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Weighted gene co-expression
network reveals driver
genes contributing to
phenotypes of anaplastic
thyroid carcinoma and immune
checkpoint identification for
therapeutic targets

Xingxing Dong, Yalong Yang, Jinxuan Hou, Weizhen Chen,
Qianqian Yuan, Gaoran Xu, Jiuyang Liu, Chengxin Li
and Gaosong Wu*

Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
Background: Anaplastic thyroid carcinoma (ATC) is a rare but extremely

malignant tumor, with a rapid growth rate and early metastasis thus leading

to poor survival of patients. The molecular mechanisms underlying these

aggressive traits of ATC remain unknown, which impedes the substantial

progress in treatment to prolong ATC patient survival.

Methods:We applied weighted gene co-expression network analysis (WGCNA)

to identify ATC-specific modules. The Metascape web and R package

clusterProfiler were employed to perform enrichment analysis. Combined

with differentially expressed gene analysis, we screened out the most

potential driver genes and validated them using receiver operator

characteristic (ROC) analysis, quantitative reverse transcription polymerase

chain reaction (qRT-PCR), western blotting, immunohistochemistry (IHC),

and triple immunofluorescence staining.

Results: A gene expression matrix covering 75 normal samples, 83 papillary

thyroid carcinoma (PTC), 26 follicular thyroid carcinoma (FTC), 19 poor-

differentiated thyroid carcinoma (PDTC), and 41 ATC tissue samples were

integrated, based on which we detected three most potential ATC-specific

modules and found that hub genes of these modules were enriched in distinct

biological signals. Hub genes in the turquoise module were mainly enriched in

mitotic cell cycle, tube morphogenesis, and cell differentiation, hub genes in

the magenta module were mainly clustered in the extracellular matrix

organization, positive regulation of cell motility, and regulation of Wnt

signaling pathway, while hub genes in the blue module primarily participated

in the inflammatory response, innate immune response, and adaptive immune

response. We showed that 9 top genes, 8 transcription factors (TFs), and 4
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immune checkpoint genes (ICGs) were differentially expressed in ATC

compared to other thyroid samples and had high diagnostic values for ATC,

among which, 9 novel ATC-specific genes (ADAM12, RNASE2, CASP5,

KIAA1524, E2F7, MYBL1, SRPX2, HAVCR2, and TDO2) were validated with our

clinical samples. Furthermore, we illustrated that ADAM12, RNASE2, and

HAVCR2 were predominantly present in the cytoplasm.

Conclusion: Our study identified a set of novel ATC-specific genes that were

mainly related to cell proliferation, invasion, metastasis, and immunosuppression,

which might throw light on molecular mechanisms underlying aggressive

phenotypes of ATC and provide promisingly diagnostic biomarkers and

therapeutic targets.
KEYWORDS

anaplastic thyroid carcinoma, weighted gene co-expression network analysis,
enrichment analysis, transcription factor, immune checkpoint, therapeutic target
Introduction

Thyroid cancer is the most common endocrine malignancy

(1), with a global incidence of 3.0% and mortality of 0.4% (2). It

can be divided into three subtypes according to the degree of

tumor differentiation: well-differentiated thyroid cancer

(WDTC) mainly including papillary thyroid carcinoma (PTC)

and follicular thyroid carcinoma (FTC), poor-differentiated

thyroid carcinoma (PDTC), and anaplastic thyroid carcinoma

(ATC) (3, 4). ATC, deriving from thyroid follicular cells (5), has

dramatically different clinical features from other thyroid cancer

types: rapid growth rate, early metastasis, and resistance to

conventional therapies, thus leading to poor survival of ATC

patients (6, 7). The mortality of ATC is the highest (more than

50% of thyroid cancer-related death) (8) and with the 100%

disease-specific death (4), though the incidence of ATC is the

lowest in thyroid cancer (less than 2%) (9). In recent years, the
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overall survival (OS) of ATC patients has gradually increased

with multimodality therapies including surgery, radiation

therapy, and molecular-based personalized treatments (7, 10),

but the 2-year OS is still no more than 50% (from 18% to 42%),

and the median OS is no more than one year (from 3.16 to 9.5

months) (1, 8).

It was reported that age over 65 years, a history of radiation

exposure to the chest or neck, and/or a long-standing goiter were

primary risk factors for ATC (5). According to previous studies,

ATC tended to affect the elders with age over 60 years (11),

especially the eighth decades of life in large studies (6). However,

according to the SEER cohort 1986-2015, the incidence of ATC

between 35 to 64 years old was 0.72%, while the total incidence

was 0.92% (1), implying that these part of ATC patients will not

live to the age of 80. Nowadays, immunotherapy is seemingly the

most promising treatment for ATC. A study evaluated that PD-1

blockade in ATC had 19% overall response (12) and another

study demonstrated that combining an antiangiogenic and

antiproliferative tyrosine kinase inhibitor (i.e., Lenvatinib) and

an immune checkpoint inhibitor targeting PD-1 was an effective

treatment option for ATC with the median progression-free

survival of 16.5 months (13). Therefore, it is urgent to find more

potential effective targets for ATC. Surely, some researchers have

taken their efforts on these, especially with the rise of next-

generation sequencing. However, to date, the molecular

mechanisms underlying extremely aggressive traits of ATC

remain unknown, which impedes the substantial progress in

treatment to prolong ATC patient’s survival.

Notably, some studies put their emphasis on gene mutations

and found that TP53 mutation existed in ATC, particularly (3,

14–16). Some researchers paid attention to gene expression

alterations. Nevertheless, most of them kept their eyes on ATC
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and normal thyroid samples (17–19), and/or only focused on

fold changes of gene mRNA expression in ATC. For example,

Paul Weinberger et al. identified specific differentially expressed

genes (DEGs) in ATC compared to normal thyroid and PTC

samples and highlighted that cell cycle M-phase genes were up-

regulated in ATC (20). Weighted gene co-expression network

analysis (WGCNA) is a robust, systems biology approach (21)

and has been widely applied in various biological contexts, like

autism (22), cancers (23–26), and brain transcriptome atlas (27).

WGCNA can be employed to detect clusters (modules) of highly

correlated genes, which may reflect true biological signals (e.g.,

pathways) and can be related to external sample traits.

Moreover, the concrete candidate biomarkers or therapeutic

targets could be identified based on correlation networks (21).

In the present study, we performed WGCNA based on a

gene expression matrix covering 75 normal thyroid tissue

samples, 83 PTC, 26 FTC, 19 PDTC, and 41 ATC tissue

samples to identify ATC-specific modules that contributed to

the devastating features of ATC, then investigated biological

processes and pathways reflected by these modules, and further

screened out the most potential chief culprits. As a result, we

detected the most potential ATC-specific modules confirmed by

function and pathway enrichment analyses and found that the

notorious characteristics of ATC may largely attribute to

dysfunctions in mitotic cell cycle, cell differentiation, blood

vessel morphogenesis, cell motility, immune system, and

others unknown biological processes beyond our knowledge.

Apart from confirming several known ATC-related genes, like

TWIST1, SNAI2, THSR, CTNNB1, FOXE1, and PAX8, our study

provides a novel set of genes specifically related to ATC, such as

ADAM12, RENSE2, HAVCR2 and so on, which may deepen our

understanding of molecular mechanisms underlying aggressive

phenotypes of ATC and provide novel diagnostic biomarkers

and therapeutic targets for ATC patients. Furthermore, we

identified and validated the most promising driver genes, TFs,

and immune checkpoint genes (ICGs) in three ATC-specific

modules. Certainly, more in vivo and in vitro experiments, as

well as clinical trials are needed to be accomplished.
Materials and methods

Raw data collection

The Gene Expression Omnibus (GEO, https://www.ncbi.

nlm.nih.gov/geo/) database is an international public resource

to acquire high-throughput gene expression data (28), from

which we selected and downloaded 6 gene expression datasets

(GSE33630, GSE65144, GSE76039, GSE29265, GSE53157, and

GSE82208) of thyroid cancer according to the following two

criteria: original CEL file and based on GPL570 platforms ([HG-

U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0

Array). In detail, a total of 11 anaplastic thyroid carcinoma
Frontiers in Oncology 03
(ATC), 49 papillary thyroid carcinoma (PTC), and 45 normal

thyroid samples were deposited in the GSE33630 dataset (29), 12

ATC and 13 normal thyroid tissue samples in the GSE65144

dataset (30), 17 poorly differentiated thyroid carcinoma (PDTC)

and 20 ATC specimens in the GSE76039 dataset (14), 9 ATC, 20

PTC, and 20 normal thyroid samples in the GSE29265 dataset, 5

PDTC, 15 PTC, 5 follicular thyroid carcinoma (FTC), and 3

normal thyroid samples in the GSE53157 dataset (31), and 27

FTC in the GSE82208 dataset.
Raw data quality control
and preprocessing

Subsequently, R (version 4.0.3) package affyPLMwas applied to

load probe intensity data stored in CEL files of each dataset

respectively and perform regression calculation on the data (32),

then the normalized unscaled standard error (NUSE) boxplots were

drawn to assess the consistency of samples in each dataset. RNA

degradation data were obtained by another R package affy to

delineate RNA degradation diagrams, which were used to

estimate the degree of RAN degradation in each gene chip (i.e.,

sample). Rules as a thumb, specimens with a median standard error

higher than 1.05 were excluded because the consistency between

them and others in the same dataset was considered to be poor.

Samples whose RNA degradation curves showed much higher

slopes and poor uniformity with others were also considered to

be eliminated to guarantee data quality at the probe level (33).

After deleting deficient gene chips, we reintegrated raw CEL

files by tissue types (i.e., normal thyroid samples, PTC, FTC,

PDTC, and ATC samples), then carried out the log scale robust

multi-array analysis (34) to turn probe intensity data into

expression values through affy package in R with three main

steps: background correction, normalization and log2

transformation of PM values, converted probe IDs to gene

symbols with platform annotation file (i.e., GPL570-55999.txt),

deleted rows that didn’t correspond to any gene symbols in excel

files and finally carried out K Nearest Neighbors (KNN)

algorithm (35) to estimate and impute the missing value of

gene expression matrix by using impute package of R.

Furthermore, the principal component analysis (PCA) was

applied to estimate the degree of similarity among thyroid

normal and various cancer tissues, performed by the

Sangerbox tools, a free online platform for data analysis

(http://www.sangerbox.com/tool). The samples that were

outliers were deleted.
Weighted gene co-expression network
analysis

Weighted gene co-expression network analysis (WGCNA)

has been widely employed to explore the system-level function of
frontiersin.org
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genes, by which the gene co-expression network constructed

with the scale-free topology criterion could provide functional

explanations of system biology (36). The corresponding R

package WGCNA (version 1.70-3) was applied to perform

WGCNA based on the top 20% of most variant genes, which

mainly included the following steps: (1) construct a weighted

gene co-expression network and detect modules. Here, we chose

the soft power adjacency function parameter b (i.e., soft

threshold) according to the scale-free topology criterion:

signed R2 > 0.80, high mean connectivity, and the regression

line between log(p(k)) and log(k) around -1, which were

depicted by network properties plots and scale-free topology

plots. The topological overlap matrix -based dissimilarity

combined with the hierarchical clustering method was applied

to identify modules as described in (36); (2) identify ATC-

specific modules. In the present study, we integrated microarray

data of six datasets covering normal thyroid tissues, PTC, FTC,

PDTC, and ATC tissues to detect modules that were only

significantly positive or negative correlated to ATC (R > 0.5, p

< 0.05); (3) reconfirm the ATC-specific modules and find key

drivers from them. We further extracted module eigengenes

(MEs, the first principal components of a module) from every

module, calculated gene significance (GS) of every gene and

each module (The average absolute GS (aGS) of all genes in one

module denoted module significance), and evaluated the

correlations between GS and module membership (MM). In

modules related to ATC, the MEs with a high absolute value of

GS also have high MM values. Therefore, we selected genes with

aGS > 0.2 and the corresponding p < 0.05 as hub genes for the

further function and pathway enrichment analyses; (4) export

gene co-expression network files (i.e., edge.txt and node.txt) for

visualization and further analysis.
Enrichment analysis and TP53 mutation
analysis

Metascape web (http://metascape.org) was employed to

perform enrichment analysis, a user-friendly portal, and

combined functional enrichment, interactome analysis, gene

annotation, and membership search to leverage over 40

independent knowledgebases (37). We put gene lists of interest

into Metascape, chose “H. sapiens” for “put as species” and

“analysis as species”, and clicked “Express Analysis”, then the

enrichment results were automatically finished with p < 0.05 as

the default setting. Metascape incorporates the biological process

(BP) category of Gene Ontology (GO), Kyoto Encyclopedia of

Genes and Genomes (KEGG), Reactome gene sets, canonical

pathway, and CORUM complexes databases. GO is a strong

gene ontology resource widely used in gene functional analysis,

composed of BP, molecular function (MF), and cellular

component (38). KEGG is an integrated database for biological

interpretation of genome sequences and other high-throughput
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data, where KEGG pathway mapping is available to any cellular

organism (39). The CC and MF categories of GO enrichment

analysis were accomplished by R package clusterProfiler (version

3.16.1) with an adjusted p-value Cutoff = 0.05. Meanwhile, the

KEGG pathways involved were also evaluated by R package

clusterProfiler with an adjusted p-value Cutoff = 0.05.

The TP53 mutation analysis on thyroid cancer was

performed by the cBioPortal database (40) (http://www.

cbioportal.org/) based on two studies (MSKCC and TCGA,

Firehose Legacy), which contained a total of 633 thyroid

cancer samples, including 33 ATC samples.
TF, immune checkpoint exploration and
differentially expressed gene
identification

Transcription factor information was downloaded from

Transcriptional Regulatory Relationships Unraveled by

Sentence-based Text mining 35 (TRRUST; www.grnpedia.org/

trrust), which consisted of 800 TFs in humans (41). Forty-nine

immune checkpoint genes (ICGs) were collected referring

to (42).

We integrated data of GSE33630, GSE65144, and GSE76039

(due to their more ATC samples) into two gene expression

matrices (ATC versus normal and ATC versus PTC) and carried

out the ComBat function in R package sva to remove batch

effects. Differentially expressed genes (DEGs) were identified by

linear models of Microarrays (limma) (43) package of R with a

criterion of log2(Fold Change)>1 or log2(Fold Change) < -1 and

adjust P value <0.05. The overlapping genes were obtained by

Venn diagrams using online tools (http://bioinformatics.psb.

ugent.be/webtools/Venn/).
Diagnostic value analysis

The receiver operating characteristic (ROC) curve and the

corresponding area under the curve (AUC) were applied to

evaluate the diagnostic value of candidate genes for ATC and

were carried out through the Sangerbox tools mentioned above.

We took “non-ATC” (i.e., all other samples except for ATC

samples) and “ATC” as “response”, and used the corresponding

gene expression value as “predictor”. Those genes with AUC >

0.9 were selected for further validation.
Thyroid cancer sample collection

Twelve paired PTC and one ATC samples were obtained

from patients who underwent thyroid surgery at Zhongnan

Hospital of Wuhan University with the informed consent of

the patients. Tissues were divided into two parts, one instantly
frontiersin.org
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frozen by liquid nitrogen and then stored at −80°C for total RNA

and protein extraction, the other fixed with formalin and

embedded in paraffin for immunohistochemical and

immunofluorescent analyses. The usage of human specimens

was approved by the Ethics Committee of Zhongnan Hospital of

Wuhan University.
Quantitative reverse transcription
polymerase chain reaction and western
blotting analysis

Total RNA and protein were extracted from the tissues using

DNA/RNA/protein isolation kits (TIANGEN, China) according

to the manufacturer’s instructions. The RNA samples were

converted to complementary DNA (cDNA) via the ABScript

III RT Master Mix (ABclonal) for the following qRT-PCR that

was implemented with 2X Universal SYBR Green Fast qPCR

Mix (ABclonal) in triplicate. The 2−DDCT method was used to

normalize each gene withGAPDH as the internal control and the

average of DCT value of normal thyroid samples as the baseline

control. The primer sequences for qRT - PCR used in the study

were designed and selected from the Primer designing tool

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/), and listed

in Supplementary Table 1. The WB was implemented to

evaluate the protein expression level according to standard

procedure. The gray density of bands was measured by Image

J software. GAPDH was used as the internal control and the

normalized average of normal thyroid samples as the baseline

control. The mouse monoclonal antibody against GAPDH was

purchased from proteintech (China). The rabbit polyclonal

antibodies against ADAM12 (#A7940), RNASE2 (#A9949),

KIAA1524 (#A12267), HAVCR2 (#A2516), E2F7 (#A15211),

and MYBL1 (#A9829) were obtained from ABclonal (China).

The secondary antibodies (Goat anti-rabbit and Goat anti-

mouse IgG) were obtained from Solarbio (China). The

dilutions of antibodies used in this study were presented in

Supplementary Table 2.
Immunohistochemistry and triple
immunofluorescence staining

Paraffin-embedded tissues were cut into about 4-micron-

thick sections and then processed to be blocked with 3% BSA

according to standard procedures. Subsequently, for

immunohistochemistry, the slides were incubated with

primary antibodies (1:100, ADAM12, HAVCR2, and RNASE2)

mentioned above, followed by incubation with an HRP-

conjugated anti-rabbit secondary antibody (ab205718, abcam,

UK). For triple immunofluorescence, the slides were first

incubated overnight at 4 °C with rabbit polyclonal antibody

against ADAM12 (1:200). The next day, the slides were labeled
Frontiers in Oncology 05
with CY3 conjugated anti-rabbit lgG (1:500, ab6939, abcam, UK)

for 50 min at room temperature. After being rinsed with TBST

for 15 min, the slides were incubated overnight at 4 °C with

rabbit polyclonal antibody against HAVCR2 (1:200). On the

third day, the slides were labeled with 488 conjugated anti-rabbit

lgG (1:500, ab150077, abcam) for 50 min and were subsequently

incubated overnight at 4 °C with rabbit polyclonal antibody

against RNASE2 (1:200). On the fourth day, the slides were

labeled with CY5 conjugated anti-rabbit lgG (1:500, ab6564,

abcam, UK) for 50 min at room temperature. Then, the slides

were scanned with scanister (Pannoramic MIDI, 3DHISTECH

Ltd, Hungary) and observed using CaseViewer software.
Key gene co-expression network
visualization and co-expressed gene
enrichment analysis

Cytoscape (version 3.9.1), a useful software to visualize

biological molecular interaction networks (44), was applied to

visualize key gene co-expression networks with network TXT

files of edges acquired by WGCNA. Enrichment analysis of co-

expressed genes was accomplished by Metascape web.
Statistical analysis

In this study, the statistical analyses accomplished by R

software and Metascape web were automatically calculated

with an adjusted p-value < 0.05 or p-value < 0.01 considered

statistically significant. Data of qRT-PCR are presented as the

means ± standard error of the mean, while data of WB are

displayed by boxplots. Statistical analyses were performed by

GraphPad Prism version 8.0.1 using unpaired one-way analysis

of variance (ANOVA) with Tukey’s test.
Results

Quality controlled and pre-processed
data

After deleting samples with poor consistency with others in

the same dataset, the median standard errors of the rest of the

specimens shown in the NUSE boxplots (Supplementary

Figures 1A–F. left) are close to 1 and no more than 1.05,

which indicates good agreement among them, and the RNA

degradation plots of them exhibited in Supplementary

Figures 1A–F (right) are considered to be acceptable. As a

result, a total of 10 ATC, 48 PTC, and 42 normal thyroid

tissue samples from the GSE33630 dataset, 11 ATC and 10

normal thyroid tissue samples from the GSE65144 dataset, 19

ATC and 16 PDTC tissue samples from the GSE76039 dataset,
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8 ATC, 20 PTC, and 20 normal thyroid tissue samples from the

GSE29265 dataset, 4 FTC, 15 PTC, 4 PDTC, and 3 normal

thyroid tissue samples from the GSE53157 dataset, and 22 FTC

tissue samples from the GSE82208 dataset were obtained, which,

to some extent, had higher quality at probe level and were more

credible. Then through data standardization, transformation

and probe set annotation, gene expression matrices concluding

a total of 20460 genes were acquired. For WGCNA, all these

samples were used and finally we integrated 75 normal thyroid

tissue samples, 83 PTC, 26 FTC, 19 PDTC, and 41 ATC tissue

samples into one expression matrix, the PCA diagram of which

displayed that ATC samples were clustered separately from

other types of thyroid cancar (Supplementary Figure 2A). For

DEG identification, we merged GSE33630, GSE65144, and

GSE76039 datasets (they contained more ATC samples than

others) into two expression matrices and removed batch effects.

One included 40 ATC and 52 normal thyroid tissue samples, the

other consisted of 40 ATC and 48 PTC tissue samples.
Weighted gene co-expression network
and ATC-specific modules

We screened out the top 20% of most variant genes (4092

out of 20460) based on a gene expression matrix that covered 75

normal thyroid tissue samples, 83 PTC, 26 FTC, 19 PDTC, and

41 ATC tissue samples to construct the weighted gene co-

expression network. The cluster tree of these samples shown

in Supplementary Figure 2B reveals that ATC samples are

clustered together and separate from other samples. According

to the scale-free topology criterion and consideration of mean

connectivity, we chose soft threshold power b = 7, with which

the R2 = 0.83 > 0.80 and the mean connectivity was not too low

(Supplementary Figures 2C, D), indicating that the network

constructed satisfied the scale-free topology approximately and

included proper information. Based on the network, 11 modules

shown in Figure 1A represented by different colors are

significantly identified, excluding the grey module that

contained genes without significant enrichment in any

modules. Moreover, the TOM plot of 400 randomly selected

genes (Figure 1B) shows that the connections among them are

tight in these modules, especially in yellow, brown, blue, and

turquoise modules.

In order to identify modules that play an important role in

ATC, we took the main pathological types of thyroid cancer as

clinical traits, thus which modules that were uniquely

significantly correlated to ATC were explicit. As shown in

Figure 1C, the turquoise module is significantly negative

associated with ATC (R = -0.91 and p = 3e-93), while the blue

(R = 0.54, p = 4e-20), magenta (R = 0.8, p = 4e-55), and purple (R

= 0.56, p = 3e-21) modules have significantly positive

correlations to ATC, indicating that genes of these modules

may be more potential to contribute to the phenotypes of ATC.
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Moreover, the hierarchical clustering dendrogram of eigengenes

and the heatmap diagram of the adjacencies in the eigengene

network also revealed a negative correlation between the

turquoise module and ATC and positive correlations of blue,

magenta, and purple modules with ATC (Supplementary

Figures 3A, B). Correspondingly, the eigengene expression

level of the turquoise module showed an overall downward

trend in ATC samples and an upward trend in normal thyroid

tissue samples, PTC, FTC, and PDTC samples (Supplementary

Figure 3C), while eigengene expression levels of blue, magenta

and purple modules were generally up-regulated in ATC and

down-regulated in other samples (Supplementary Figures 3D–

F), suggesting that the majority of genes of the turquoise module

were low expressed in ATC and many genes of blue, magenta

and purple modules were highly expressed. Additionally, to

further determine the significance of these four modules to

ATC, as well as eigengenes of them, GS was measured for

every gene and the average absolute GS (aGS) of all genes in

one module denoted module significance. As shown in

Figure 1D, module significance values of these four modules

are over 0.3 with p = 0. Meanwhile, the GS for ATC exhibited

very significant associations with MM in these four modules: cor

= 0.93, p < 1e-200 in turquoise module, cor = 0.51, p = 3.5e-54 in

blue module, cor = 0.92, p = 5.1e-40 in magenta module, and cor

= 0.68, p = 2e-07 in purple module (Supplementary Figures 3G–

J), revealing that hub genes of these four modules also tend to be

highly correlated to ATC. These results suggested that genes in

these four modules may be more biologically significant to ATC.

Hence, we extracted hub genes from them (aGS > 0.2, p < 0.05)

for further function and pathway enrichment analyses. In detail,

a total of 1548 hub genes were acquired from the turquoise

module, 628 hub genes from the blue module, 96 hub genes from

the magenta module, and 41 hub genes from the purple module.
Crucial function and pathway
disturbances in ATC

Through WGCNA, four ATC-specific modules were

identified, as well as hub genes in them. To test whether these

modules reflect true biological processes and to detect which vital

perturbations occurred to ATC. We performed function and

pathway enrichment analyses for hub genes. As a result, the hub

genes from turquoise module were significantly enriched (p < 0.01)

in a total of 281 main biological processes or pathways (Figure 2A

and Supplementary Table 3) and the top five of which were

“mitotic cell cycle” (95 genes, LogP = -23.58), “tube

morphogenesis” (82 genes, LogP = -13.50), “regulation of mitotic

cell cycle” (66 genes, LogP = -13.16), “tissue morphogenesis” (70

genes, LogP = -11.98), and “response to xenobiotic stimulus” (56

genes, LogP = -11.43). The hub genes from magenta module were

significantly clustered in 43 main biological processes or
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FIGURE 1

Module detection and ATC-specific module identification. (A) Hierarchical clustering dendrogram of the top 20% variant genes. The color row
underneath the dendrogram displays the corresponding module assignment determined by the Dynamic Tree Cut. One color represents one
module. (B) Heatmap diagram of topological overlap in the gene network drawn based on 400 selected genes. Each row and column
correspond to a gene, dark red color represents low topological overlap, and a gradually lighter color denotes higher topological overlap.
Lighter squares along the diagonal correspond to modules. The gene clustering dendrogram and module assignment are exhibited along the
left and top. (C) Heatmap of the correlations between module eigengenes and various subtypes of thyroid cancer samples, including normal
thyroid samples. The table is color-coded by correlation based on the color legend, blue color represents negative correlation, while red color
represents positive correlation. The number in the rectangle is the concrete correlation coefficient and p-value (in the bracket). Modules marked
in red are those that are significantly positively or negatively correlated only with ATC. (D) Barplot of mean ATC-based GS across modules
(module significance). The higher the mean GS in a module, the more significantly correlated the module is to ATC. Normal, normal thyroid
tissue samples; PTC, papillary thyroid carcinoma; FTC, follicular thyroid carcinoma; PDTC, poor-differentiated thyroid carcinoma; ATC,
anaplastic thyroid carcinoma.
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FIGURE 2

Function and pathway analyses of hub genes in ATC-specific modules. (A–C) The top 20 biological signals or pathways significantly enriched by
hub genes of turquoise, magenta, and blue module, respectively. (D) All biological signals or pathways significantly enriched by the hub genes of
the purple module. (E–H) KEGG pathways significantly enriched by hub genes of turquoise, magenta, blue, and purple module, respectively,
among which, the top 20 pathways were shown for the blue module.
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pathways (Figure 2B and Supplementary Table 4) and the top five

of which were “NABA core matrisome” (30 genes, LogP = -37.97),

“extracellular matrix organization” (28 genes, LogP = -33.34),

“skeletal system development” (22 genes, LogP = -18.98), “Burn

wound healing” (11 genes, LogP = -13.43), and “miR-509-3p

alteration of YAP1/ECM axis” (7 genes, LogP = -13.03). For blue

module, the hub genes from it were significantly gathered in a total

of 287 main biological processes or pathways (Figure 2C and

Supplementary Table 5) and the top five of which were

“inflammatory response” (103 genes, LogP = -70.90), “innate

immune response” (120 genes, LogP = -69.29), “regulation of

leukocyte activation” (110 genes, LogP = -68.33), “leukocyte

activation” (101 genes, LogP = -67.62), and “positive regulation

of immune response” (103 genes, LogP = -66.17). As for the purple

module, the hub genes from it were significantly enriched in 11

main biological processes or pathways (Figure 2D and

Supplementary Table 6), the top three of which were “formation

of the cornified envelope” (10 genes, LogP = -14.81), “type I

hemidesmosome assembly” (4 genes, LogP = -9.02), “NABA ECM

regulators” (6 genes, LogP = -6.10). Apart from these, we noted

that 96 hub genes in blue module were significantly enriched in

“immunosuppression” (LogP = -54) according to DisGeNET

(Supplementary Table 7) and based on PaGenBase, 131, 102,

and 47 hub genes in blue module were significantly enriched in

spleen (LogP = -100), blood (LogP = -100), and thymus (LogP =

-34), respectively (Supplementary Table 7). Moreover, 29 hub

genes of the turquoise module, 4 hub genes of the magenta

module, and 14 hub genes of the blue module were discerned to

be regulated by TP53 (Supplementary Table 7). Based on the

cBioPortal database, we found that TP53 mutation was present in

more than 60% of ATC patients much more than in other thyroid

cancer patients (PTC, FTC, and PDTC), and significantly

associated with the overall survival of patients with thyroid

cancer (p = 0) (Supplementary Figure 4).

In the meantime, we also applied the R package to

implement KEGG pathway enrichment analysis and found

that 2 pathways were significantly enriched by turquoise

module genes, which were “thyroid hormones synthesis” and

“glutathione metabolism” (Figure 2E and Supplementary

Table 8), 11 pathways were enriched by magenta module

genes, such as “protein digestion and absorption”, “focal

adhesion”, “human papillomavirus infection”, “PI3K-Akt

signaling pathway” , “ECM-receptor interaction” , etc.

(Figure 2F and Supplementary Table 8), a total of 64 pathways

were enriched by blue module genes (Supplementary Table 8),

the top 20 of which were shown in Figure 2G, including

“cytokine-cytokine receptor interaction”, “phagosome”, “viral

protein interaction with cytokine and cytokine receptor”,

“chemokine signaling pathway”, “NF-kappa B signaling

pathway”, “Th1 and Th2 cell differentiation” and so on. For

purple module genes, 3 pathways were significantly enriched by

them, they were “salivary secretion”, “staphylococcus aureus
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infection”, and “estrogen signaling pathway” (Figure 2H and

Supplementary Table 8).

Additionally, we investigated the subcellular localization and

molecular function of these hub genes by applying CC and MF

categories of GO. As listed in Supplementary Table 9, the

turquoise module hub genes are significantly enriched in a

total of 37 CC terms, the top three of which are “condensed

chromosome, centromeric region” (28 genes, p. adjust = 3.49E-

07), “kinetochore” (30 genes, p. adjust = 3.49E-07), and

“chromosome, centromeric region” (37 genes, p. adjust =

3.49E-07); The magenta module hub genes are significantly

enriched in 13 CC terms, the top three of which are “collagen-

containing extracellular matrix” (37 genes, p. adjust = 8.27E-38),

“collagen trimer” (16 genes, p. adjust = 2.35E-20), and

“endoplasmic reticulum lumen” (22 genes, p. adjust = 2.54E-

19); The blue module hub genes are significantly enriched in a

total of 58 CC terms, the top three of which are “external side of

plasma membrane” (58 genes, p. adjust = 4.06E-22), “secretory

granule membrane” (42 genes, p. adjust = 3.18E-15), and “MHC

protein complex” (12 genes, p. adjust = 1.51E-10); The purple

module hub genes are significantly enriched in 8 CC terms, the

top three of which are “intermediate filament” (6 genes, p. adjust

= 0.0002), “cornified envelope” (4 genes, p. adjust = 0.0002), and

“intermediate filament cytoskeleton” (6 genes, p. adjust =

0.0002). While the MF terms enriched are listed in

Supplementary Table 10, the turquoise module hub genes are

significantly enriched in two MF terms, which are “cell-cell

adhesion mediator activity” (15 genes, p. adjust = 0.0007) and

“cell adhesion mediator activity” (16 genes, p. adjust = 0.0007);

The magenta module hub genes are significantly enriched in 22

MF terms, the top three of which are “extracellular matrix

structural constituent” (29 genes, p. adjust = 1.64E-36),

“extracellular matrix structural constituent conferring tensile

strength” (14 genes, p. adjust = 2.37E-21), and “platelet-

derived growth factor binding” (7 genes, p. adjust = 7.90E-13);

The blue module hub genes are significantly enriched in a total

of 62 MF terms, the top three of which are “immune receptor

activity” (38 genes, p. adjust = 2.76E-24), “cytokine receptor

activity” (27 genes, p. adjust = 2.05E-16), and “cytokine binding”

(28 genes, p. adjust = 4.19E-14); The purple module hub genes

are significantly enriched in 7 MF terms, the top three of which

are “structural constituent of cytoskeleton” (5 genes, p. adjust =

0.0002), “endopeptidase inhibitor activity” (5 genes, p. adjust =

0.0009), and “peptidase inhibitor activity” (5 genes, p. adjust

= 0.0009).

These results indicated that the co-expression modules detected

were biologically meaningful and uncovered that mitotic cell cycle,

cell differentiation, blood vessel morphogenesis, cell motility,

immune system, or others beyond our knowledge were

responsible for fatal traits of ATC, especially turquoise, magenta,

and blue modules. Therefore, we decided to further validate

potential key drivers of ATC from these three modules.
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Potential key drivers in ATC

A total of 2272 hub genes in turquoise, magenta and blue

modules are plentiful, as well as biological processes and

pathways enriched by them, thus we just attempt to focus on

the most potential, functional, and specific ones in ATC. To our

knowledge, TF, with global functions, can regulate the

transcription of other genes by binding to specific DNA

sequences and are relevant to many diseases and phenotypes

(45). Immune checkpoints have promising therapeutic prospects

(12, 46, 47). Therefore, we took TFs and immune checkpoints

into account apart from the top 3 hub genes with the highest aGS

in each module. Consequently, we found 70 TFs from the
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turquoise module hub genes, 5 TFs from the magenta module,

26 TFs from the blue module, and 11 immune checkpoint genes

from the blue module (Figure 3A). In addition to novel TFs and

ICGs in ATC, we noted that several genes identified had been

widely accepted in ATC and even had been applied in the clinic,

like CTNNB1, PAX8, FOXE1, and CD274 (PD-L1) (12, 48–50)

(Supplementary Table 11). Under the consideration that

different module reflects different biological signals and too

many TFs, we finally selected the top 3 genes and the top 3

TFs with the highest aGS in each module and 11 immune

checkpoint genes (ICGs) as candidate genes. Combined with

DEGs, we discovered that a total of 20 candidate genes (9 top

genes ADAM12, TWIST1, SRPX2, RNASE2, SIRPB2, CASP5,
A B

C

FIGURE 3

Potential key drivers screening from ATC-specific modules. (A) TF and immune checkpoint gene detection. (B) Candidate genes are the top 3
genes and TFs with the highest aGS in turquoise, magenta, and blue modules, and ICGs in the blue module. Combined with differentially
expressed genes in ATC compared to normal thyroid tissue samples and PTC to identify 20 key genes. (C) The hierarchical clustering heatmap
shows expression levels of these 20 hub genes across all samples and gathers ATC samples together. TF, transcription factor; ICG, immune
checkpoint gene; N, normal thyroid samples.
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IL10, TSHR, and KIAA1524), 8 top TFs TWIST1, SNAI2, ELF4,

IFI16, MYBL1, FOXE1, E2F7, and SHOX2, and 4 ICGs (CD86,

CD274, HAVCR2, and TDO2) were differentially expressed in

ATC tissue samples compared to normal thyroid tissue samples

and PTC tissue samples, of which 18 genes (ADAM12, TWIST1,

SRPX2, RNASE2, SIRPB2, CASP5, IL10, KIAA1524, SNAI2,

ELF4, IFI16, MYBL1, FOXE1, E2F7, CD86, CD274, HAVCR2,

and TDO2) were up-regulated in ATC while 2 genes (FOXE1

and TSHR) were down-regulated (Figure 3B and Supplementary

Table 12). In addition, based on the expression profile of these 20

genes, ATC samples were successfully clustered together

(Figure 3C). More convincingly, AUCs of ROC curves of these

20 genes were all over 0.9 except for CD274 (Figure 4 and

Supplementary Figures 5A–K), suggesting that these genes were

specific to ATC and could distinguish it from other types of

thyroid cancer as ATC-specific markers like CDH1 (AUC =

0.99) and PAX8 (AUC = 0.97) (Supplementary Figures 5L, M),

and maybe even have more diagnostic value than some other
Frontiers in Oncology 11
existed markers of ATC, such as CTNNB1 (AUC = 0.76) and

TTF1 (AUC = 0.58) (Supplementary Figures 5N, O) at the

mRNA expression level.
Key gene validation in clinical samples

Among these 20 key genes, five genes TWIST1 (45), SNAI2

(46), TSHR (47), FOXE1 (48), and CD274 (PD-L1) (49) have

been reported to be differentially expressed in ATC compared to

normal thyroid samples and other thyroid cancer samples both

at mRNA and protein expression levels. Therefore, we further

validated the other 15 key genes at the mRNA level using our

clinical samples (12 paired normal and PTC samples and one

ATC sample). The results showed that a total of nine key genes

ADAM12, CASP5, RNASE2, KIAA1524, E2F7, MYBL1, SRPX2,

HAVCR2, and TDO2 were significantly up-regulated in this one

ATC sample compared to PTC and/or paired normal thyroid
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FIGURE 4

Diagnostic ROC analysis of hub genes. (A–I) The top nine key genes with the largest AUC of ROC.
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samples (p < 0.01, Figures 5A–H), among which E2F7 and

MYBL1 were TFs, and HAVCR2 and TDO2 were ICGs. While

other key genes had no or less significant changes in this one

ATC sample compared to PTC or paired normal thyroid

samples (p > 0.05 or p < 0.05, Supplementary Figure 6A).

Consequently, we selected the top significantly up-regulated

key gene and TF obtained from different modules (ADAM12

from the magenta module, KIAA1524 and E2F7 from the

turquoise module, and RNASE2 and MYBL1 from the blue

module), and the top up-regulated ICG, HAVCR2 for their

protein expression verification through the WB experiment. As
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shown in Figure 5J and Supplementary Figures 6B–F, all target

proteins had expressions in this one ATC sample (at least two

duplicates), while in PTC and paired normal thyroid tissue

samples, their expression levels varied. However, with our

available protein samples of clinical tissues, we found only one

protein ADAM12 was significantly up-regulated in this one ATC

sample compared to PTC and paired normal thyroid samples (p

< 0.001, Figure 5K), while other proteins had no significant

overexpression (Supplementary Figure 6G) and the expression

of one protein HAVCR2 was hard to be quantitatively evaluated

because the objective and nonspecific bands of it were difficult to
A B D E

F G IH

J

K

L

C

FIGURE 5

Validation of novel ATC-specific key genes. (A–I) The mRNA expression levels of nine key genes in one ATC sample compared to PTC and
paired normal thyroid samples evaluated using qRT-PCR. Among them, E2F7 and MYBL1 are TFs, HAVCR2 and TDO2 are ICGs. (J, K) Protein
expression levels of top four driver genes in clinical samples detected by western blotting (WB) and the corresponding semi-quantitative analysis
of ADAM12. (L) Representative immunohistochemistry (IHC) staining for ADAM12, HAVCR2, and RNASE2 expression in clinical samples (X 400).
**p < 0.01, ***p < 0.001, ****p < 0.0001. NP, PTC paired normal thyroid tissues; NP1-6, normal thyroid tissues from PTC patients numbered 1-
6; PTC1-6, PTC tissues from PTC patients numbered 1-6; ATCr, ATC tissues from one ATC patient; ns, no significance.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1018479
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Dong et al. 10.3389/fonc.2022.1018479
be separated (Supplementary Figure 6D). Meanwhile, the

protein expression levels of ADAM12, HAVCR2, and RNASE2

were assessed using IHC. As shown in Figure 5L and

Supplementary Figure 7), all of them had positive expressions

in this one ATC sample. However, the results of IHC were hard

to be semi-quantitatively analyzed due to too much nonspecific

staining in PTC and paired normal thyroid tissue samples.

Furthermore, we performed triple immunofluorescence

staining for ADAM12, HAVCR2, and RNASE2 to further

investigate their locations in PTC and ATC cells. As shown in

Figure 6, these three proteins were almost located in the same

cells in the same tissue microenvironment and all of them were

predominantly present in the cytoplasm.
Key gene co-expression network and
biological signals involved

Combined with existing studies and our validation results,

we found that key genes TSHR and KIAA1525 from the

turquoise module, ADAM12 and TWIST1 from the magenta

module, and RNASE2 and CASP5 from the blue module with

higher aGS for ATC may play more crucial roles in ATC.

Therefore, we extracted co-expressed genes of them and

performed enrichment analysis on these genes to further prove

their pivotal roles in ATC and to investigate functions and
Frontiers in Oncology 13
pathways they may participate in. We selected co-expressed

genes having a weighting coefficient over 0.1 with the key gene

for the turquoise module while over 0.05 for magenta and blue

modules to visualize networks and to explore functions and

pathways involved because genes in the turquoise module were

too many. In consequence, TSHR had a total of 732 co-expressed

genes, of which 250 were KIAA1524 co-expressed genes,

including E2F7 (Figures 7A, B). These genes were mainly

enriched in “mitotic cell cycle”, “Resolution of Sister

Chromatid Cohesion”, “microtubule-based process” and so on

(Figure 7C), indicating that TSHR and KIAA1524 may be

regulated by E2F7 and promote ATC though these biological

processes and pathways. ADAM12 had 32 co-expressed genes,

while TWIST1 had 28, of which 25 were overlapped (Figures 7D,

E). All of these genes primarily clustered in “NABA CORE

MATRISOM”, “extracellular matrix organization”, “regulation

of angiogenesis”, etc. (Figure 7F), and ADAM12 was co-

expressed with TWIST1 (Figure 7D), suggesting that ADAM12

may be regulated by TWIST1 and contribute to ATC by these

biological processes and pathways. RNASE2 had 166 co-

expressed genes, while CASP5 had 346 including MYBL1, of

which 163 were overlapped, containing HAVCR2 and TDO2

(Figures 7G, H). These genes were chiefly gathered in

“inflammatory response”, “regulation of leukocyte activation”,

“cellular response to cytokine stimulus”, etc. (Figure 7I),

implying that RNASE2 and CASP5 may interact with

HAVCR2 and TDO2 to facilitate ATC via immune evading

and immunosuppression, and CASP5 might be regulated

by MYBL1.
Discussion

Cancer is an extremely heterogeneous disease, which must be

manipulated by specific drivers in various types of cancer. ATC is a

kind of thyroid cancer with much more aggressive behaviors than

other thyroid cancer, like PTC, FTC, and PDTC (6, 7). Nevertheless,

the underlying mechanisms and key driver molecules promoting

ATC traits remain unknown.We assumed that some hallmarks not

just one must be responsible for the overgrowth and progression of

ATC within a few months. Up to now, a total of 14 hallmarks of

cancer have been concluded. They are 14 biological capabilities

acquired during the multistep development of human carcinoma,

including sustaining proliferative signaling, evading growth

suppressors, avoiding immune destruction, enabling replicative

immortality, tumor-promoting inflammation, activating invasion

& metastasis, inducing or accessing vasculature, genome instability

& mutation, resisting cell death, deregulating cellular metabolism,

unlocking phenotypic plasticity, nonmutational epigenetic

reprogramming, polymorphic microbiomes, and senescent cells

(51, 52). These hallmarks may provide reasons for the biological

behavior of tumors. In this study, we attempted to provide new

insights into ATC-specific tumor biology explored by WGCNA.
FIGURE 6

Typical triple immunofluorescence staining for ADAM12 (red),
HAVCR2(green), and RNASE2 (purple) localization in PTC and
ATC samples (X 400).
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FIGURE 7

Co-expressed networks of two top genes and enrichment analysis. (A) Co-expressed hub genes of TSHR and KIAA1524 in the turquoise
module. Each node represents a gene. The blue nodes denote lower expressed genes in ATC compared to normal thyroid samples, while the
red nodes denote higher expressed genes. The darker the node, the more differentially expressed the gene between ATC and normal thyroid
samples. The edges between nodes indicate co-expression between them. The darker the edges, the stronger the co-expression relationship.
(B) Overlapping co-expressed genes of TSHR and KIAA1524. (C) Top 20 Biological processes and pathways enriched by all co-expressed genes
of TSHR and KIAA1524. (D–F) The same as A-C, but in the magenta module and two key genes ADAM12 and TWIST1 in this module. (G–I) The
same as A-C, but in the blue module and two key genes RNASE2 and CASP5 in this module.
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WGCNA can detect modules that relate to external clinical

traits, and these modules can reflect true biological signals, like

pathways (36). Therefore, we identified ATC-specific modules

through WGCNA and then investigated ATC-specific functions

and pathways enriched by hub genes of these modules instead of

by DEGs in ATC compared to normal thyroid samples or other

thyroid cancers like previous studies. As such, the dominant

perturbations contributing to ATC-specific tumor biology could

be revealed, as well as the most potential driver genes. As

expected, the three most potential ATC-specific modules were

detected and colored by turquoise, magenta, and blue. With

enrichment analysis, we revealed that hub genes in the turquoise

module were mainly enriched in mitotic cell cycle, tube

morphogenesis, cell differentiation, and cell-cell adhesion, and

hub genes in the magenta module were mainly clustered in the

extracellular matrix organization, blood vessel development,

positive regulation of cell motility, and regulation of Wnt

signaling pathway, while hub genes in the blue module mainly

participated in the inflammatory response, innate immune

response, and adaptive immune response (Figures 2A–C).

Dysregulations of these biological processes and pathways can

facilitate ATC growth and metastasis. For instance, up-regulated

mitogenic signaling will accelerate the cell growth-and-division

cycle and thus make the tumor large fast, undifferentiated cells

have pliability in cell state, which can enhance multiple aspects

of tumor progression (53), and the vasculature of invasive tumor

is continually sprouting new vessels to sustain expand neoplastic

growth, while extracellular matrix organization alteration (54),

Wnt signaling pathway activation, and cancer immunoediting

will promote tumor metastasis (51, 52, 55). Therefore, these

findings may provide clues to elucidate molecular mechanisms

underlying ATC aggressive behaviors and might make it possible

to offer novel early diagnostic biomarkers and multiple

therapeutic targets for ATC patients with more specificity.

In addition, we noticed that hub genes of the blue module

were mainly located on the external side of the plasma membrane

and were involved in immunosuppression. Theoretically,

molecules on the outside of the cell membrane are easier to be

identified and targeted, which will facilitate the development of

new treatment targets for ATC patients in the clinic. While

immunosuppression is a key factor in tumor progression. Our

study may lay a foundation for further exploring the

immunosuppression mechanism of ATC and provide novel

targets for immunotherapy. Apart from those, we also noted

that there were hub genes regulated by TP53 in these three

ATC-specific modules. Furthermore, based on the cBioPortal

database, we discerned that much more TP53 mutation existed

in ATC than in other thyroid cancers consistent with several

previous studies (3, 14, 16, 56), and patients with TP53 mutation

had poorer overall survival, suggesting that TP53 mutation may

play an important role in occurrence and development of ATC.

The current study might provide novel ATC-specific genes

involved in the TP53 signaling pathway.
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After confirming true biological signals could be reflected by

these three ATC-specific modules, from which, we further

screened out 9 top genes and 8 TFs with the highest aGS for

ATC, as well as 4 ICGs, of which 18 genes (ADAM12, TWIST1,

SRPX2, RNASE2, SIRPB2, CASP5, IL10, KIAA1524, SNAI2,

ELF4, IFI16, MYBL1, SHOX2, E2F7, CD86, CD274, HAVCR2,

and TDO2) were up-regulated in ATC, while 2 genes (FOXE1

and TSHR) were down-regulated, and all of them were specific to

ATC and had diagnostic values for ATC patients. To our

knowledge, 5 genes TWIST1, SNAI2, TSHR, FOXE1, and

CD274 (PD-L1) have been reported to be differentially

expressed in ATC compared to normal thyroid samples and

other thyroid cancer samples and one gene (E2F7) has been

identified in ATC but without confirmation in clinical samples

(20) or without comparisons to other thyroid carcinomas (57).

Paolo Salerno et al. revealed that TWIST1 was up-regulated in

ATC compared to normal thyroids, WDTC and PDTC, and

could promote cell migration, invasion, and resistance to

apoptosis (58). It is widely accepted that SNAI2 is one effector

of epithelial-mesenchymal transition and a repressor of E-

cadherin (59). One research revealed that SNAI2 was more

expressed in ATC than in normal tissues and other thyroid

cancers (60). Very little expression of TSHR and FOXE1 are

detected in ATC and their expression levels have positive

correlations with the degree of differentiation (50, 61). PD-L1,

which is a promising treatment target for ATC patients recently

(12) but is positively expressed in less than 30% of ATC samples

(46, 62) and thus more potential effective targets are needed to be

developed for ATC.

Therefore, we validated the remaining 15 novel ATC-specific

genes including E2F7 with our clinical samples (12 paired normal

and PTC tissue samples and one ATC sample) and demonstrated

that 8 out of them (ADAM12, RNASE2, CASP5, KIAA1524, E2F7,

MYBL1, SRPX2, and HAVCR2) were highly expressed in this one

ATC sample compared to PTC and paired normal thyroid samples

at mRNA expression level. Unfortunately, with our limited protein

samples, we showed that only one protein ADAM12 had higher

expression in one ATC sample relative to PTC and paired normal

thyroid samples. Notably, we found that tightly co-expressed genes

of validated top key genes mainly enriched in mitotic cell cycle,

regulation of Wnt signaling pathway, extracellular matrix

organization, regulation of angiogenesis, positive regulation of cell

motility, cell differentiation, inflammatory response, adaptive

immune system and so on, suggesting that these key genes were

likely to contribute to ATC through these biological processes or

pathways and play pivotal roles in them, and thus might be

promising diagnostic and therapeutic targets for ATC patients in

the clinic. ADAM12 could promote cell invasion, metastasis, and

apoptosis (63, 64). Of note, our study showed that ADAM12 was a

co-expressed gene of TWIST1 and Mark A. Eckert et al. elucidated

that ADAM12 regulated by TWIST1 could enhance tumor invasion

and metastasis through invadopodia and focal adhesion in breast

cancer cells (65), indicating that their regulatory relationship might
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exist in ATC cells. Another study revealed that LINC00284 might

promote the progression of thyroid cancer by competitively binding

to miR-30d-5p and thus activating ADAM12-dependent Notch

signaling pathway (66). A recent study reported that E2F7 could

enhance PTC cell growth (67). Tingting Chao and co-workers

revealed that KIAA1524, also known as CIP2A, was more expressed

in PTC than in thyroid non-tumor tissues and benign tumor tissues

(68). A large cohort study discovered that HAVCR2 (TIM-3) was

positively expressed in 48% medullary thyroid carcinoma (69).

The present study has some limitations. First, we selected

and downloaded six datasets of thyroid cancer from GEO

database. Due to integrating different dataset, we employed

PCA and hierarchical cluster to ensure the availability of data

for WGCNA and removed batch effects for DEG analysis in

addition to raw data quality control and preprocessing. These

measures to some extent guarantee the reliability of our research

results. However, our validated samples are limited, especially

ATC sample, just one. Therefore, more clinical samples are

essentially needed to prove our findings. Second, our study

provided three ATC-specific modules and revealed biological

signals involved in, all hub genes of which may contribute to

ATC. However, we just chose top 3 hub genes and TFs with

highest aGS and currently potential ICGs from three ATC-

specific modules for further validation. Helpfully, we listed all

hub genes in tables behind biological signals enriched, which

may offer a clue for other researchers to further investigations.

Third, for key novel ATC-specific genes screened in this study,

we performed preliminary verification, in vivo and in vitro

experiments will be certainly indispensable to uncover the

molecular mechanisms underlying aggressive phenotypes of

ATC and further clinical trials must be carried out.

In conclusion, by employing WGCNA on a gene expression

matrix covering normal thyroid samples and other thyroid cancer

(PTC, FTC, and PDTC) samples, we detected three most potential

ATC-specific modules, based on which, we revealed biological

signals and pathways altered in ATC and validated 8 novel ATC-

specific genes in addition to confirming existed ones. This study

may throw a light on molecular mechanisms underlying aggressive

phenotypes of ATC and provide novel diagnostic biomarkers and

therapeutic targets for ATC patients.
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