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Introduction

Recent single-cell level sequence analysis in pancreatic cancer, which is a

representative of intractable gastrointestinal cancers, revealed that the tumor tissue

comprised of not only epithelial malignant cancer cells but also stromal activated

fibroblasts and infiltrated immune cells. This indicates that various changes in gene

expression occur in cells, including changes in cell-to-cell communication, to form a

microenvironment that is characteristic of cancer (1–6). Epithelial malignant cancer cells

harbor “big 4” driver mutations, that is, substitutions or alterations of nucleotides in

KRAS proto-oncogene, GTPase (KRAS), tumor protein P53 (TP53), and cyclin-

dependent kinase inhibitor 2A (CDKN2A), and mothers against decapentaplegic

homolog 4 (SMAD4) commonly occurs in pancreatic ductal adenocarcinoma (PDAC)

(https://portal.gdc.cancer.gov), which can be useful for predicting survival in patients

with resected PDAC (7). Conversely, numerous gene expression alterations, due to

cancer-specific transcription, RNA processing, and translations, are demonstrated by

mesenchymal components, which include activated fibroblasts, vascular endothelial cells,

and immune cells (8, 9). Importantly, this cancer-specific alterations induce the

production of abnormal peptides and proteins with deleterious degenerations, which

led to anti-apoptotic and pro-survival signals in cell-to-cell communication among

tumor-component cells, contributing to biologically malignant phenotypes such as

epithelial-to-mesenchymal transition phenotypes, invasion, and metastasis (8, 9). Thus,

the aberrant protein production is important for the development of cancer-specific
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therapeutic approaches. Eventually, studies on mutation-prone

tumors indicated that the mismatch-repair status predicted the

clinical benefit of immune checkpoint blockade with anti-

programmed cell death 1 reagents (10–12), suggesting that

genetic mutations and resultant production of aberrant

peptides or proteins may sensitize the response to cancer

therapy. Recent studies have emerged that the importance of

the regulation of aberrant protein production (RAPP) in many

secretary and membrane proteins (13–16), playing a role in

epithelial cancer cell and activated fibroblast or immune cell

communication, the process associated with patient survival (6).

In this article, we focused on the mechanism of RAPP in

gastrointestinal cancer, especially pancreatic cancer, and

explored the possibility of an innovative approach against

intractable cancers.
RAPP in cancer

The process of RAPP is mediated by a signal recognition

particle (SRP), a ubiquitous initiator of protein translation (17),

which is composed of six protein subunits arranged on a

noncoding RNA, 7SL1 (16). The Alu domain is associated

with SRP9 (9 kDa; encoded at the cytogenetic band 1q42.12)

and SRP14 (14 kDa; encoded at the cytogenetic band 15q22)

proteins, whereas the signal recognition domain is bounded by

SRP19 (19 kDa; encoded at the cytogenetic band 5q22.2), SRP54

(54 kDa; encoded at the cytogenetic band 14q13.2), SRP68

(68 kDa; encoded at the cytogenetic band 17q25.1), and SRP72

(72 kDa; encoded at the cytogenetic band 4q12) proteins (16).

Given that an SRP is a complex composed of multiple proteins

encoded by multiple regions, it is suggested that it is responsible

for a finely regulated mechanism (16, 17). This mechanism is

also conserved across species, of which disruption can lead to

various human diseases (16, 17). Here, we focused on the role of

SRP in gastrointestinal cancers.
SRP

Studies on the Alu-domain associated with SRP9 and SRP14

indicated that they are involved in several human cancers and can

beusedasdiagnosticmarkers.Theproteomic expressionanalysisof

human colorectal cancer showed the upregulation of SRP9 with

hypoxic adaptation of the tumor microenvironment of

heterogeneous primary human tumor tissues (18), suggesting the

role of SRP9 in RAPP in cancer. Interestingly, in adenosine-to-

inosine RNA editing, 10 recurrent nonsynonymous RNA editing

candidates were identified in nine genes, including the gene for

SRP9 (19), indicating that the mechanism of those genes not

directly encoded in the genomic DNA is implicated in colorectal

cancer. The nucleotide sequence analysis of non-Hodgkin B-cell

lymphoma, a hematopoieticmalignancy, allowed the identification
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of an aberrant fusion gene of SRP9 conjoined with epoxide

hydrolase 1 (EPHX1, encoded at the cytogenetic band 1q42.12)

(20), suggesting that the mechanism that converts epoxides from

the degradation of aromatic compounds to trans-dihydrodiols

resulting in secretion from cells may be involved in this disease.

The study of dysregulated RNA binding proteins identified 11

candidates of RNA binding proteins, including SRP14, which are

involved in the hepatitis B virus (HBV)-related hepatocellular

carcinoma prognosis (21), indicating that RAPP may be involved

in the mechanism such as the HBV lifecycle and the progression of

this disease. The study of pancreatic cancer PSN-1 cells indicated

that the knockdown of SRP72 resulted in a significant increase in

sensitization to radiation therapy asmeasured by colony formation

assays, indicating that SRP72 is amarker of radiotherapy resistance

against cancer (22).
7SL1

Previous studies indicated that 7SL1, a noncoding RNA that

binds to proteins to execute potent post-transcriptional regulation,

is upregulated in cancer cells (23). It was demonstrated that 7SL1

binds to the 3’-untranslated region (UTR) of mRNA of tumor

suppressorTP53and that the interactionof 7SL1withTP53mRNA

reduced the translation of p53 protein. On the other hand, the

silencing of 7SL1 resulted in the increased binding of embryonic

lethal, abnormal vision, Drosophila (ELAV)-like 1, Hu Antigen R

(HuR) to TP53mRNA, an interaction that led to the promotion of

p53 translation, which reveals the competitive mechanism of 7SL1

andHuR for binding toTP53 3’-UTR(23).HuR selectively binds to

adenylate-uridylate-(AU)-rich elements (AREs) found in the 3’-

UTRs of various mRNAs. Given that AREs stimulate the

degradation of mRNAs, HuR plays a role in stabilizing ARE-

containing mRNAs by inhibiting degradation (24). The HuR is

highly expressed in many cancers, including pancreatic cancer,

functions as the post-transcriptional regulator of core metabolic

enzymes, and is critical for survival under acute glucose deprivation

in pancreatic cancer cells (25). In hepatocellular carcinoma,Wilms

tumor 1-associating protein (WTAP) is significantly upregulated,

and avian erythroblastosis virus E26 (V-Ets) oncogene homolog-1

(ETS1) was identified as the downstream effector of WTAP,

suggesting that WTAP-guided m6A modification contributes to

the progression of hepatocellular carcinoma via the HuR-ETS1-

cyclin dependent kinase inhibitor 1A (p21)/cyclin dependent

kinase inhibitor 1B (p27) axis (26). In pancreatic cancer, the role

of mRNA modification at m6A in polo-like kinase 1 in cell cycle

homeostasis was demonstrated (27), although the involvement of

HuR and 7SL1was elusive, suggesting that 7SL1 is involved, at least

partially, in the process of antagonizing to p53 (Figure 1).

A study on forkhead box P3 (FOXP3), a transcription factor

that is crucial for the development and inhibitory function of

regulatory T-cells (Treg), indicated that overexpression of FOXP3

resulted in the repression of the transcription of 7SL1, whereas the
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knockdown of FOXP3 showed the upregulation of 7SL1 RNA

transcription (28). The mechanism was confirmed by chromatin

immuno-precipitation analysis and reporter assay (28). The study

showed that FOXP3 promoted the expression of TP53 at the

translational levels through repressing 7SL1 RNA (28). However,

considering the recent study that indicated that Treg is

chemoattracted to the tumor microenvironment by chemokine

gradients such as C-C motif chemokine receptor 4 (CCR4)-C-C

motif chemokine ligand 17 (CCL17)/CCL22, CCR8-CCL1,

CCR10-CCL28, and CXCR3-CCL9/10/11, it is demonstrated that

Treg cells are activated and inhibit antitumor immune responses,

suggesting that strategies to deplete Treg cells and the control of

Treg cell functions to increase antitumor immune responses are

required in cancer immunotherapy (29), which demonstrates the

multifaceted role of Treg in cancer. Given that FOXP3 unlikely

represents the effect on 7SL1 exclusively inTreg cells, whether 7SL1

is an appropriate target to control Treg remains to be investigated.

Although a role of the polycomb repressive complex 2

(PRC2) component, working on the enhancer of zeste 2

polycomb repressive complex 2 subunit (EZH2)-mediated

epigenetic control of RNA polymerase II (Pol II) transcribed
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coding gene transcription, has been well-established, a recent

study on EZH2-mediated epigenetic regulation of RNA

polymerase III (Pol III) transcription indicated that EZH2 is

involved in the repression of Pol III transcription of tRNA(Tyr),

5S rRNA, and 7SL1 RNA genes via the interaction with

transcriptional factor complex IIIC (TFIIIC) as well as SUZ12

polycomb repressive complex 2 subunit (SUZ12) (30),

suggesting that basic mechanisms common to cells, which are

specific mechanisms to cancer, are involved in 7SL1 regulation.

Thus, it is necessary to study the upstream regulation of 7SL1

transcription in cells, which responds to various stimuli such as

hypoxia and hyponutrition that are characterized by the

extracellular tumor microenvironment.
Damage-associated molecular
patterns in cancer-associated
fibroblasts-to-cancer cell interactions

In a single-cell sequence analysis (1–6), it was well-

recognized that interactions between cancer cells and CAFs in
A B

FIGURE 1

The role of endogenous immune stimulatory noncoding RNA 7SL1 in the pathway for the regulation of the aberrant protein production (RAPP)
and its possible application in cancer therapy. (A) Transcriptional regulation of 7SL1 and the downstream mechanism for tumor suppressor
tumor protein P53 (TP53). MYC, proto-oncogene, basic helix-loop-helix (BHLH) transcription factor (MYC); FOXP3, forkhead box P3; PRC2,
polycomb repression complex 2; SUZ12, SUZ12 polycomb repressive complex 2 subunit; EZH2, enhancer of zeste 2 polycomb repressive
complex 2 subunit; Pol II, RNA polymerase II; Pol III, RNA polymerase III; SRP, signal recognition particle; RIG-1, retinoic acid-inducible gene 1
protein; MDA5, melanoma differentiation-associated gene 5; HuR, embryonic lethal, abnormal vision, Drosophila (ELAV)-like 1, Hu antigen R.
(B) Although the unshielded 7SL1-mediated stimulation of tumor tissues can result in disease progression, the exosomal delivery of 7SL1 or its
combination with engineering chimeric antigen receptor (CAR)-T cells can stimulate an anti-tumor effect and lead to a favorable disease
outcome. Ag, antigen.
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stroma generate signals for cancer progression, inflammatory

responses, and therapeutic outcomes (31–33). Previous reports

have indicated that the arrangement of SRPs in 7SL1 is necessary

to execute a physiological function of PARP in DAMPs (34).

Reportedly, SRP dysfunction resulted in the induction of

invasion and metastasis of cancer cells, which is associated

with the evacuation from host’s immune response. A previous

study elucidated that SRPs and 7SL1 are involved in the process

of such signal, which revealed the importance of endogenous

RNA response acting as damage-associated molecular patterns

(35). In this study, it was demonstrated that triggering of notch

receptor 1-MYC proto-oncogene and basic helix-loop-helix

(BHLH) transcription factor (MYC) signaling in the stroma of

breast cancer results in the activation of Pol III-driven increase

in 7SL1, which is normally shielded by SRP9 and SRP 14 (35).

The induced 7SL1 transcription resulted in an alteration of its

stoichiometry with SRP9 and SRP 14, which led to the

generation of unshielded 7SL1 in the stromal exosomes (35).

Moreover, the unshielded 7SL1 can drive an inflammatory

response. The unshielded 7SL1 activates the retinoic acid-

inducible gene 1 protein (RIG-I), a pattern recognition

receptor usually reserved for viral infections, to enhance tumor

growth, metastasis, and therapy resistance, suggesting that the

regulation of RNA unshielding can couple stromal activation

with deployment of DAMPs of RNA, which is closely associated

with the aggressive features of cancer (35). This also indicates the

potential of 7SL1 as a target of cancer therapy, considering the

immunogenic property of this endogenous non-coding RNA.

The significant roles of exosome-mediated RNA transfer was

demonstrated in a breast cancer study, indicating that CAFs

orchestrate an intricate crosstalk with cancer cells by utilizing

exosomes (36). The significance in gastrointestinal cancer

warrants further investigation.
Application to chimeric antigen
receptor-T therapy

Recently, it was demonstrated that the immune stimulatory

property can be utilized for the development of CAR-T cell

therapy (37). The vector-mediated gene transfer of 7SL1

activated the RIG-I/melanoma differentiation-associated gene 5

(MDA5) signaling and promoted the expansion and effector-

memory differentiation of CAR-T cells (37). MDA5 binds to

RNAs with a modified DExD/H-box helicase core and a C-

terminal domain, thus leading to a proinflammatory response

that includes interferons (38, 39). RN7SL1 restricts myeloid-

derived suppressor cell development, decreases transforming

growth factor beta 1 (TGFB) in myeloid cells, and fosters

dendritic cell subsets, which led to the endogenous expansion

of effector-memory and tumor-specific T cells (37, 40). It is

suggested that the unshielded form of 7SL1 can be used in

peptide antigens to enhance anti-tumor efficacy (Figure 1).
Frontiers in Oncology 04
Discussion

Despite advances in surgery, standard radiation therapy, and

chemotherapy, immunotherapywas added as a fourth treatment to

cancer, as the discovery of immune modulation through immune

check points and exploration of new combinations of cancer

multimodality therapies led to overcoming long-term resistance

and tumor recurrence (41). Cancer is a genetic disease involving

numerousmutations (42–44), and the evidence that themismatch-

repair status predicted the clinical benefit of immune checkpoint

blockade with pembrolizumab is important (10–12), as this

suggests that the quantity or quality of gene mutations may

influence susceptibility to immune checkpoint inhibitor therapy.

Furthermore, the effect of immunotherapy can be maximized by

regulating gene mutations and the consequent amino acid

mutation neoantigen to eradicate cancer (45–47). If inducing a

hot state in which cell-to-cell interactions are activated

immunologically is possible, immune checkpoint inhibitors can

not only be applied, but cancer-specific antigens can also be

identified and used as vectors or employed as CAR-T therapy

(48, 49). Nevertheless, methods to induce immunologically cold

tumors into hot ones remain to be developed, and further

investigations are necessary for application in a clinical setting.

The RAPP pathway study revealed the immune stimulatory

property of endogenous non-coding RNA, 7SL1, which is a

component of SRPs. A previous study suggests several important

implications. First, given that the co-deploy peptide antigen with

7SL1can exert anefficient anti-tumor effect (36), this approachmay

be useful to treat intractable solid tumors such as mutation-prone

gastrointestinal cancer. Second, considering that unshielded 7SL1

in exosomes can be transferred in the tumor microenvironment

(34), it is possible that the cell-to-cell communication is assessed by

an RNA study in liquid biopsy as a companion diagnostic tool.

Th i rd , a s rad io therapy can induce inflammatory

microenvironment remodeling (50), the combination of RAPP

pathway-mediated stimulatory cancer therapy with radiation may

be useful to induce the immune response to convert an immune

cold into a hot tumor, andmultiple protocols have been developed

(51). Fourth, nucleotide-mediated immune stimulation may be

expanded as an anti-cancer therapy. Eventually, the intratumoral

injectionof the seasonalflu shot cangenerate systemicCD8+Tcell-

mediated antitumor immunity and sensitizes resistant tumors to

the checkpoint blockade, suggesting that it converts

immunologically cold tumors to hot tumors and serves as an

immunotherapy for cancer (52). To optimize the effect of

treatment for intractable cancer, further studies to accumulate

evidence are warranted.
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