8%) 0.233

Non-peripheral “washout” (%) 52 (74.3%) 82 (84.5%) 0.101 15 (65.2%) 28 (84.8%) 0.087 14 (60.9%) 24 (72.7%) 0.350

Enhancing capsule (%) 61 (87.1%) 74 (76.3%) 0.079 20 (87%) 28 (84.8%) 1.000 22 (95.7%) 30 (90.9%) 0.636

Tumor size (>5 cm (%)) 28 (40%) 12 (12.4%) 0.000* 11 (47.8%) 4 (12.1%) 0.003* 10 (43.5%) 7 (21.2%) 0.075

Ancillary features

Corona enhancement (%) 32 (45.7%) 18 (18.6%) 0.000* 12 (52.2%) 9 (27.3%) 0.058 13 (56.5%) 6 (18.2%) 0.003*

Nodule-in-nodule architecture
(%)

0 0 1.000 0 0 1.000 0 1 (3.0%) 1.000

Mosaic architecture (%) 13 (18.6%) 12 (12.4%) 0.268 9 (39.1%) 4 (12.1%) 0.019* 2 (8.7%) 5 (15.2%) 0.688

Blood products in mass (%) 1 (1.4%) 0 0.419 0 1 (3%) 1.000 0 0 1.000

LR-M features

Targetoid feature (%) 17 (24.3%) 13 (13.4%) 0.071 8 (34.8%) 5 (15.2%) 0.087 9 (39.1%) 7 (21.2%) 0.144

AP rim hyperenhancement (%) 16 (22.9%) 12 (12.4%) 0.073 8 (34.8%) 5 (15.2%) 0.087 9 (39.1%) 7 (21.2%) 0.144

PVP/DP peripheral “washout”
(%)

16 (22.9%) 11 (11.3%) 0.046* 8 (34.8%) 5 (15.2%) 0.087 9 (39.1%) 6 (18.2%) 0.082

Delayed central enhancement
(%)

2 (2.9%) 8 (8.2%) 0.195 2 (8.7%) 1 (3%) 0.562 0 3 (9.1%) 0.261

Intratumor necrosis (%) 36 (51.4%) 36 (37.1%) 0.065 17 (73.9%) 12 (36.4%) 0.006* 16 (69.6%) 15 (45.5%) 0.074
Frontiers in Oncology
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HBV, hepatitis B virus; AFP, alpha-fetoprotein; ALT, alanine aminotransferase; AST, aspartate aminotransferase; TBIL, total bilirubin; ALB, albumin; PT, prothrombin time; PLT, platelet
count; WBC, white blood cell; LI-RADS, Liver Imaging Reporting and Data System; AP, arterial phase; PVP, portal vein phase; DP, delayed phase.
*p < 0.05.
rsin.org

https://doi.org/10.3389/fonc.2022.1021570
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2022.1021570
of the radiological model in the test model were 0.775 and 0.714

(Table 2). The comparison predictive performance between

radiological model and combined model which was added

with AFP presented no significant difference among the three

sets (AUC: p = 0.08–0.569, accuracy: p = 0.125–1.000, sensitivity:

p = 0.065–1.000, specificity: p = 0.625–1.000). However, the

combined model obtained a better benefit than the radiological

model for MVI probability examination by DCA (Figure 4 and

Supplementary Figure 1). Notably, a calibration curve of the

combined model demonstrated a better calibration than that of

the radiologic model, which indicated a general underestimation

of MVI risk in HCC (Figure 4). We also conducted subgroup

analyses using both the radiological model and combined model
Frontiers in Oncology 06
in the test set. The combined model maintained good

performance in both the LR-4/5 and LR-M groups rather than

radiological model (Table 2).

Furthermore, the Youden index, high-sensitivity threshold,

and high-specificity threshold of the combined model were

calculated as 0.59, 0.27026, and 0.6954 in the training set,

respectively. Based on the Youden index, the sensitivity,

specificity, PPV, NPV, and accuracy of the test set were 52.2%,

84.8%, 70.6%, 71.8%, and 71.4%, respectively (Figure 5). In the

LR-4/5 subgroup, a sensitivity of 100% and an NPV of 100%

were obtained through the high-sensitivity threshold. In the LR-

M subgroup, a specificity of 100% and a PPV of 100% were

acquired from the high-specificity threshold.
BA

FIGURE 3

Imaging feature selection for MVI identification in the training set by LASSO logistic regression. (A) Selection of tuning l in the LASSO model
through 10-fold cross-validation. Vertical black lines define the best values of l that provide the best fit. (B) LASSO coefficient profiles of all
imaging features for MVI presence. Vertical black lines are plotted at the value selected in (A). Imaging features with non-zero coefficients are
indicated. MVI, microvascular invasion; LASSO, Least Absolute Shrinkage and Selection Operator.
B C

D E

A

FIGURE 2

Graphical illustration of the selected features. Corona enhancement (A). Internal arteries (B). Non-smooth margin (C). Enhancing capsule (D). Non-rim
AP hyperenhancement (E).
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The predictive power of variables derived from the

combined model is shown in Figure 6. The highest accuracy

variable was corona enhancement. Features with the highest

sensitivity was enhancing capsule followed by a non-smooth

tumor margin and internal arteries. AFP presented the highest

specificity which was followed by corona enhancement.
4 Discussion

With the accumulation of knowledge about the prognostic

implication of MVI in HCC, it becomes more clinically

significant, especially accurate preoperative prediction. Our

study selected optimal features including four LI-RADS

features (corona enhancement, enhancing capsule non-rim

aterial phase hyperehancement, tumor size) and two non-LI-

RADS features (internal arteries, non-smooth tumor margin)

and AFP. Predictive models of MVI were developed by the SVM

approach. Both radiological model and combined model with

AFP presented good accuracy and an AUC of MVI prediction in

the test set (AUC: 0.775 vs. 0.778, accuracy: 0.714 vs. 0.732,

respectively). However, the combined model showed relatively

robust accuracy during subgroup analyses in the test set. DCA
Frontiers in Oncology 07
and the calibration curve also supported the combined model

with good performance for MVI prediction.

Based on our prior knowledge and previous literature about

MVI and liver tumor (22, 29, 30), we also selected SVM as the

classifier and found its good performance of MVI prediction in

HCC. Similar to previous studies (10, 11, 31), the serum AFP

level is related to the prevalence of MVI. The combined model

through adding AFP to the radiological model improved

predictive performance, which was reported by previous

studies (14, 32, 33). Although we did not find a significant

difference between radiological model and combined model, the

combined model with AFP recognized MVI false-negative

patients predicted by the radiological model in LR-M patients

(2 (66.7%)). Therefore, we inferred that it may result from a

limited sample size. Notably, Yu et al. also reported that AFP was

considered as a suitable biomarker for MVI false-negative

patients in conventional pathological protocols (34).

The predictive model that is to be transportable into clinical

practice is the final purpose, which is the benchmark indicator

assessing its clinical power. Prior studies demonstrated that wide

resection (>1 cm), anatomical resection, and intraoperative

electron radiotherapy could improve the survival rate of HCC

patients along with MVI (35–37). Although LR-M features are
B CA

FIGURE 4

Predictive performance of the radiological model and combined model for MVI prediction in HCC patients in the test set (A–C). Receiver
operating characteristic (ROC) curves of radiological model and combined model in the test set (A). Decision curve graphics (DCA) of the
radiological model and combined model in the test set (B). Calibration curve graphics of predicted risk based on the radiological model and
combined model in the test set (C).
TABLE 2 Predictive performance of models for MVI identification in the test set.

AUC Sensitivity Specificity PPV NPV Accuracy

Whole test set

Radiological model 0.775 0.61 0.79 0.67 0.74 0.714

Combined model 0.778 0.65 0.79 0.68 0.76 0.732

LR-4/5 group

Radiological model 0.782 0.57 0.85 0.67 0.79 0.750

Combined model 0.760 0.50 0.85 0.64 0.76 0.725

LR-M group

Radiological model 0.643 0.67 0.57 0.67 0.57 0.625

Combined model 0.762 0.89 0.57 0.73 0.80 0.750
fro
MVI, microvascular invasion; AUC, area under the curve; PPV, positive predictive value, NPV, negative predictive value.
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not typical features of HCC, HCC with LR-M features have been

found to have a significant association with poor prognosis and

aggressive behavior (38, 39). To prioritize the allocation of MVI

risk probability in LR-M category patients, we defined the 95%

specificity threshold in the training set. In the LR-M subgroup,

the high specificity threshold could get a specificity of 100% and

a PPV of 100%, which may contribute to those high risk for MVI

for further treatment. The high-sensitivity threshold could yield

an NPV of 100% in the LR-4/5 subgroup. The low-risk patients

could avoid biopsy and be considered as the potentially eligible

patients for liver transplant.

Regarding LI-RADS features, we selected corona

enhancement and major features. Corona enhancement is an

LI-RADS ancillary feature for MVI prediction in HCC, which is

consistent with previous findings of enhanced MRI (12, 14).

Prior studies showed that the reduction in portal flow caused by

microscopic tumor thrombin blocking tiny portal vein branches

around the tumor caused compensatory hyperperfusion in the
Frontiers in Oncology 08
AP, which led to corona enhancement (40, 41). Some radiomics

studies about MVI prediction focus on the value of the

peritumoral area (21, 42). Corona enhancement was

the highest accuracy feature which indicates the importance of

the peritumoral area. Major LI-RADS features included the

enhancing capsule and non-rim enhancement in AP and

tumor size in our model. The enhancing capsule and

enhancement pattern have remained controversial currently.

Some studies suggested that the radiological capsule (22, 23,

43, 44) was a predictor of MVI presence. However, a meta-

analysis about enhanced MRI features revealed that the

enhancing capsule was not a predictor of MVI (12). Our study

was consistent with Xu et al. (22), who obtained a capsule with

high sensitivity and low accuracy of MVI prediction, similar to

non-rim enhancement in the arterial phase. Wei et al. also

reported a typical enhancement pattern which was an

independent factor of MVI presence. However, Zhou et al. and

Hong et al. showed that rim enhancement in AP or LR-M
FIGURE 6

Feature predictive performance for predicting MVI in the test set. AP, arterial phase; PPV, positive predictive value; NPV, negative predictive value.
B CA

FIGURE 5

Charts exhibit performance metrics of the combined model in the (A) whole test set, (B) LR-4/5 subgroup, and (C) LR-M subgroup. PPV, positive
predictive value; NPV, negative predictive value. Ninety-five percent sensitivity threshold and high specificity threshold of combined model were
0.27026 and 0.6954, respectively.
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features was a marker for MVI prediction (12, 32). Thus, those

two features need more external data to assess their power of

MVI identification. In addition, we also discovered a link

between tumor size and MVI. The presence of MVI was also

associated with bigger tumor size (>5 cm) according to enhanced

MRI (DOR: 5.2 (3.0–9.0) by pooled analysis of inconsistent data

(12). Large tumor size was also shown in prior research to be a

reliable indicator of MVI based on pathologic results (45, 46),

and it was also thought to be a predictor of a poor prognosis (46).

A further predictor of vasculature enclosing tumor cluster

(VETC) style in HCC was larger tumor size (>5 cm) (47, 48).

VETC, a potent pathological style that affects prognosis, was

linked to MVI’s frequent existence (48).

We found two non-LIRADS characteristics including

internal arteries and a non-smooth margin. Internal arteries

were revealed to be the feature with the high sensitivity in our

study. Internal arteries predicted on enhanced MRI could be a

separate determinant of MVI, according to Jiang et al. (14).

Macrotrabecular massive hepatocellular carcinoma, which is

regarded as an aggressive form of HCC and commonly has

MVI and a poor prognosis, was associated with internal arteries

(49–51). Studies also show that internal arteries may serve as a

radiogenomic marker for cell growth and matrix penetration

(52). The non-smooth margin exhibited a significant

relationship with MVI, along with the highest NPV among

predictors in our study. The outcome is the same as enhanced

MRI (14). Research has shown that tumors with a non-smooth

margin were mainly presented in three types of tumors: single

nodular type with extranodular growth, confluent multinodular

type, and invasive type, which displayed high prevalence of MVI

(53). They have suggested that anatomic resection should be

employed to reduce the recurrence.

In addition, our study did not find nodule-in-nodule

architecture related to MVI, which is different to previous

enhanced MRI research (16). The proportion of patients with

nodule-in-nodule architecture presented an obvious difference

(our study: 1 (0.4%) patients vs. Wei et al.: 49 (44.1%) patients),

which may affect the result (16). Similarly, the different ratios of

patients with multifocality tumor between our study and Jiang

et al.’s study may lead to inconsistent results of MVI prediction

(our study: 13 (4.7%) patients vs. 125 (39%) patients) (12).

Our study has some limitations. Firstly, it was a retrospective

study whose bias may inevitably exist. Future studies could

perform a multicenter prospective study to validate our results.

Secondly, our study included mainly HBV-related patients,

which may be limitedly applied in patients by other etiologies.

More studies are required to explore the application of the

model. Thirdly, a gender difference was found between MVI-

positive patients and MVI-negative patients in the training set

and test set. However, gender did not drive the outcome that no
Frontiers in Oncology 09
difference exists between correctly and incorrectly predicted

MVI patients. Fourth, we did not compare the performance of

enhanced CT-based versus enhanced MRI-based LI-RADS

features about MVI identification head by head, and further

study on the comparison is required in the future. Finally, our

research presented no significantly different accuracy and AUC

between the radiological model and combined model. More

studies with larger samples should be further conducted.

In conclusion, a combination of four LI-RADS features (tree

major features, corona enhancement) and two non-LI-RADS

features (internal arteries, non-smooth margin) and AFP could

be applied as preoperative biomarkers for predicting MVI

through a machine learning approach. Furthermore, its good

performance in the subgroup by the LI-RADS category may help

optimize the management of HCC patients.
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Histological subtypes of hepatocellular carcinoma are related to gene mutations
and molecular tumour classification. J Hepatol (2017) 67:727–38. doi: 10.1016/
j.jhep.2017.05.014

52. Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, Chen X, et al. Decoding global
gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol
(2007) 25:675–80. doi: 10.1038/nbt1306

53. Ueno S, Kubo F, Sakoda M, Hiwatashi K, Tateno T, Mataki Y, et al. Efficacy
of anatomic resection vs nonanatomic resection for small nodular hepatocellular
carcinoma based on gross classification. J Hepato-biliary-pancreatic Surg (2008)
15:493–500. doi: 10.1007/s00534-007-1312-8
frontiersin.org

https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1007/s00330-021-08250-9
https://doi.org/10.1007/s00330-021-08250-9
https://doi.org/10.1200/jco.2015.65.5654
https://doi.org/10.2214/AJR.20.23255
https://doi.org/10.3389/fonc.2022.852809
https://doi.org/10.1016/j.jhep.2016.10.038
https://doi.org/10.3389/fonc.2021.699290
https://doi.org/10.1007/s00330-022-08927-9
https://doi.org/10.1007/s12072-022-10307-w
https://doi.org/10.1111/ans.15396
https://doi.org/10.1007/s12072-021-10174-x
https://doi.org/10.1007/s12072-021-10174-x
https://doi.org/10.3389/fonc.2022.773301
https://doi.org/10.1007/s00330-018-5605-x
https://doi.org/10.1148/radiol.2018181290
https://doi.org/10.1148/radiol.14132362
https://doi.org/10.1148/radiol.14132362
https://doi.org/10.1007/s00261-011-9685-1
https://doi.org/10.3390/cancers14071816
https://doi.org/10.1016/j.ejrad.2016.12.030
https://doi.org/10.1002/jmri.27575
https://doi.org/10.1002/jmri.27575
https://doi.org/10.31557/apjcp.2018.19.12.3435
https://doi.org/10.1002/lt.20472
https://doi.org/10.1016/j.jhep.2015.10.029
https://doi.org/10.1002/hep.30814
https://doi.org/10.1016/j.jhep.2020.08.013
https://doi.org/10.1016/j.jhep.2020.08.013
https://doi.org/10.1101/cshperspect.a027094
https://doi.org/10.1101/cshperspect.a027094
https://doi.org/10.1016/j.jhep.2017.05.014
https://doi.org/10.1016/j.jhep.2017.05.014
https://doi.org/10.1038/nbt1306
https://doi.org/10.1007/s00534-007-1312-8
https://doi.org/10.3389/fonc.2022.1021570
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Predictive machine learning model for microvascular invasion identification in hepatocellular carcinoma based on the LI-RADS system
	1 Introduction
	2 Materials and methods
	2.1 Patient selection
	2.2 Imaging protocol
	2.3 Features
	2.3.1 Imaging features
	2.3.2 Clinical features

	2.4 Statistical analysis
	2.4.1 Feature preprocessing and selection
	2.4.2 Training and evaluation processes of the predictive model for MVI


	3 Results
	3.1 Patients’ characteristics
	3.2 Feature selection
	3.3 Development and validation of MVI prediction models

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


