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A prognostic signature model
for unveiling tumor progression
in lung adenocarcinoma
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A more accurate prognosis is important for clinical treatment of lung

adenocarcinoma. However, due to the limitation of sample and technical

bias, most prognostic signatures lacked reproducibility, and few were applied

to clinical practice. In addition, understanding the molecular driving

mechanism is indispensable for developing more promising therapies for

lung adenocarcinoma. Here, we built an unbiased prognostic significance

model to perform an integrative analysis, including differentially expressed

genes and clinical data with lung adenocarcinoma patients from TCGA.

Multivariable Cox proportional hazards model with the Lasso penalty and 10-

fold cross-validate were used to identify the best gene signature. We generated

a 17-gene signature for prognostic risk prediction based on the overall survival

time of lung adenocarcinoma patients. To further test the model’s predictive

ability, we have applied an independent GEO database to verify the predictive

ability of prognostic signature. The model can more objectively describe

several biological processes related to tumors and reveal important

molecular mechanisms in tumor development by GO and KEGG analysis.

Furthermore, differential expression analysis by GSEA revealed that tumor

microenvironments such as ER stress , exosome, and immune

microenvironment were enriched. Using single-cell RNA sequence

technology, we found that risk score was positively correlated with lung

adenocarcinoma marker genes and copy number variation but negatively

correlated with lung epithelial marker genes. High-risk cell populations with

the model had stronger cancer stemness and tumor-related pathway

activation. As we expected, the risk score was in accordance with the

malignancy of each cluster from tumor progression. In conclusion, the

risking model established in this study is more reliable than others in

evaluating the prognosis of LUAD patients.
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Introduction

Lung adenocarcinoma (LUAD) is the most common subtype

of lung cancer and a significant cause of cancer-related death

worldwide (1, 2). Most LUAD patients are diagnosed in

advanced or metastatic stages, which is the primary cause of

mortality in lung cancer (3). However, LUAD patients’

prognosis is far from satisfying, and its associated

microenvironments remain poorly understood (1). Even stage

I lung cancer has a poor prognosis with 5-year overall survival

(OS) after surgical resection (4), revealing the need for treatment

escalation, such as adjuvant therapy. Notably, LUAD is a

complex disease involving multiple pathways in pathogenesis.

Thus, an in-depth understanding of the driven molecular

mechanisms of LUAD is indispensable for developing more

promising therapies.

Investigators have continued to seek prognostic signature that

are predictive of survival benefit, as it is the basis for developing

personalized approaches to improve the survival of early-stage lung

cancer patients (5, 6). Many studies have proposed genomic

signatures for risk score and survival prediction in lung cancer

patients (7–9). However, most prognostic signatures lacked

reproducibility due to problematic issues such as limited sample

size, individual heterogeneity, and technical bias, few prognostic

signatures were applied to routine clinical practice (6). The study

built a significant prognostic model to perform an integrative

analysis including differentially expressed genes (DEGs) and

clinical data with lung adenocarcinoma patients from The Cancer

Genome Atlas (TCGA) Program. Multivariable Cox proportional

hazards model with the Lasso penalty and ten-fold cross-validation

were used to identify the best gene signatures among different gene

categories. We generated a 17-gene signature for prognostic risk

prediction based on OS time with LUAD patients.

Efforts for understanding lung cancer progression have

primarily focused on the profiling of cancer cells with genetic

aberrations (10, 11). However, progression also can be

influenced by complex and dynamic features from the tumor

surroundings (12). For learning more about tumor progression,

genetically engineered mice (GEM) with somatic mutation of

Kras-G12D with or without TP53 deletion in alveolar type 2 cells

(termed ‘K’ mice and ‘KP’ mice) can spontaneously suffer lung

adenoma (13, 14), and the adenoma in ‘KP’ mice can progress

into advanced LUAD over more than 12 weeks (15–17). This

technique can control the tumor progress with increased

accuracy. Single-cell RNA sequence (scRNA-seq) can offer

more details about tumor, while bulk RNA sequence can only

offer an overview description. Additionally, it can be a powerful

tool to characterize each cell in a tumor, which could help us

understand more about tumor characteristics (18–20). To

validate the survival, scRNA-seq and GEM were used to

identify more details regarding tumor progression through the

prognostic signature.
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Material and methods

Data collection

RNA sequence and clinical data with lung adenocarcinoma

patients from TCGA were downloaded and prepared using the R

‘TCGAbiolinks’ package (21). The gene expression profiles

include 520 primary tumor samples, which could correspond

with clinical data and 59 normal tissue. Gene expression

omnibus (GEO) database including GSE43458 (110 samples),

GSE10072 (107 samples), GSE32863 (116 samples), GSE31210

(246 samples) and GSE50081 (181 samples) were downloaded

by ‘GEOquery’ R package (22). Probs in GSE43458 (110

samples), GSE10072 (107 samples) and GSE32863 (116

samples) were annotated by ‘hgu133a.db’ and ‘annotate’ R

packages; Probs in GSE31210 and GSE50081 were annotated

by ‘hgu133plus2.db’ and ‘annotate’ R package (23). When a gene

was mapped to different probes, the genic expression value was

calculated by the average expression value. Furthermore, gene

expression data from the GEO (https://www.ncbi.nlm.nih.gov/

geo/) and GDC databases (https://cancergenome.nih.gov/) were

z-score transformed for survival analysis. The clinical features of

the TCGA and GEO patients is shown in Table S1 and Table S2.
Construction prognostic signature

The ‘limma’ R package performed differential expression

analysis on primary tumor and normal tissues (24). P-values and

fold changes were controlled for false discovery rate (FDR< 0.05

and |logFC| > 0.5). The ‘survival’ R package performed

univariate Cox analyses of OS to identify the prognostic

signature (25). The “Coxph” function was used to build a

Univariate Cox model and calculate the p-value and C-index

(consistency index). In addition, the “Cox.zph” function was

used to test the proportional hazards assumption for a Cox

regression model fit. (p< 0.05 and C-index > 0.58 and p-value of

Proportional Hazards Assumption larger than 0.4).

Multivariable Cox regression analysis was performed to

analyze the overall probability of survival. Lasso regression was

performed by the ‘glmnet’ R package to reduce the number of

genes, and a 10-fold cross-validation was performed to set

proper lambda, and finally, 17 genes were left (26).

RiskScore = o
i∈RiskGenes

wi ∗mRNAi

w represents the Lasso coefficient index of risk genes, mRNA

represent gene expression, and the gene expression level of each

gene, respectively.

The differential between high risk (HR > 1) and low risk

(LR< 1) was confirmed by Kaplan-Meier method (log-rank test).

The ‘timeROC’ R package performed a receiver operating
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characteristic curve (ROC) analysis to assess the predictive

efficiency of the prognostic signature (27). C-index was used

to evaluate the model’s predictive ability. Multivariable Cox

regression was used to integrate different predictive factors

(upper and lower limits of 95% confidence interval). The GEO

database, including GSE31210 and GSE50081, validated the

model. C20orf197 in GSE31210 and GSE50081 is missing, and

the expression of C20orf197 in two databases was assigned 0.
Function and enrichment analysis

Endoplasmic reticulum (ER) stress-related genes were

collected from ‘Msigdb’ (28), and exosome-related genes were

collected from ExoCarta (29, 30). The ‘GSVA’ R package was

applied to perform a single-sample gene set enrichment analysis

(ssGSEA) to quantify the ssGSEA score of immune signatures

and endoplasmic reticulum stress and exosome-related genes

(31). Differential genes in LUAD samples ad. pavlue< 0.05 and

logFC > 0.5 or logFC< -0.5. Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analyses were performed by the ‘clusterProfiler’ R package.

Gene sets were collected from ‘Msigdb’ based on the DEGs,

which was done by the ‘limma’ R package between high-risk and

low-risk groups (28, 32). To estimate the activation of hallmark

pathways, the GSEA analysis was applied with standard settings

(32). To analyze the tumor immune microenvironment of the

LUAD samples, the ‘GSVA’ R package was used to perform

ssGSEA to quantify the ssGSEA score of 29 immune cell-related

gene sets (33, 34). The Wilcox test tested the differential

expression analysis of immune-related signatures, and the

correlation between risk score and immune signatures was

performed by Spearman correlation analysis. Differentially

expressed genes about immune signatures were done by

‘limma’ R package (P.Value< 0.005). The same methods are

performed in ER stress and exosome analysis.
Single-cell analysis

Single-cell RNA sequence data (after depth normalization)

was downloaded from GEO database (GSE154989). Seurat

v4.0.4 was used for single-cell analysis (35–38). The count for

the genes in each cell was log normalized, and the ScaleData

function was used for scaling. SCTransform function was used

for correcting different animals and plates, and the top 40

principal components were used to construct the SNN graph

and embedding. FindClusters function was used for clustering

cells at 0.5 resolution. AUCell v1.15.0 was used for scoring the

ER stress and exosome gene sets in scRNA-seq (39). InferCNV

v1.9.1 was used for the copy number variation (CNV)

assignment with default parameters (40). Raw CNV score for

each cell was collected from ‘infercnv.observations.txt’ file and
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transformed into 3-level scoring (0.7~1.3 assign 0; 0~0.3 or

larger than 1.5 assigns 2; 0.3 ~ 0.7 or 1.3~1.5 assigns 1). Cluster

11, the earliest cell type T, was considered as the control and had

no CNV. The CNV score for each cell was the sum of every

gene’s CNV Score.

For estimating the trajectory of scRNA-seq, Monocle v2.21.1

was used to estimate and order cells in pseudotime along a

trajectory (41). Several ablation experiments were done to select

proper genes to estimate pseudotime. High variable genes

calculated by Monocle and stemness genes collected from

‘Msigdb’ were used to estimate pseudotime. Cluster 11, which

appeared in the early stage of LUAD, was set to the original point

of pseudotime. Monocle V2 was used to obtain highly variable

genes, DDRtree was used to establish the minimum spanning

tree after dimensionality reduction.
Statistical analysis

Multivariable and univariate Cox regression were used to

analyze the probability of OS, and KM method was used to test

the difference between high-risk and low-risk patients. Chi-squared

test tested differences between risk scores and clinical information.

ER stress scores, exosome scores, and immune signatures between

the two groups were examined using Wilcox test and Spearman

correlation analysis. Statistical analyses were performed using R

v.4.1.1. The detailed analysis methods in the website (https://github.

com/ZengTaox/xlw/blob/main/upload.R).
Results

DEGs identification and construction of a
prognostic model in TCGA cohort

Five hundred ninety-two LUAD and adjacent non-tumorous

samples from the TCGA database were included in DEGs and

prognostic genes for OS. Meanwhile, 520 LUAD samples from the

TCGA database and 427 patients from two GEO cohorts were

incorporated into the following study about prognostic model.

Firstly, compared tumor and adjacent non-tumorous tissues

from TCGA and get DEGs. Secondly, we use univariate Cox

regression analysis in tumor tissue from TCGA to get prognostic

genes (p< 0.05), 90 of 205 prognostic genes were DEGs (Figures 1A,

B). To further construct a risk scoring model for predicting

possibility of OS in LUAD patients, LASSO Cox regression was

used to build a prognostic model, which included PLEK2, PTPRH,

OGFRP1, CHRNA5, CBFA2T3, SMIM15, AVEN, MELTF, KRT8,

RGS20, FAM207A, SOWAHC, ELF5, LSP1P4, C20orf197, C11orf16

and DNALI1 (Figure 1C). The univariate Cox regression analysis

suggests that these genes can be used as prognostic genes

(Figure 1D), and can also be used to distinguish tumor from

adjacent tissues. In addition, we evaluated three extra GEO
frontiersin.org
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cohorts (Figures 1F–H), the prognostic genes in the above GEO

databases are consistent with TCGA databases (Figure 1E).
Predictive performance and prognostic
value of the model

For predictive performance of the 17-gene prognostic model

in TCGA cohort, the area under the curve (AUC) in the time-
Frontiers in Oncology 04
dependent ROC analysis reached 0.69, 0.72, 0.75, and 0.78

(Figure 2A), indicating excellent specificity and sensitivity of

the risk score for predicting OS. According to the median value

of risk score, the patients were divided into high-risk and low-

risk groups. PCA analysis confirmed that patients in two groups

were stratified into two directions (Figure 2B). KM analysis

indicated that worse prognosis and significantly poorer OS were

detected in high-risk patients (two-stage test P< 0.0001, log-rank

test P< 0.001, Figure 2C). Compared with low-risk group, the
A B

D E F

G H

C

FIGURE 1

Identification of signature genes and establishment of a survival model. (A) A total of 5273 DEGs with adj. pvalue< 0.05 and logFC > 0.5 or
logFC< -0.5 were selected by limma. 205 genes related to survival were found by stationarity test and univariate Cox regression analysis. Of
these, 90 genes were associated with both survival and differential between the cancer and para-cancer groups. (B) Use volcano map to
describe the distribution of DEGs in all genes. (C) LASSO Cox regression model was used to establish a multivariable model, and 10-fold cross
validation was used to calculate the total deviation corresponding to differe nt penalty coefficients. (D) Univariate Cox regression test (C) The
influence of the gene on survival (upper and lower 95% confidence intervals, color significance). (E) Analysis of gene expression differences
between primary cancer (n = 533) and adjacent tissue (n = 59) in TCGA-LUAD. (F–H) DEGs in tumor tissue and para-cancer tissue in GEO
databases (ns was non-significant, *P< 0.05, **P< 0.01, ***P< 0.001, ****P< 0.0001).
frontiersin.org

https://doi.org/10.3389/fonc.2022.1019442
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.1019442
patients had a higher proportion of death and shorter survival

time in high-risk group (Figures 2D, E). ELF5, DNALI1,

C11orf16, CBFA2T3, and C20orf197 had higher expression

levels in low-risk group, while the other genes in the

prognostic signature had higher expression levels in high-risk

group (Figure 2F).
Frontiers in Oncology 05
To further estimate the model’s generalization performance,

we have validated the predictive ability of prognostic signatures

in the GEO database (GSE31210, Figures 2G–L; GSE50081,

Figures S1A–F). In GSE31210 cohort, the AUC was 0.72 at 1

year, 0.68 at 3 years, and 0.75 at 5 years (Figure 2G). Similar to

TCGA, the patients from GSE31210 cohort were divided into
A B

D E F

G IH

J K
L

C

FIGURE 2

Survival analysis of the model in TCGA cohort. (A) Using TCGA-LUAD primary cancer samples and corresponding clinical records (n = 520) to
calculate the AUC of time-dependent ROC curves of the risk score at 1, 3, 5 and 10 years. (B) PCA analysis was performed using the genes in
Figure 1C of the primary LUAD sample in TCGA cohort. (C) The survival rates of LUAD patients were tested to test by KM survival analysis in the
TCGA database. (D) Distribution map of different survival risks of LUAD patients in TCGA database. (E) Time distribution of LUAD patients with
different survival risks and death in TCGA database (ordinate: follow-up time, abscissa: risk ranking). (F) Gene expression trends in Figure 1C of
LUAD patients in TCGA database (top note: blue: low-risk, red: high-risk; Heat map below: Red: high expression, blue: low expression). (G-L)
Patients from the GEO cohort (GSE31210) were analyzed similarly to the above analysis in TCGA cohort.
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different directions by PCA analysis (Figure 2H). KM survival

analysis indicated that high-risk patients had a higher

proportion of death (log-rank test P< 0.0049, Figure 2I) and

shorter survival time (Figures 2J, K). The ELF5, DNALI1,

C11orf16, and CBFA2T3 genes also had higher expression

levels in the low-risk group in GSE31210 cohort (Figure 2L).

The same results are shown in GSE50081 cohort (Figures S1A–

F). These similar results show that the signature has good

generalization performance and can potentially predict

prognosis for LUAD patients.
The signature score as an independent
prognostic factor in clinical features

After controlling for confounding variables, risk score of the

signature remained statistically significant for OS. The clinical

characteristics analysis of the cohorts is summarized in Table S1

and Table S2. As shown in Figure 3A, univariate Cox survival

analysis indicated that risk score (p< 0.0001), invasion depth (T

stage, p< 0.0001), distant metastasis (M stage, p< 0.05), lymph

node metastasis (N stage, p< 0.0001) and clinical staging (TNM

stage, p< 0.0001) were significant parameters that affect the

prognosis of LUAD patients. Multivariable Cox survival analysis

revealed that risk score was independent predictors of

unfavorable prognosis in LUAD patients (p=4.33e-11

Figure 3B). Additionally, with LUAD TNM staging progress,

the risk score increased in different degrees (Figure 3C–F). These

results suggest that high-risk score might imply worse clinical

symptoms regarding invasion depth, distant metastasis, and

lymph node metastasis. By analyzing the risk score, we found

that the model had a higher C-index, indicating that the risk

score was more accurate than the traditional clinical

stage (Figure 3G).

We also found the same result in GEO database (GSE31210,

Figures 3H–J; GSE50081, Figures S1G–K), with LUAD TNM

staging progress, the risk score increased in different degrees.

These results indicate the risk scoring model, as an independent

prognostic factor in clinical features, can more accurately

evaluate prognosis of patients.
Functional enrichment analyses of the
prognostic signature

To analyze the prognostic signature, base on differential

analysis between high-risk and low-risk groups (Figure 4A),

GSEA score on 50 hallmark pathways were displayed. Notably,

we found some tumor-related pathways were activated in high-

risk patients, such as epithelial-mesenchymal transition,

mTORC1, and PI3K/Akt/mTOR pathways (TCGA, Figure 4B).

The activation of mTORC1 signaling and PI3K/Akt/mTOR

pathways promotes glucose metabolism and growth regulation
Frontiers in Oncology 06
(42). It is also worth noting that LUAD patients with epithelial-

mesenchymal transition, glycolysis, and highly proliferative state

were associated with poorer survival (43). The imbalance of

these pathways may be related to tumor progression, indicating

the poor prognosis in high-risk patients.

In TCGA and GEO cohorts (TCGA, Figure 4B; GSE31210,

Figure 4C; GSE50081, Figure 4D), E2F transcription factors and

c-Myc signal were activated in the high-risk group. The c-Myc

signal regulates differentiation and proliferation through

activated transcription and amplification of target genes in

various tumors (44). In addition to mediating the cell cycle,

E2F transcription factors play critical roles in tumor

development and metastasis, including angiogenesis,

extracellular matrix remodeling, tumor cell survival, and

epithelial-mesenchymal transition (44, 45). With the activation

of hypoxia-related pathways in high-risk group, unfolded

protein responses are markedly activated (Figures 4B–D), and

tumor cells may produce tumor-specific exosomes. Increased

unfolded protein responses in high-risk group may contribute to

ER stress. These factors jointly promote tumor proliferation,

drug resistance, metastasis, and invasion and might even cause

an immunosuppressive microenvironment (46).

Furthermore, “clusterProfiler” R package was used to

conduct GO and KEGG enrichment analyses between high-

risk and low-risk groups in TCGA and GEO cohorts (Figures 4E,

F). Interestingly, KEGG pathway analysis indicated that the

signature was associated with P53 signaling pathway, immune

response, DNA replication, extracellular matrix remodeling

(ECM)-receptor interaction, and glycolysis (Figure 4E).

Similarly, the overlapped GO functional pathways between the

three cohorts were predominantly enriched in tumor

microenvironments associated with multivesicular bodies,

mitotic activity, immune response, ECM, focal adhesion, and

others (Figure 4F). These results imply that there might be

differences in ER stress, exosome pathway, immune response,

ECM, cell cycle, and proliferation between high-risk and low-

risk groups.
Analyze tumor microenvironment and
validation differences biological process

To further explore the differences in survival, we compared

the effects of immune response, exosome pathway, and ER stress

between two groups. It was observed that high-risk patients were

associated with significantly higher ER stress scores (TCGA,

Figure 5A; GEO, Figure S2). We also found that high-risk scores

were related to some ER stress pathways (Figure 5A). Boxplots

depicting ER stress-related ssGSEA scores showed that patients

in high-risk group had higher scores than those in low-risk

group (Figure 5B). To explore more detail about ER stress, a

heatmap of ER stress-related genes was utilized to confirm the

difference in both groups (Figure 5C). Tbl2, which is positively
frontiersin.org
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correlated with risk score, can cause ER stress through PERK-

eIF2a-ATF4 axis (47) (Figures 5C, S2B). We also found that

erlin1 and EIF4EBP1 were positively correlated with risk scores

(Figure 5C). ATF4-mediated induction of erlin1 and EIF4EBP1

contributes to ER stress (48). As ER stress indicator, highly

expressed erlin1 indicates the increased ER stress in high-risk

group (49) (Figure S2C). Therefore, ER stress is significantly

involved in high-risk patients.

Meanwhile, we also found significant differences in exosome

pathways. Compared with low-risk group, high-risk patients had
Frontiers in Oncology 07
higher exosome-related ssGSEA scores in TCGA (Figure 5D,

additional data in GEO database, Figure S3). Cancer-derived

exosome are implicated in various carcinogenesis processes,

including malignant transformation, angiogenesis ,

immunosuppression, invasion, and treatment resistance (50,

51). There is also a significant correlation between exosome-

related ssGSEA score and risk score in TCGA database

(Figure 5E). Exosome-related genes also demonstrated

different expression levels between two groups (Figure 5F). As

a scaffold protein of exosomes, PTGFRN is positively correlated
A

B

D

E F G

IH J

C

FIGURE 3

Prognostic values of the model in TCGA and GEO cohorts. (A) The TCGA-LUAD primary cancer samples, corresponding clinical records and
corresponding risk score (n = 520) were used for univariate Cox regression. (B) Perform multivariable Cox regression on the significant factors in
univariate Cox regression. (C–F) TCGA-LUAD samples with different tumor traditional clinical stage (TNM stage, M stage, N stage, T stage) and
their corresponding risk scores. (G) Consistency index of TCGA-LUAD primary cancer samples, corresponding clinical records and
corresponding risk score (n = 520) calculated by univariate Cox regression. (H) Using univariate Cox regression (above) in the GSE31210 cohort
(n = 246), the significant factors in univariate Cox regression are performed in multivariable Cox regression (below). (I) samples with different
TNM stages in GSE31210 cohort and their corresponding risk scores. (J) The consistency index of primary cancer samples, corresponding
clinical records and corresponding risk scores in GSE31210 cohort was calculated by univariate Cox regression. (“ns” is non-significant, *P< 0.05,
**P< 0.01, ***P< 0.001, ****P< 0.0001).
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with risk score (Figures 5F, S3B) (52). In addition, we found that

ALDOA, ENO1, YWHAG and SLC3A2 were positively correlated

with risk scores (Figures 5F, S3C–F). Previous studies have

shown that SLC3A2 has a higher level in lung cancer (53).

Besides being the marker of exosomes, ALDOA, ENO1 and

YWHAG can promote metastasis, invasion, activation and

proliferation of lung cancer (54–56).

In addition, low-risk patients were correlated with

significantly higher immune scores in TCGA cohort

(Figure 5G). Immune cells, as shown in Figure 5H, were found

to be significantly difference between high-risk and low-risk
Frontiers in Oncology 08
patients in TCGA database. By immune signatures, we

discovered that low-risk patients had higher immune

infiltration than high-risk patients. Assessment of immune-

related gene expression profiles, the characteristic immune-

related genes such as FADD were selected based on their

expression patterns between LUAD and the adjacent non-

tumorous samples in TCGA database. Then, we compared the

expressions of those selected immune-related genes between

LUAD patients with high and low risk score, it suggested that

immune infiltration plays a vital role in prognosis in LUAD

patients (Figure 5I).
A B

D

E

F

C

FIGURE 4

Functional enrichment analysis for prognosis signature. (A) volcano diagram show DEGs between high-risk and low-risk groups in TCGA-LUAD
primary cancer samples. (B) GSEA enrichment analysis was performed using DEGs between high-risk and low-risk groups in TCGA cohort (30/
50 genes were significant). (C) GSEA enrichment analysis was performed on the DEGs between high-risk and low-risk groups in the GSE31210
cohort (26/50 gene sets were significant). (D) 29/50 significant gene sets were obtained by GSEA enrichment analysis using DEGs between
high-risk and low-risk groups in GSE50081 cohort (adj. pvalue< 0.05, color indicates the size of standardized enrichment score). (E) Based on
LUAD samples in TCGA, GSE31210 and GSE50081 cohorts, the DEGs between high-risk and low-risk groups were analyzed for enrichment.
Gene sets in KEGG database(E) and GO database(F) were used for enrichment analysis (FDR< 0.01; Color and dot size indicate enrichment
significance).
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The prognostic signature can identify the
degree of malignancy

Moreover, we found that mutation frequencies of genes with

cancer development, such as TP53, significantly differed between
Frontiers in Oncology 09
high-risk and low-risk groups (Figure S5A). Compared to TP53,

where mutations are randomly distributed, the distribution of

KRAS is relatively focused on KRAS-G12 locus mutations

(called hotspot, Figure S5B). The combined distribution of

TP53 and KRAS-G12 mutation showed that most significant
A B
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FIGURE 5

Bioprocess analysis base on prognosis signature. (A) Correlation diagram between risk score and ER stress-related gene set score (ssGSEA) in
primary LUAD sample from TCGA cohort (n = 520). (B) Analyze ER stress-related gene set scores (ssGSEA) differences between high-risk and
low-risk of primary LUAD samples in TCGA cohort. (C) Heat map of ER stress-related genes expression in LUAD patients from TCGA database.
(D–F) The correlation between risk score and exosome associated score were analyzed similarly to the above ER stress pathway in TCGA
cohort. (G–I) The correlation between risk score and different immune cell infiltration were analyzed similarly to the above ER stress pathway in
TCGA cohort (the color block on the left represents different types of immune cells, the position indicates the magnitude of correlation
coefficient, “ns” was non-significant, *P< 0.05, **P< 0.01, ***P< 0.001, ****P< 0.0001).
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difference between high-risk and low-risk groups (Figure S5C).

In addition, 10 genes of the prognostic signature may have TP53

binding sites in their untranslated regions (UTR, upstream and

downstream 1 kb of a gene), indicating that TP53 mutations

might directly affect transcription of these genes (Figure S5D).
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Therefore, GEM with Kras-G12D with or without TP53 deletion

were utilized to evaluate the LUAD prognostic signature.

Three thousand eight hundred ninety-one high-quality, full-

length single-cell transcriptomes from 39 KrasG12D/+Trp53-

mutation mice, at 8 distinct LUAD evolution stages starting with
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C

FIGURE 6

Different cell clusters identification and annotation in LUAD scRNA-seq data. (A) Seurat V4 was used to cluster and classify single cells, and t-
SNE dimensional-reduction scatter diagram of sequencing data. (B) Sequencing data UMAP dimensional-reduction point scatter diagram. (C)
Expression levels of genes associated with lung cancer development in different clusters. (D) The distribution of risk scores calculated by the
prognostic signature in different cell clusters (“ns” is non-significant compared with cluster 11, *P< 0.05, **P< 0.01, ***P< 0.001, ****P< 0.0001).
(E) genes associated with risk score (P.value< 10-25, the genes marked on the right are the 10 genes with the strongest correlation). (F)
Distribution of CNV in UMAP dimensionality reduction map. (G) Genes associated with risk scores in scRNA-seq data. (H) InferCNV was used to
predict the CNV of cells, and heat maps of the distribution of CNV of different chromatin of different cells. (I) Average CNV score and risk score
points from different clusters are scattered figure.
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normal alveolar type 2 cells (AT2) and ending with fully formed

LUAD, were downloaded from GSE154989. Additionally, Seurat

V4 was used for clustering cells (57) (Figures 6A, B). Stemness-

related genes (Tight, Runx2, and NKX2-1) revealed that cells in

cluster 1, 9, and 12 have high stemness (Figures 6C, S6A–C).

After calculate risk score of different clusters (Figure 6D), we

found cluster 1, 9, and 12 had higher risk scores, which was

consistent with stemness-related genes in different clusters.

Furthermore, the correlation between risk score and tumor

progression is positive (Figures S6C–F).

However, we found that cluster 3, 8, and 10 also had higher

risk scores than others (Figures 6D, S6G–J). Therefore, feature

genes were identified to evaluate the model. Cluster 3 has a

higher Vcan and Dcpp1, which involve cell adhesion,

proliferation, migration, and angiogenesis, and plays a central

role in tissue morphogenesis and maintenance (58, 59). Cluster

10 has a higher level of Ccnb1 and Top2a, which related to cell

cycle and cell proliferation (60, 61). Cluster 8 has a higher level of

Rn7sk, which was associated with Gastric Cancer (62) (Figure

S6A). Fhl2, Plek2, and other cancer-related genes have a higher

correlation coefficient with risk score (63–65) (Figure 6E). CNV

was estimated using scRNA-seq data (Figure 6F) in contrast to

cluster 11, as cluster 11 only appeared in the early stage of tumor

progression (Figures S6B, C). Each cluster’s average risk score is

associated with the average CNV score; for instance, malignant

cells usually have serious CNV (Figures 6G–I). On the other

hand, we found that CNV was higher in KP mice after 12 weeks

(Figures S6K–M). It shows that the intracellular CNV

accumulates with tumor progression, and tumor with higher

CNV indicates a higher degree of malignancy, consistent with

these results described through the risk score. Therefore, cells

with higher risk scores have higher CNV and a higher degree

of malignancy.
Validated the biological process of
prognostic model by scRNA-seq

To proving the detai l s of r isk score in tumor

microenvironment, AUCell calculated the score in ER stress

and exosome-related gene sets by scRNA-seq data. As expected,

ER stress scores (Figure 7A) and exosome scores (Figure 7B)

were higher in cluster 1, 9, and 12, which have higher risk scores.

There is also a high consistency between exosome score and risk

score (Figure 7C), correlating with our earlier findings.

Functional enrichment was performed in different clusters

with hallmark gene sets to evaluate each cell’s biological process

(Figure 7D). Cluster 10 has a higher activation of E2F targets and

G2M checkpoint, leading to higher risk scores. Cluster 1, 8, 9, 10,

and 12 have a higher level of PI3K-AKT-mTOR, which could

lead to increased risk scores. Interestingly, cluster 11, which only

appeared in the early stage of tumor progression, had higher risk

scores than cluster 2, 5, and 6. It suggests that immune response
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in the early stage of LUAD could promote tumor progression

(66) (Figure 7D). Cluster 8 and cluster 12, which have high-risk

scores and mostly appeared in the middle stages of LUAD (12w

and 18w, Figures S6C–F), showed more cellular response (such

as IL2, IL6), and the abilities were lost with tumor progression,

which could be related to the tumor progression (Figure 7D).
Tumor progression can be described by
risk score

To explore the relationship between risk score and tumor

progression, LUADmarker genes and lung epithelial marker genes

were calculated (as “bioscore”) through UMAP to visualize tumor

progression and compared with risk scores (Figure S7A).We found

that LUAD-related markers were concentrated in high-risk regions,

while more lung epithelial marker genes were concentrated in low-

risk regions. The scRNA-seq data of different genotypes and

experimental time were calculated using dimensionality reduction

by UMAP. It was found that high-risk cells were concentrated in

the region of KRAS and Trp53 mutations and mainly distributed in

the late stage of the experiment. Meanwhile, cluster 1, 8, 9, and 12

were primarily distributed in the high-risk region. According to the

pseudotime of Monocle V3, the region is also the accumulation of

advanced LUAD cells (Figure S7B).

Furthermore, we found that risk score was positively

correlated with most LUAD marker genes and negatively

correlated with lung epithelial marker genes (Figure S7C).

These results indicate that risk score can describe the

development process of lung epithelial to LUAD cells.

For more details of tumor progression, high variable genes

characterized by monocle V2 were used for estimating

pseudotime. Cluster 11, which appeared in the early stage of

LUAD, was set to the initial point of pseudotime (Figure 8A1).

The minimum spanning tree, “Stemness” related genes

downloaded from ‘Msigdb’, can also estimate pseudotime

correctly (Figure 8A2). With tumor progression, malignant cells

with strong stemness appear in LUAD, which have the potential

for multi-directional differentiation, leading to intratumoral

heterogeneity (67, 68). Therefore, LUAD progression should be

considered in stemness levels by “Stemness” related genes (Figures

S9, S10B). Igfbp5, Ros1 (54–56), and other genes related to tumor

progression profoundly correlate with pseudotime (Figure 8B–D),

meaning the minimum spanning tree and pseudotime can

describe tumor progression in more detail. With the increase of

pseudotime, the malignant degree of tumor and the proportion of

high-risk cells also increased, indicating that the risk score model

can reflect more advanced tumor progression (Figure 8A3).

Notably, seven states have been classified by a minimum

spanning tree (Figure 8A4). Previously, we found that cluster 1,

cluster 8, cluster 9, and cluster 12 have higher risk scores.

According to the clusters, states 6 and 7, located under branch

1, also have high-risk scores (Figures 8E–G and S8A).
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More pseudotime-related genes and branch-related genes were

recognized (Figures 8B, S8C–E). Pseudotime related genes Msln

and Slc4a11 can promote tumor progression (69, 70). Additionally,

branch-related genes Sftpc and Lyz2, known as AT2 markers (19,

57), are shown as typical examples (Figures 8H–K, S10A). The

genes can reflect tumor malignant degree and further describe the

similarity and branching relationship in tumor clusters. So, we can

infer that the AT2 cell features were missing with the cancer

progress, accompanied by increased LUAD features (Figure S7). As

we expect, the mean pseudotime and risk score of different states

have a severe positive correlation. Interestingly, the mean

expression of pseudotime-related genes and branch-related genes

is used to clearly different states more clearly, showing some key

points during tumor progression. Furthermore, a risk score can

help us estimate the malignant of each state.

Discussion

LUAD is a complex disease in which multiple pathways are

involved in pathogenesis. Exploring a novel accurately
Frontiers in Oncology 12
prognostic biomarkers would help select patients for adjuvant

chemotherapy and improve prognosis in early-stage lung cancer.

We build a prognostic model in TCGA cohort by LASSO

regression, which has excellent specificity and sensitivity for

predicting OS. To identify whether risk score as an independent

predictor of survival time, univariate and multivariable cox

proportional hazards regression was analyzed in LUAD

patients. After controlling for confounding variables (including

age, gender, invasion depth, distant metastasis, lymph node

metastasis, and TNM stage), the model remained statistically

significant for OS. The model can be an independent factor with

better predictive potential than the pathological stage alone.

Several factors have been proved to be related to tumor

progression; however, only hypoxia and glycolysis were highly

associated with LUAD prognosis (71, 72). Here, we found risk

score was related to several biological processes like epithelial-

mesenchymal transition, ECM, glycolysis, and proliferation, which

were involved in tumor progression. The prognostic model could

reveal the critical elements involved in tumor microenvironments.

More details about ER stress, exosome, and immune response,
A D

CB

FIGURE 7

Functional enrichment of scRNA-seq base on the prognosis signature. (A) Enrichment analysis of ER stress-related gene sets was conducted by
AUCell software. (B) Enrichment analysis of exosome related gene sets was conducted by AUCell software. (C) Use the prognostic signature to
calculate the risk score of cells. (D) Enrichment analysis of tumor-associated Helmark gene sets was performed using AUCell.
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FIGURE 8

Cell trajectory and pseudotime analysis of LUAD by scRNA-seq. (A1) Distribution of pseudo-time values of different cells in the minimum
spanning tree. (A2) The distribution of BHATTACHARYA_EMBRYONIC_STEM_CELL score in the minimum spanning tree. (A3) Distribution of risk
rating in the minimum spanning tree. (A4) Distribution of different cell states in the minimum spanning tree. (B) Genes related to pseudo-time
series, the genes marked on the right are the 10 genes with the strongest correlation. (C, D) Distribution and correlation of pseudo-time related
genes and branching related genes. (E) The relationship between cell states and clusters in different pseudo-time series, the number represents
the number of cells in the corresponding state. (F) Cell risk values corresponding to different quasi-sequential states. (G) Ratio of cell risk states
corresponding to different pseudo temporal states (above: the top number represents the significance of binomial distribution test; below: the
ratio of high-risk cells to low risk cells in each state). (H) Scatter plot of Msln expression mean and risk mean of cells in different states. (I)
Scatter plot of Slc4a11 expression and risk score of cells in different states. (J) Scatter plot of Sftpc expression and risk score of cells in different
states. (K) Scatter plot of Lyz2 expression average and risk average of cells in different states.
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which play essential roles in tumor progression, were researched,

and we found that risk score relates to these biological phenomena.

The prognostic differences between high and low-risk groups could

be explained by the critical elements involved in tumor

microenvironments (71, 72). Recently, cancer-released exosomes

could modify the distant microenvironment to a pre-metastatic

niche to facilitate the formation of metastatic lesions, suggesting

that cancer exosomes could result in both local and distant effects

(73, 74), including malignant transformation, angiogenesis,

immunosuppression, invasion, and treatment resistance (51, 75).

The unfavorable intratumoral microenvironment, such as nutrient

deficiency, hypoxia, high metabolic demand, oxidative stress, and

unfolded protein response, can also ultimately induce ER stress,

enhancing tumorigenicity, metastasis, and tumor drug resistance.

It is reported that ER stress regulates proliferation, migration, and

invasion through active c-Myc signaling and PI3K/AKT/mTOR

signaling pathways, and mediated anti-tumor immune responses

by inducing immunosuppressive microenvironment (76–78). We

found that low-risk patients correlated with a significantly higher

immune score in TCGA cohort, and immune cell populations are

different between high-risk and low-risk patients in TCGA

database. Therefore, risk score could be used to evaluate immune

infiltration in LUAD patients, which may be useful for immune-

targeted tumor therapy. It is well known that tumor

microenvironment can be classified into two immunophenotypes

based on their degree of immune infiltrations, hot tumors with

high immune infiltration and cold tumors with low immune cell

infiltration (79, 80). Low-risk patients with a high immune score

suggest the presence of a hot tumor microenviroment, those

patients could benefit more from immune-targeted therapy than

high-risk patients with cold tumor microenviroment. However,

further studies are still needed to confirm the prognostic value of

risk score in determining hot/cold tumors.

By previous studies, we found some prognostic signatures may

have poor repeatability due to insufficient sample size (81, 82). One

limitation of this study is the relatively small sample and the poor

quality of the GEO cohort, which was used to verify the prognostic

signature. To address this issue, we have usedmultiple GEO cohorts

to further verify the prediction performance of the prognostic

signature. Further, tumor progression can also be influenced by

complex and dynamic features in tumor surroundings, which

means a model based on several gene sets may lead to bias. To

develop a good prediction model for OS, GEMwere used to test the

model in different dimension through scRNA-seq data. By single-

cell clustering, stemness-related genes (Tight, Runx2, and NKX2-1)

revealed that cells in cluster 1, 9, and 12 have high stemness. Tight, a

marker of high-plasticity cell, shows high proliferative potential and

can be induced chemoresistance (57). Runx2 can drive the

metastatic phenotype in the primary tumors, and NKX2-1 also

shows the same consequence (83–85). Furthermore, the correlation

between risk score and tumor progression is positive. According to

tumor-related feature genes, we found that clusters 3, 8, and 10 also
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have higher risk scores than other clusters. Cluster 3 was involved in

cell adhesion, proliferation, migration, and angiogenesis and played

a central role in tissue morphogenesis and maintenance (58, 59).

Cluster 10 has a higher level of cell cycle and cell proliferation (60,

61), and cluster 8 was related to Gastric Cancer (62). In conclusion,

we found that the higher risk score, the higher degree of

malignancy. In addition, risk score in each cluster is associated

with average CNV score, such as malignant clusters usually have

serious CNV. However, cluster 6 has a lower risk score and higher

CNV level, which might be induced by intratumoral heterogeneity.

Furthermore, we found that risk score was related to tumor

progression calculated by Monocle. Minimum spanning tree has

been applied to describe LUAD progression, which was

confirmed by enrichment analysis on ‘BHATTACHARYA

EMBRYONIC STEM CELL’ collected from Msigdb (86). With

the advancement of LUAD, risk score and the proportion of

high-risk cells were increasing. We also notice that cells under

branch2 (cells in stat6 and stat7) show higher risk scores.

Moreover, we found several AT2 marker genes (Sftpc and

Lyz2) at the branch2, which means that branch2 is a crucial

point for LUAD progression. As we expect, the pseudotime and

risk score of different states have a severe positive correlation.

Interestingly, pseudotime-related genes and branch-related

genes is used to clearly different states more clearly, showing

some key points during tumor progression. Overall, the risk

score was in accordance with the grade malignancy in each

cluster, which was annotated by feature genes, pathways related

to tumor progress, CNVs and genotype, and growth time of

GEM. Based on this, our follow-up research will focus on clinical

application and molecular mechanisms.

In conclusion, the study established a risk scoring model,

which can be used as an independent prognostic signature to

accurately evaluate the prognosis of LUAD patients. Compared

with traditional clinical indicators, the model has higher

accuracy and stability, and can provide guidance for follow-up

treatment. The prognostic signature related to several biological

processes, which may reveal the key molecular mechanisms in

tumor development.
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