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Copper is an essential trace element in an organism, and changes in copper

levels in vivo often indicate a diseased state. Copper and immunity have been

discussed since the last century, with copper deficiency significantly affecting

the development and function of the immune system, such as increased host

susceptibility to various pathogens, decreased number and impaired function

of neutrophils, reduced antibacterial activity of macrophages, decreased

proliferation of splenocytes, impaired B cell ability to produce antibodies and

impaired function of cytotoxic T lymphocyte and helper T cells. In the past 20

years, some studies have shown that copper ions are related to the

development of many tumors, including lung cancer, acute lymphoid

leukaemia, multiple myeloma and other tumors, wherein copper ion levels

were significantly elevated, and current studies reveal that copper ions are

involved in the development, growth and metastasis of tumors through various

pathways. Moreover, recent studies have shown that copper ions can regulate

the expression of PD-L1, thus, attention should be paid to the important role of

copper in tumor immunity. By exploring and studying copper ions and tumor

immunity, new insights into tumor immunity could be generated and novel

therapeutic approaches to improve the clinical prognosis of patients can

be provided.
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Introduction

Copper is an essential trace element in an organism. The

redox properties of copper enable it to act as a catalytic cofactor

for various enzymes, allowing for protein binding through

complexation with cysteine, histidine and methionine, and

binding to lower molecular compounds (1, 2). It participates

in various redox reactions such as energy metabolism,

mitochondrial respiration (cytochrome oxidase (COX)),

antioxidation (zinc and copper superoxide dismutase (SOD)),

collagen cross-linking (lysine oxidase (LOX)), pigmentation

(tyrosinase) and catecholamine biosynthesis (dopamine-b-

monooxygenase) (3).

Tumorigenesis is inextricably linked to abnormalities of the

immune system, and copper ions are considered to be an

indispensable trace element in the immune homeostasis of the

body. Since the middle of the last century, copper deficiency has

been found to significantly affect the development and function of

the body’s immune system. Initially, copper deficiency was found

to decrease the number of blood neutrophils (4) and impair their

anti-bacterial function via reducing the production of superoxide

anions (5). Subsequently, copper deficiency in various animal

models has been found to cause immunosuppression (6–8),

leading to the impaired function of immune cells such as B (9)
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and T cells (10) (Figure 1; Table 1). Additionally, copper

deficiency also affects the development of the immune system in

mice (10, 11). These data suggest that copper ions are essential for

the proper functioning of the immune system, thereby maybe

influencing tumorigenesis and development through immune-

related pathways.

Alterations in copper levels are often associated with diseases

such as Menkes disease and Wilson disease (hepatolenticular

degeneration) (24–26), which are characterized by a deficiency

or an excess of copper in the body, respectively. The initial

studies of Menkes and Wilson diseases laid the foundation for

the understanding of intracellular transport and distribution of

copper and determining the role of copper and copper

metabolism proteins in cell signaling, gene expression and

cancer cell proliferation (27). With scientific advances, the

abnormal accumulation of copper in cancer cells was found to

be an important feature in differentiating them from normal

cells. Relevant experimental data showed that several cancer cells

maintained trace elements, such as zinc, selenium or iron, at

normal levels, but copper levels were significantly elevated (28),

such as in stage I multiple myeloma (29), lung cancer (30) and

acute lymphoblastic leukaemia (31).

With increasing studies, there is now a certain understanding of

the molecular mechanisms of copper involvement in tumor
FIGURE 1

The effects of copper deficiency on mice are divided into eight primary aspects: (i) reduced antibody secretion by B cells; (ii) reduced IL-2
secretion by helper T cells; (iii) reduced target cell killing capacity of cytotoxic T lymphocyte (CTL); (iv) reduced number of neutrophils and
production of superoxide anion (O2-); (v) reduced responsiveness of lymphocytes to mitogen stimulation; (vi) thymic atrophy; (vii) splenomegaly
and (viii) decreased ceruloplasmin(CP).
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development. Currently, copper has been found to play an

important role in the high-affinity copper transporter (CTR-1)

(32), LOX (33), hypoxia-inducible factor (HIF-1a) (34), antioxidant
protein-1(ATOX-1) (35, 36), RAS-RAF-MEK-ERK signaling

pathway (37) (38, 39) and PD-L1 (40), which are associated with

tumorigenesis, adaptation to hypoxic environment (41), tumor

extracellular matrix construction(ECM), neovascularization,

epithelial to mesenchymal tissue transition (EMT) and tumor

metastasis. Current studies of these enzymes and pathways

identify other gene and protein targets that could be used for

cancer therapy.

Current therapeutic strategies using traditional copper-

binding molecules, such as copper chelators (ammonium

tetrathiomolybdate(TTM)) and copper ionophores (disulfiram

(DSF)) (42) (43, 44), have been proposed for cancer treatment

and used in clinical trials. Meanwhile, novel copper-binding

molecules (e.g., plant-derived copper-binders, autophagy

inhibitors, proteasome inhibitors) have gradually become

popular research topics due to their antitumor activity and low

side effects. Although some of these copper-binding molecules

have achieved a certain level of clinical efficacy, certain

limitations remain. For example, DSF has not achieved

satisfactory results in clinical trials because of its metabolism

to diethyldithiocarbamate with low bioavailability in vivo (45).

Therefore, further clinical trials are needed to prove its efficacy

and safety. Owing to the close relationship between copper,

immunity and tumor, this review provides new ideas on the use

of copper in tumor immunotherapy and the development of

better and more effective treatments to improve the prognosis of

patients with tumors.
Frontiers in Oncology 03
Relationship between copper
and immunity

The recommended daily dietary requirement of copper for a

healthy adult is 0.9 mg. Copper is absorbed mainly through the

small intestine, enters the liver through the portal vein and is

partially excreted through the bile and mostly transported to

different tissues and organs by binding to albumin and

ceruloplasmin in the blood (3). In the 1950s, researchers

found that copper deficiency causes hypocopperemia,

hypoceruloplasminemia and neutropenia in infants (4, 6, 46–

48) (Figure 1). Following this, it was found that copper

deficiency leads to impaired superoxide anion production by

neutrophils, which kills bacteria (5). Since then, the effect of

copper on the immune system has gained increasing

research attention.

Macrophages are an important component of the innate

immune system and play a key role in the activation and

regulation of specific immunological responses through

antigen presentation and secretion of cytokines (49, 50), in

addition to phagocytosis. In 1991, Bala et al. found that

although copper deficiency caused a much larger percentage of

macrophages in the spleen of mice than in controls, the absolute

number was reduced (19). And Babu et al. discovered that

copper deficiency dramatically reduced the production of

superoxide anion in macrophages, which in turn affected the

ability to kill yeast, Candida, etc., making the organism more

susceptible to infection (51). However, studies has been

demonstrated that excessive copper supplementation can

inhibit macrophage function (52), and so, maintaining copper
TABLE 1 Effect of copper deficiency on the immune system.

Role classification Specific role

Copper
deficiency

Overall 1. Immune system developmental disorders (10, 11)
2. Increases host susceptibility to multiple pathogens (7, 8)
3. Weight loss, thymus reduction, spleen enlargement and cardiomegaly (12)
4. Decreased thymic hormone levels (13), depletion of splenic lymphoid follicles (14), increased acute and delayed

inflammatory reactions (15)

Immune cell proliferating
activity

1)Spleen lymphocytes in copper-deficient mice showed a significant decrease in response to LPS/PHA/ConA/PWM
stimulation (16)

Neutrophils 1)Decrease in the number of neutrophils and the production of reactive oxidative species by neutrophils to kill
bacteria (4) (5)

B-cell 1. Increase in the relative percentage of splenic B cells (17)
2. Reduction in the number of antibody-producing B cells and inhibition in the production of antibodies (9, 18)

T cells 1. The percentage and absolute number of T cells decreased, with the helper (CD4+) T cells showing a significant
reduction (17, 19)

2. Suppressing the immunomodulatory function of helper T cells (10)
3. Inhibiting the ability of cytotoxic T lymphocytes to kill target cells (10)

Cytokine secretion 1. Significant increase in IL-1 secretion in mouse spleen cells (20)
2. Impairment of the synthesis and/or stability of IL-2RNA, thereby significantly downregulating IL-2 synthesis (21)

(22) (23)
LPS, lipopolysaccharide; PHA, Phytohaemagglutinin; ConA, concanavalinA; PWM, Pokeweed mitogen.
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homeostasis inside and outside the cell is one of the prerequisites

for proper macrophage function. While White et al. in 2009

discovered that the effect of copper ions on macrophages appears

to be related to the expression of ATP7A in macrophages, they

also discovered that pro-inflammatory agents such as LPS or

IFN-g promote copper uptake by macrophages and increase the

expression of CTR1 and ATP7A proteins, and demonstrated

that the ability of phagocytes to kill pathogens was positively

correlated with the expression of ATP7A (53) (54), and

consistent with this hypothesis, researchers have identified the

process of copper efflux from bacteria via copA protein as a

defensive mechanism against macrophage killing (55). Tumor-

associated macrophages (TAMs) are subtypes of macrophages,

which differ from general macrophages in that they exert

immunosuppressive effects in the tumor microenvironment by

secreting immunosuppressive cytokines (e.g., TGF-b, IL-10)
and, while also promote tumor progression and metastasis by

secreting growth factors and angiogenic factors (56). Studies

targeting TAMs have found that CuNG (a copper chelate) can

promote reprogramming of TAMs, promote the secretion of IL-

12 and reduce the secretion of TGF-b and IL-10, thus altering

their immunosuppressive properties and reactivating the

immune response of T cells against tumor cells (57). Although

not much research has been done on copper and macrophages,

together with the above investigations, we believe that further

research and uncovering the mechanism of action between

copper and macrophages are feasible and significant for

alleviating the immunosuppressive state of TME and

enhancing the efficacy of immunotherapy.

In addition to innate immunity, the effect of copper

deficiency on acquired immunity has been demonstrated. In

1981, Prohaska et al. observed a reduction in the number of

antibody-producing plasma cells in severe and borderline

copper-deficient mice, and the extent of this impairment was

highly correlated with the degree of hypoceruloplasminemia (9).

In the same year, Flynn and Yen demonstrated experimentally

that CTL in copper-deficient mice has a reduced ability to target

cytolytic cells stimulated by alloantigens and that this defect

seems to be associated with the dysfunction of helper T cells (5)

(Figure 1; Table 1). Lukasewycz et al. found that the initiation

and maintenance of cell-mediated immunity against leukemic

cells were severely impaired in copper-deficient animals (58).

Additionally, copper deficiency was also reported to lead to

reduced numbers and impaired function of T cells in vitro (59)

(Table 1). Thus, it is clear that copper deficiency affects both

humoral and cellular immunity.

The proliferative activity and composition of immune cells

are altered in response to copper deficiency. Prohaska et al.

demonstrated the reduced responsiveness of splenic

lymphocytes in copper-deficient mice models to mitogens such

as lipopolysaccharide, phytohemagglutinin and Concanamycin

A (16) (Figure 1; Table 1). The composition of lymphocytes was

changed in copper-deficient mice. Furthermore, Lukasewycz
Frontiers in Oncology 04
et al. (17) analyzed the surface determinant clusters of

splenocytes in copper-deficient C58 mice and found that the

absolute number and relative percentage of B cells were

significantly higher than that in copper-supplemented

controls, whereas the relative percentage of Thy 1.2-positive T

cells decreased most significantly in the Lyt 1 positive cell (helper

T cells) subpopulation (Table 1). Additionally, Bala et al. (19)

reported a decrease in total splenic monocyte production and the

relative and absolute numbers of CD4+ and CD8+ T

subpopulations in copper-deficient male rats, however, copper

deficiency only increased the relative percentage of splenic B

cells and not the absolute numbers. This contrast with the above-

mentioned results of Lukasewycz’s experiment could be

attributed to the animal model used for the experiment, the

experimental method or the apparatus. Another study by Bala

et al. demonstrated that dietary supplementation with copper

restored the number and function of helper T cells (60). In 1981,

Flynn et al. showed that CTL in a copper-deficient medium

failed to produce the specific killing of target cells (Figure 1;

Table 1), and which are fully recovered after the addition of T-

cell replacement factor (TRF), thus demonstrating the

suppressive effect of copper deficiency on helper T cells (10).

These experiments demonstrate that copper deficiency leads to a

decrease in the number and function of helper T cells. Therefore,

copper deficiency has the potential to affect T cells, especially

helper T cells, more than B cells.

Copper deficiency affects the production and secretion of

immunoreactive substances. In 1981, Prohaska et al.

demonstrated that antibody production by splenic plasma cells

against sheep erythrocyte antigens was significantly reduced

when copper was deficient in cells (9) (Table 1). Hamilton

et al. also demonstrated that antibody production against

sheep erythrocytes was inhibited in copper-deficient mice (P <

0.0001). Contrastingly, antibody production against

dinitrophenyl-phenanthroline was not altered by copper

deficiency (P = 0.90) (61). In the same year, Koller et al. also

demonstrated that copper deficiency affected antibody secretion,

resulting in a decrease in plasma antibody titers (18). However,

the normal functioning of helper T cells is indispensable for the

production of antibodies. Moreover, in Menkes disease, the

production of T cells was found to be affected (62). Many of

the above experiments have also demonstrated that copper

deficiency affects the number and function of helper T cells in

experimental animals (10, 17, 19). Furthermore, Lukasewycz

et al. (20) found that copper deficiency seemed to have different

effects on different cytokines of T cells, such as the

overproduction of IL-1 and underproduction of IL-2 (Figure 1;

Table 1). However, the mechanism of copper regulating these

cytokines remains unclear. Hopkins et al. in 1997 found that

copper deficiency reversibly decreased the amount of IL-2 and

IL-2 mRNA in human T lymphocytes (21). In 1999, Hopkins

et al. further showed that copper deficiency in human Jurkat T

lymphocytes impaired the transcriptional regulation of IL-2 gene
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expression, resulting in reduced IL-2 production (22) (Table 1).

Furthermore, in 1992, Bala et al. showed that copper deficiency

reversibly restricted DNA synthesis in T lymphocytes by

decreasing IL-2 activity, leading to T cell dysfunction (23).

Additionally, the reduction in IL-2 synthesis appears to be

associated with reduced splenocyte proliferative activity (63).

Given these results, it can be speculated that copper deficiency

reduces IL-2 synthesis by decreasing IL-2 mRNA synthesis,

leading to impaired functions, such as the regulation of other

immune cells by helper T cells, the killing capacity of CTL and

antibody secretion by B cells.

Interestingly, the effects of copper deficiency on the immune

function also vary with gender (64, 65), with male mice

appearing to be more susceptible to the effects of copper

deficiency (14). However, the mechanisms responsible for this

gender difference are unclear.

The occurrence of severe copper deficiency in humans is

rare, with borderline copper deficiency state being the most

common. Moreover, studies on the effects of copper deficiency

on immunity in humans are very few. In 1985, Heresi et al.

studied immunoglobulin and neutrophil phagocytosis in

children with copper deficiency and found that copper

deficiency reversibly impaired neutrophil phagocytosis (66). In

1995, Kelley et al. found that the proliferative capacity of human

peripheral blood mononuclear cells and the concentration of IL-

2 decreased with a copper-deficient diet, but there was no effect

on the peripheral blood cell counts of leukocytes, monocytes,

neutrophils, lymphocytes or natural killer cells (67). This result

contradicts the significant difference observed in the number and

function of neutrophil and lymphocyte subpopulations in

animal experiments, which could be attributed to biological

differences between animals and humans and the different

levels of copper deficiency to which both are subjected.

Therefore, the effect of copper deficiency on the human

immune system needs further exploration.
The relationship between copper
and tumors

The association between copper and tumors began with the

finding that copper levels are elevated in many tumors. In 1965,

de Jorge et al. demonstrated an 11-fold increase in copper levels

in brain cancer, which was the first study linking tumors to

copper levels (68). Subsequently, in 1975, Schwartz highlighted

the potential role of copper as a carcinogenic and diagnostic/

prognostic marker (69). Meanwhile, studies found elevated

copper serum concentrations in various tumors (28), such as

stage I multiple myeloma (29), reticulocyte sarcoma, bronchial

and laryngeal squamous cell carcinoma, lung cancer (31),

leukaemia, lymphoma (70), cervical cancer, breast cancer and

gastric cancer (71, 72). In addition to elevated serum copper

levels, elevated copper concentrations were reported in the nails
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and/or hair of patients with tumors, such as breast, prostate and

cervical cancers (73). Furthermore, copper deposition in the eye

is associated with lung adenocarcinoma (74), multiple myeloma

(75) and chronic lymphocytic leukaemia (76). In a clinical study

of hematologic malignancies, Kaiafa et al. found that serum

copper levels appeared to correlate with disease remission and

recurrence (70). Current studies report that elevated copper

concentrations in tumor cells are associated with a high

expression of CTR-1, however, further investigation is

required to determine if there are other factors influencing

these copper levels.

Although the specific mechanism of copper involvement in

tumor development requires further study, previous reports

have identified some of the possible mechanisms of copper

involvement in tumor development. CTR-1 is the main

transporter protein for the cellular uptake of copper, and

researchers have found elevated intracellular copper in various

tumors, exhibiting a high expression state of CTR-1. Thus, the

hypothesis of CTR-1 promoting tumor development gained

attention. Guo et al. (77) in 2021 showed that copper can

promote tumorigenesis by activating the phosphatidylinositol

3-kinase (PI3K)-protein kinase B (PKB, also known as AKT)

oncogenic signaling pathway and reported that blocking CTR-1

and reducing intracellular copper can inhibit the tumor-

promoting effects of this signaling pathway (Figure 3). The

RAS-RAF-MEK-ERK signaling pathway is another signaling

pathway required for cancer formation (37), wherein copper

plays a promotional role (38). Copper promotes ERK

phosphorylation by binding to MEK1 (copper-binding

protein), which leads to RAS/MAPK signaling activation and

subsequently to cancer development. Similarly, researchers have

found that blocking CTR-1 leads to impaired RAS/MAPK

signaling activation, which hinders the oncogenic effects of

BRAF/V600E mutation (38, 39) (Figure 3). Thus, CTR-1 plays

an important role in tumorigenesis, and CTR-1 inhibitors have

good therapeutic potential. In addition to participating in

tumorigenesis, copper also has a facilitative role in tumor

development. Copper promotes the adaptation of cancer cells

to the hypoxic environment by reducing degradation (41) and

increasing HIF-1a stability (34). It also promotes the

construction of the ECM by regulating the activity of LOX

(33). HIF-1a and LOX promote tumor development in

coordination with each other (78, 79). Furthermore, Eva et al.

in 2021 summarized the relationship between copper and

tumors and proposed the concept of “cuproplasia”, which is

defined as cell proliferation that is regulated by copper (80). It is

implicated in many cellular functions, such as mitochondrial

respiration, antioxidative defense mechanisms, kinase signaling,

autophagy and protein control.

Many tumors st imulate tumor growth through

neovascularization (81), which is regulated by angiogenesis-

stimulating factors (angiogenin, vascular endothelial growth

factor (VEGF), basic fibroblast growth factor (bFGF) and
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transforming growth factor b (TGFb)), cytokines (IL-1, -6 and

-8)) and angiogenesis-inhibiting factors (vasopressors and

endothelial inhibitors) (3). Notably, the activity of many

angiogenic factors (calcium-dependent protease (eNOS),

angiogenin, platelet-derived growth factor (PDGF)) and their

expression (VEGF, fibroblast growth factor (FGF-1) and copper

cyanobacteria) are regulated by copper. For example, 1) copper

upregulates the expression of several angiogenic genes (e.g.,

ceruloplasmin, VEGF, FGF-1) (34, 82) by regulating the

activation of HIF-1a; 2) copper promotes NO pathway-

induced vasodilation by enhancing the enzymatic activity of

eNOS (83); 3) copper enhances the function of PDGF and thus

promotes smooth muscle cell migration and LOX secretion (84);

4) copper promotes FGF-1 synthesis, thereby promoting

vascular endothelial proliferation and ECM formation (83)

(Table 2). Therefore, copper plays an essential cofactor role in

the whole angiogenic signaling cascade and hence copper

deficiency can hinder neovascularization (89). Currently,

copper chelators are used as neovascularization inhibitors in

the clinical treatment of tumors.

Tumor metastasis is an important factor indicating poor

patient prognosis. Studies suggest that the two key pathways in

tumor metastasis, ECM construction and EMT, are regulated by

copper ions (33, 78, 90–92) (Figure 2). Cancer cells secrete LOX

to promote the cross-linking of collagen and elastin in the ECM

(33) and to prepare a suitable environment for the metastasis of

tumor cells (93). LOX is a copper-dependent enzyme, and

copper ions can induce the secretion of LOX by activating

HIF-1a. Moreover, LOX can also promote the synthesis of

HIF-1a protein by positive feedback, and the two factors

synergize and regulate each other to promote tumor

progression (78) (79) (Figure 2). LOX also promotes EMT

development by stimulating Twist transcription (91). It is also

speculated to be an inter-responder of MEMO1, a protein

involved in cell migration by regulating the cytoskeleton and

forming adhesion sites (94). MEMO1 is a copper-dependent

oxidoreductase whose main roles are to produce reactive oxygen

species (ROS) that control the redox state of cells and regulate

EMT-related transcriptional pathways (95). Copper also

contributes to EMT development by activating the interaction

between HIF-1a and HRE (96) and the HIF1-a-Snail/Twist
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signaling pathway (92) to promote the regulation of EMT

(Figure 2). Some studies have found that the dysregulation of

Amyloid Precursor Protein (APP) expression, which contains an

extracellular copper-binding domain at the N-terminal end, is

also involved in the development of EMT in tumor cells (97–99).

Therefore, copper promotes tumor development through

multiple pathways and their inhibition is crucial to avoiding

poor prognosis due to tumor metastasis.

Current studies have shown that copper is implicated in

several key aspects of tumor development. (1) Copper promotes

the adaptation of cancer cells to the hypoxic environment by

increasing the level of HIF-1a; (2) Tumor angiogenesis is

necessary for tumor growth progression, wherein copper is

involved in tumor neovascularization by directly interacting

with angiogenic factors (VEGF and FGF) (86, 100)and

regulating the synthesis of angiogenic molecules (101, 102); (3)

Tumor metastasis often implies poor prognosis, and copper

promotes tumor metastasis by promoting ECM construction

and EMT. Thus, a gradual elucidation of the interrelationship

between copper and tumors has been provided, which has

therapeutic potential for patients with cancer.
Copper and tumor immunity-related
studies

Copper, immunity and tumors are closely related. Therefore,

copper could have a potential regulatory role in tumor immunity.

Some studies have reported on the relationship between copper

and tumor immunity, such as the reduction of copper in mouse

mesothelioma associated with CD4+ T cell infiltration (103), the

effect of anti-tumor drug Dp44mT on T cell activity through a

copper-related mechanism (104, 105), the apoptosis of bone

marrow-derived suppressor cells (MDSCs) and the

enhancement of anti-tumor immune responses through selective

copper chelation in a drug-resistant tumor model (106) and the

downregulation of ACO3 (copper-containing amine oxidase) in

lung cancer leading to reduced adherent aggregation of CD4+ cells

(107). In a phase II study of high-risk and triple-negative patients

with breast cancer, tetrathiomolybdate (TTM) reduced collagen

deposition, decreased MDSCs levels and increased CD4+ T cell
TABLE 2 Modulation of angiogenesis-stimulating factor by copper.

Angiogenesis-stimulating factor The function of copper

VEGF Increased synthesis of VEGF (82)

PDGF Promotion of smooth muscle cell migration and LOX secretion (84)

Angiogenin Copper promotes its interaction with vascular endothelial cells, thereby promoting endothelial cell growth (85, 86)

LOX Copper acts as an enzyme cofactor for the progression of ECM (87, 88)

HIF-1a Inhibits degradation and thus promotes the transcription of angiogenesis-related genes (e.g., ceruloplasmin, VEGF) (34)

eNOS Enhances enzyme activity and induces vasodilation via the NO pathway (83)

FGF-1 Copper promotes its synthesis, which in turn promotes vascular endothelial proliferation and ECM formation (85)
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infiltration in the treated mice (108). In 2020, Voli (40) was the

first to propose that copper ions could regulate the expression of

the immune checkpoint PD-L1, opening up the possibility and

potential of copper ions to participate in tumor therapy by

interfering with tumor immunity.

Tumor immune escape is a protective mechanism by which

tumor cells protect themselves from the immune system, mainly

through the binding of PD-L1, which is overexpressed by tumor

cells, to PD-1, which is expressed by lymphocytes, and thereby

exerting a negative regulatory effect on T lymphocytes and

resulting in diminished cytokine production and cytotoxic

effects of immune cells on tumor cells. Through this

mechanism, tumor cells can proliferate in vivo without the

control of the immune system (109). Therapeutic agents

targeting this immune checkpoint are currently in clinical

application and have greatly contributed to the prognosis of

tumor treatment. However, the application of this therapy is

currently limited due to the varying reactivity of different tumor

cells and the side effects associated with the treatment.

On examining biopsies from 90 patients with neuroblastoma

and 90 patients with a brain tumor (including GBM), Voli et al.

demonstrated that the three indicators, CTR1/PD-L1/MT1X,

have a positive correlation with each other. However, the

positive correlation between PD-L1 and CTR1 was limited to

tumor tissues. On further exploring how intracellular copper

regulates PD-L1 expression, the authors found that Cu and IFN-

g share similar signaling pathways in the regulation of PD-L1
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expression and tumor immune response in tumor cells using

transcriptome and gene set enrichment analysis. Contrastingly,

experiments with copper chelators (DC/TEPA) revealed that DC

and TEPA down-regulated PD-L1 expression by inhibiting

EGFR signaling and transcriptional activator protein (STAT)

phosphorylation signaling pathways (Figure 3). Furthermore,

they confirmed through several experiments that reducing

intracellular copper can inhibit PD-L1 expression at two levels:

(1) at the transcriptional level by downregulating the JAK/STAT

cellular pathway and reducing PD-L1 mRNA production; (2) at

the translational level by promoting the ubiquitination of PD-L1

and facilitating its degradation to downregulate PD-L1

(Figure 3). In in vivo experiments validated by flow cytometry

analysis, the authors confirmed that TEPA and DC increased

CD8+/CD4+ T lymphocytes and CD244+ NK cell infiltration.

Whole-transcript sequencing of tumor tissues demonstrated that

TEPA increased the number of macrophages, CD4+, CD8+ T

lymphocytes and NK cells. Furthermore, DC and TEPA reduced

IFN-g (from activated NK cells) mediated PD-L1 upregulation

and enhanced NK cell-mediated tumor lysis.

Although several studies and clinical trials have demonstrated

that copper chelators are effective in inhibiting tumor growth and

angiogenesis, Voli et al. demonstrated for the first time that

chelation therapy reduced PD-L1 expression, enhanced anti-

tumor immune responses and can be repurposed for immune

checkpoint inhibition. Therefore, copper ion-related drugs have

great therapeutic potential in tumor treatment.
FIGURE 2

Copper plays an important role in extracellular matrix (ECM) construction and epithelial-mesenchymal transition (EMT), which are two key
aspects of tumor metastasis. Copper promotes the secretion of LOX by tumor cells but inhibits the degradation of the structural stability of HIF-
1a. There also exists a reciprocal relationship between LOX and HIF-1a. LOX promotes ECM formation by facilitating the cross-linking of
collagen and elastin. Increased HIF-1a promotes the adaptation of tumor cells to the hypoxic environment while promoting EMT through
interactions with the hypoxia response element (HRE) and the HIF1-a-Snail/Twist signaling pathway. Together, these factors promote the
development of tumor metastasis.
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Copper related medication

The classical anti-cancer copper-binding molecules are

mainly divided into two categories: copper chelators and

copper ionophores. Copper chelators act mainly by reducing

intracellular copper (110), whereas copper ionophores act by

increasing intracellular copper ions, which causes cytotoxic

effects through various pathways (111). Furthermore, novel

copper-based anti-cancer agents (plant-derived copper-binding

molecules, autophagy inhibitors and proteasome inhibitors) are

also beginning to emerge (3).

Copper chelators were initially used for the treatment of

Wilson’s disease (112). Later, they were tested in tumor treatment

and were found to inhibit tumorigenesis, angiogenesis, tumor

metastasis and other effects. Common copper chelators include

TTM and D-penicillamine (D-pen). TTM is a selective copper

chelator that depletes bioavailable intracellular copper and exerts

anticancer effects through four pathways: (1) inhibiting

angiogenesis through the activation of transcription factors (NF-

kB) (113); (2) inducing anti-metastatic activity via the inhibition of

bonemarrow-derived endothelial progenitor cell (EPC) recruitment

(114, 115); (3) promoting anti-tumor proliferation activity by

reducing ATP production through the inhibition of cytochrome

C oxidase function (116); (4) reducing tumor growth in BRAF/
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V600E transformed cells by decreasingMEK1/2 kinase activity (39).

Moreover, TTM is well tolerated in oncology treatment and the

resulting side effects such as anemia and neutropenia are reversible

(117–119). D-pen was initially a reducing and chelating agent used

in the treatment of rheumatoid arthritis, and researchers studying

the therapeutic effects of D-pen on arthritis found that it could lead

to the reduced chemotaxis of polymorphonuclear leukocytes (120),

cause a decrease in antibody titers (121–123) and cause reduced

levels of circulating immune complexes (124–126). These results

suggest that D-pen could exert immunosuppressive effects.

Subsequent experiments have demonstrated that copper salts and

ceruloplasmin enhance this immunosuppressive effect, and D-pen

was found to inhibit helper T-cell function and antibody production

(127–131), which is closely related to the peroxidase enzyme of

monocytes (130). D-pen has been found to inhibit LOX secretion

and impair collagen cross-linking in tumor therapy (132). It also

inhibits tumor angiogenesis by reducing VEGF expression (103).

However, some studies have reported serious adverse effects (133).

Moreover, D-pen did not improve the survival rate of patients with

brain tumors in phase II clinical trials(NCT00003751)

(134) (Table 3).

Excessive intracellular concentrations of copper ions are

cytotoxic because it leads to the excessive production of ROS

and substitution of other metals from binding sites within key
FIGURE 3

Copper has been shown to promote tumor formation by affecting the regulation of phosphorylation in the PI3K-AKT and RAS-RAF-MEK-ERK
signaling pathways, which in turn promotes tumor formation. Meanwhile, copper can regulate PD-L1 expression by both regulating the
proteasome-mediated degradation of PD-L1 and affecting the transcription of PD-L1, which leads to tumor immune escape. In contrast, copper
chelators can inhibit the aforementioned signaling pathways, thereby suppressing pro-tumor signaling and ameliorating tumor immune escape.
cuprotosis is a recently identified copper-dependent mode of cell death, mainly through direct binding of copper to lipid acylated components
of the TCA cycle, leading to lipid acyl protein aggregation and loss of iron-sulfur cluster proteins, which in turn leads to cuprotosis due to
proteotoxic stress. These theoretical results have contributed to the understanding of the relationship between copper and tumors.
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TABLE 3 Copper-related drug clinical trials.

cancer Enrollment Compound Phase Status ID Results

SF/Cu to TMZ for TMZ-resistant IDH-wild type GBM appears well tolerated but has limited activity for unselected

1)

t improve survival in patients with glioblastoma multiforme(129)

ion regimen of DSF and cisplatin and vinorelbine was well tolerated and appeared to prolong survival in patients

agnosed non- small cell lung cancer(135)

associated with a significant survival benefit in TNBC patients(162)

of elesclomol to paclitaxel did not significantly improve PFS(139)

tion was well tolerated but is unworthy of further investigation based on the proportion responding(140)
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Not yet
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proteins (73), causing cytotoxicity. Tsvetkov et al. (140)

demonstrated a novel copper-dependent cell death described

as the binding of copper ions to the lipid acyl component of the

tricarboxylic acid cycle (TCA) in mitochondrial respiration,

leading to lipid acylated protein aggregation and iron-sulfur

cluster protein downregulation. These result in proteotoxic

stress and ultimately cell death, and this copper-dependent cell

death is known as “cuproptosis” (Figure 3). Although copper

ionophores have shown selective anti-cancer activity in vitro and

mouse models (32, 141, 142), the mechanism of this selectivity

remains unclear. Currently, common copper ionophores drugs

include DSF, Chloroquine (CQ) and Elesclomol (STA-4783).

Increasing the level of intracellular bioavailable copper is a

common feature of copper carrier drugs. Many studies have

shown that DSF can be used for treating bone metastases in

breast cancer (143), ocular melanoma whit liver metastases (144)

and non-small cell lung cancer(NCT00312819) (136) (Table 3).

Additionally, DSF inhibits the proliferation, migration and

invasion of hepatocellular carcinoma, especially the nuclear

translocation of NF-kB subunit and the expression of Smad4

and leads to the downregulation of Snail and Slug, which inhibit

EMT development and hinder tumor metastasis (145). CQ, a

derivative of chloroquine, was originally synthesized as an

antibacterial agent, but it was found to induce cell death by

activating multiple apoptotic pathways in cancer cells (146). The

efficacy of CQ was positively correlated with extracellular copper

levels (147). Moreover, the results of clinical trials with

Elesclomol as a potential copper ionophore-anti-cancer drug

were unsatisfactory(NCT00522834, NCT00888615) (138, 139)

(Table 3). However, subsequent analyses showed that Elesclomol

affected tumors that depended on mitochondrial energy

production and that FDX1, the gene encoding the target

protein of Elesclomol, promotes cuproptosis (148–150). Thus,

the identification of the mechanism of cuproptosis could provide

more theoretical support for the application of Elesclomol.

Novel copper-based anti-cancer agents have received

increasing attention over the past few years. Plant-derived

copper-binding molecules (curcumin, Oleuropein-Cu complexes

and resveratrol-copper complexes) have been reported to exert

anti-cancer effects and increase the anti-tumor activity of known

anti-cancer drugs with low side effects. These compounds act as

antioxidants, but in the presence of metals such as copper, they act

as pro-oxidants that catalyse ROS formation and DNA

degradation. For example, curcumin has been experimentally

shown to inhibit tumor growth and reduce angiogenesis, and

resveratrol-copper complexes have been reported to cause DNA

breakage (151). The ubiquitin proteasome pathway (UPP) is

responsible for protein targeting and proteolytic degradation

and plays a central role in the regulation of cell cycle

progression, signal transduction, differentiation, proliferation

and apoptosis (152). When traditional copper-binding

compounds (i.e. CQ, DSF and TTM) enter cancer cells, they

form proteasome inhibitor complexes to affect the proteasome
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pathway (153). Copper-based compounds have also been

developed to target the autophagic process, and the inhibition of

autophagic signaling has been demonstrated in human malignant

glioma (154) and hepatocellular carcinoma (155).

The deletion of CTR-1 has also been found to be related to

platinum anti-cancer drug resistance in tumor cells (156, 157). This

could be a breakthrough in tumor resistance to platinum anti-

cancer drugs. In human ovarian tumor grafts, the resistance to

cisplatin and carboplatin was overcome by co-treatment with

selenite, a drug used as a chemotherapeutic adjuvant (158). One

possible mechanism to explain this effect could be attributed to the

fact that selenite increases the expression of the antioxidant enzyme

glutoxigenin 1 (Grx1), which in turn promotes an increase in CTR-

1 (159). However, subsequent studies did not support this

mechanism, indicating the need for further experimentation.

Copper-related anti-tumor drugs are already used clinically;

however, reports on drugs related to copper and tumor

immunity remain scarce. Recent studies have demonstrated

that copper regulates PD-L1 expression, which could inspire

the development of drugs that target tumor immunity.
Discussion

Tumors are a major class of diseases that endanger human

health. In the process of fighting with tumors, human beings have

discovered more and more weapons, such as surgical resection,

chemotherapy, radiotherapy, immune-targeted therapy, and so on.

However, it seems that tumors are also evolving, such as resistance

to chemotherapy drugs, post-operative recurrence, immunotherapy

side effects and a series of other problems, forcing us to discover

more ways to treat tumors. And we believe that there is a close

relationship between ion metabolism and tumors, especially the

close relationship between copper ions and tumors and immunity,

which makes one speculate that new research fields can be opened

up for tumor treatment through the study of copper ions and

tumor immunity.

Current studies have shown that abnormal levels of copper in

the body often indicate a state of disease. And copper deficiency

significantly affects the development of the immune system and

normal immune function. However, the mechanism of how copper

is involved in the regulation of immunity has not been elucidated

and further studies are needed. Also copper ions are involved in the

regulation of three important tumor properties, namely, infinite

proliferation, angiogenesis and metastasis. Excitingly, the finding

that copper ions can regulate the expression of the immune

checkpoint PD-L1 and increase the tumor infiltration of T and

NK cells, as well as cuproptosis, has raised new expectations about

the possibility and great potential of copper ions to participate in

tumor therapy by intervening in tumor immunity. However, while

copper defic iency in norma l organ i sms leads to

immunosuppression as previously described, in tumor cells,

copper chelators can increase immune cell infiltration and inhibit
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immune escape by decreasing copper levels. While IL-2 biphasic

(160) finding, i.e., it can promote immunity and suppress

tumorigenesis in early tumor stages, but in mid- to late-tumor

stages, IL-2 signaling promotes 5-hydroxytryptophan (5-HTP)

production via the STAT5-TPH1 pathway, leading to CD8+ T-

cell depletion. Combined with the aforementioned studies showing

that copper deficiency inhibits IL-2 production, this seems to

explain the paradox to some extent, but the complete answer

requires further study.
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