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Hemophagocytic lymphohistiocytosis (HLH) is a syndrome of multiorgan system

dysfunction that is caused by hypercytokinemia and persistent activation of

cytotoxic T lymphocytes and macrophages. A nearly ubiquitous finding and a

diagnostic criterion of HLH is the presence of cytopenias in ≥ 2 cell lines. The

mechanism of cytopenias in HLH is multifactorial but appears to be predominantly

driven by suppression of hematopoiesis by pro-inflammatory cytokines and, to

some extent, by consumptive hemophagocytosis. Recognition of cytopenias as a

manifestation of HLH is an important consideration for patients with bonemarrow

failure of unclear etiology.

KEYWORDS

hemophagocytic lymphohistiocytosis, hypercytokinaemia, familial hemophagocytic
lymphohistiocytosis (FHL), macrophage activation syndrome (MAS), cytopenia, bone
marrow failure (BMF)
Introduction

Hemophagocytic lymphohistiocytosis (HLH) is a rare syndrome in which immune

dysregulation and severe pathologic inflammation result in multiorgan dysfunction.

While affected patients share certain clinical features, the inciting event, nature of

external predisposing factors, and presence of underlying genetic predisposition vary

widely. In HLH, the inability of natural killer (NK) and CD8+ cytotoxic T lymphocytes

(CTLs) to provide critical negative feedback in response to an immunologic trigger leads

to uncontrolled activation of CTLs and macrophages and initiation of a “cytokine storm”

(1–3). Peripheral blood cytopenias are a universal feature of HLH and are an important

diagnostic criterion for the syndrome (4–6). The causes of bone marrow failure in HLH

are multifactorial, heterogeneous, and incompletely understood.

Since it was first described in 1939 by Scott and Robb-Smith, HLH has remained

diagnostically challenging with highly variable clinical presentation and no single

pathognomonic feature (7–10). Historically, HLH has been dichotomized as “primary”

(familial or FHL) for those with a family history of HLH or predisposing genetic mutation, or
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“secondary” for those without an identified mutation but with an

underlying infectious, rheumatologic, or malignant disease (6, 11).

There is, however, considerable overlap between the two groups,

with increasing understanding of the role of novel mutations and

monoallelic variants in the pathogenesis of HLH (12–14). In

addition, FHL may be initiated by an inciting infectious or

inflammatory insult, further blurring the line between “primary”

and “secondary” groups.

The constellation of clinical findings and laboratory

abnormalities observed in HLH reflect the common pathway

through which HLH progresses. The Histiocyte Society
Frontiers in Oncology 02
developed standard diagnostic criteria for the disorder and

undertook the HLH94 clinical trial with the goal of improving

survival of children with familial HLH, a uniformly fatal

diagnosis at that time (Table 1) (17). However, the suitability

of these criteria for diagnosing various forms of secondary HLH

is not established. Modified criteria for patients with

rheumatologic disease and underlying malignancy have been

proposed (16, 18, 19). A scoring system termed the Optimized

HLH inflammatory (OHI) index was recently developed to aid

in the diagnosis and management of HLH in the context of

hematologic malignancy (20).
TABLE 1 Diagnostic criteria for HLH.

HLH 2004 (4, 6, 15) H-Score (16)

Category: Criteria: (5 of the following 8) Criteria: Points

Clinical

Fever Temperature ≥ 38.3°C Temperature <38.4°C 0

Temperature 38.4–39.4°C 33

Temperature >39.4°C 49

Organomegaly Splenomegaly None 0

Hepatomegaly OR splenomegaly 23

Hepatomegaly AND splenomegaly 38

Pathological

Hemophagocytosis Bone marrow, spleen, or lymph nodes None 0

Bone marrow 35

Laboratory

Cytopenias ≥ 2 lineages in peripheral blood: 1 lineage 0

Hemoglobin < 9 g/dL
Platelets < 100 × 103/mL
Neutrophils < 1 × 103/mL

2 lineages 24

3 lineages 34

Hypertriglyceridemia Fasting triglycerides
≥ 265 mg/dL

< 1.5 mmol/L 0

1.5–4 mmol/L 44

AND/OR > 4 mmol/L 64

Hyperfibrinogenemia Fibrinogen ≤ 150 mg/dL > 250 mg/dL 0

≤ 250 mg/dL 30

Ferritin ≥ 500 ng/mL < 2,000 ng/mL 0

2,000–6,000 ng/mL 35

> 6,000 ng/mL 50

Soluble CD25
(IL-2 receptor)

≥ 2,400 U/mL N/A

NK cell activity Low or absent NK-cell activity N/A

SGOT/AST N/A < 30 IU/L 0

≥ 30 IU/L 19

OR:

Predisposition Known pathogenic mutation of PRF1, UNC13D, STXBP2,
Rab27a, STX11, SH2D1A, or XIAP

No immunosuppression 0

Long term immunosuppression 18
frontie
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Peripheral blood findings

Cytopenias affecting at least two cell lines are a cardinal feature

of HLH. Thrombocytopenia is almost always present (4, 21). The

platelet count may initially be normal or modestly depressed;

however, it often falls as the disease progresses (22). Normocytic

anemia with reticulocytopenia is also common. Leukopenia and

neutropenia are more variably present (22). For example, 92% of

children enrolled on the HLH2004 trial demonstrated bi-cytopenia

(4). Similarly, among 775 adult patients with HLH, significant

cytopenias were present in the majority: platelets < 100 × 103/mL in

78% and < 10 × 103/mL in 6%; hemoglobin of < 9 g/dL in 67% and <

7 g/dL in 22%; absolute neutrophil count (ANC) < 1 × 103/mL in

42% and < 0.5 × 103/mL in 23% (21).
Bone marrow findings

In patients with HLH, the bone marrow demonstrates diffuse

histiocytic infiltration, histiocyte hyperplasia, and variable

numbers of cytotoxic T-cells (9, 22). Hemophagocytosis, the

pathologic finding of activated macrophages engulfing

erythrocytes, leukocytes, platelets, and their precursor cells, is

variably present (Figure 1). This process occurs not just in the

bone marrow but throughout the reticuloendothelial system,

including in the spleen, liver, and lymph nodes. While the

finding of hemophagocytosis in bone marrow or tissue supports

the diagnosis of HLH in the proper clinical context, it is neither

essential for the diagnosis nor pathognomonic. In a series of 122
Frontiers in Oncology 03
children with HLH from the Histiocyte Society’s International

Registry, only 75% had evidence of hemophagocytosis at diagnosis

(23). Conversely, hemophagocytosis may be present in patients

without HLH. In one study, among 107 adult patients who died of

multiorgan failure unrelated to HLH, none of whom fulfilled

standard HLH diagnostic criteria, 69 (64.5%) demonstrated

histiocytic hyperplasia and hemophagocytosis on postmortem

bone marrow analysis (24). Because of its non-specific nature,

hemophagocytosis must be carefully considered in the context of

other clinical findings.
Familial HLH

Genetic linkage studies performed on families with HLH led

to the discovery of bi-allelic Prf1mutations as the cause of FHL-

2 in 1999 (25). Perforin, encoded by Prf1, is a constituent of

cytotoxic granules within CD8+ cytotoxic T cells and NK cells

(26). Activated CTLs and NK cells form an immunologic

synapse with target cells, such as virally infected or cancer

cells, allowing cytotoxic granules to undergo a complex series

of events through which they dock, prime, and fuse with the

cytoplasmic membrane to release their contents (Figure 2) (27–

31). This leads to perforin-dependent pore formation in the

target cell membrane and allows serine protease granzymes to

induce apoptosis of the target cell (26, 32, 33). Absent or reduced

expression of functional perforin impairs effector function and

clearance of the inflammatory insult, resulting in persistent

activation of this pathway (25).
FIGURE 1

Histopathology of HLH (A) Histopathology of a bone marrow section in HLH demonstrates marrow infiltration by macrophages (hematoxylin
and eosin stained, 400x magnification). (B, C) Bone marrow aspirate stain demonstrates macrophages engulfing hematopoietic cells, including
eosinophils and erythroid precursors (Wright-Giemsa stained, 1000x magnification).
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The finding of Prf1 mutations in families with FHL-2 was

followed by the discovery of the genetic basis for FHL-3, FHL-4,

and FHL-5, which are caused by mutations affecting expression

or function of Munc13-4, Syntaxin11, and Munc18-2,

respectively (Table 2) (34–36). These proteins are necessary

for docking, priming, and fusion of cytotoxic granules with the

T or NK cell membrane (34–36). Other genetic syndromes

associated with defective trafficking of cytotoxic granules,

including Chediak-Higashi syndrome, Griscelli syndrome type

2, Hermansky-Pudlak syndrome type 2, and RhoG deficiency,

are also associated with HLH (Table 2) (1, 37–40, 46).

X-linked lymphoproliferative disease type 1 (XLP1) is caused

by hemizygous mutations in signaling lymphocytic activation

molecule-associated protein (SAP) (41, 42). SAP plays a critical

role in T cell response through interactions with signaling

lymphocyte activation molecules (SLAM) family receptors (47,

48). Patients with XLP1 develop severe, overwhelming immune

dysregulation in the setting of Epstein-Barr virus (EBV)
Frontiers in Oncology 04
infection (47, 48). In X-linked lymphoproliferative disease type

2 (XLP2), mutations in X-linked inhibitor of apoptosis (XIAP)

lead to reduced survival of T and NK cells (43, 49). Patients with

XIAP deficiency have a high incidence of HLH (43, 49).

Collectively, these disorders result in ineffective cytotoxicity of

CTLs and NK cells which results in persistence of the antigenic

stimulus and predisposes to the pathogenesis of HLH.

In patients with HLH, uncontrolled activation of immune

cells leads to production of pro-inflammatory cytokines, which

in turn act to amplify immune dysregulation in an unchecked

positive feedback loop. Multiple cytokines have been implicated

in the pathogenesis of HLH, including interferon-g (IFN- g),
interleukin (IL)-1, IL-2, IL-6, IL-12, IL-18, and tumor necrosis

factor-alpha (TNF-a) (50–52). In FHL, interferon-g has

emerged as a key driver of disease activity (2, 53–55).

Importantly, further insight into the role of individual

cytokines in HLH has potential therapeutic implications (51,

56, 57). For example, neutralization of IFN-g with emapalumab
FIGURE 2

Pathophysiology of HLH Primary HLH arises from defective cytotoxicity in CD8+ T cells or NK cells, allowing persistence of an antigenic
stimulus. Secondary HLH arises from unchecked immune activation secondary to infection, malignancy, rheumatologic disorders, or immune-
modulating therapy. This immune activation acts through a common pathway in which uncontrolled stimulation of CD8+ T cells and
macrophages results in hypercytokinemia which drives the clinical manifestations of multi-organ failure. Cytopenias in the form of neutropenia,
anemia, and thrombocytopenia are ubiquitous in HLH downstream of excessive production of IFN- g and other inflammatory cytokines. This
“cytokine storm” suppresses normal hematopoiesis and results in diffuse hemophagocytosis by activated macrophages.
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led to its approval for treatment of FHL in patients with

refractory HLH or intolerance to standard chemotherapy (55).
Secondary HLH

Unlike FHL, which typically presents in infancy or early

childhood, secondary HLH is far more prevalent in the older

child and adult population. Secondary HLH arises in the setting

of an immune stimulus associated with a malignancy, infection,

rheumatologic disorder, primary immunodeficiency syndrome,

and/or immune-modulating treatment, as outlined in Table 3 (1,

6, 58). The two most common triggers of secondary HLH are

infection and malignancy (1, 21, 66–68). Epstein-Barr virus and

other herpes viruses are especially frequent; in one study, herpes

viruses were identified in 62% of virus-associated HLH cases in
Frontiers in Oncology 05
adults (21, 59). Lymphoma and leukemia underlie the vast

majority of cases of malignancy-associated HLH (19, 58, 69).

In addition, several newly developed cancer therapies, such as

immune checkpoint inhibitors, monoclonal antibodies, and

chimeric antigen receptor T-cells, may also lead to

hyperinflammation and/or cytokine release syndrome that

may resemble HLH (58).

Patterns of T cell activation differ between primary and

secondary HLH, reflecting potential differences in the

underlying pathogenesis (70). In one study of T cell activation

patterns, patients with primary or virus-associated secondary

HLH were found to have significantly higher expression of HLA-

DR in CD8 + T cells, a marker of T-cell activation, when

compared to those with secondary HLH without a viral trigger

(64.4% and 61.5% vs. 21%, respectively) (70). Cytokine profiles

are frequently similar but may vary based on the underlying
TABLE 3 Secondary HLH.

Etiology (1, 6) Example disorders or therapies

HLH in the context of malignancy (19, 58) Lymphomas, acute myeloid leukemias, acute lymphoblastic leukemias, lung cancers, colon cancers

HLH in the context of infection (59–61) Epstein-Barr virus (EBV), cytomegalovirus, herpes simplex virus (HSV), human immunodeficiency
virus (HIV), COVID-19

HLH in the context of a rheumatologic disorder (19, 62, 63)
(Macrophage activation syndrome)

Kawasaki disease, systemic lupus erythematosus (SLE), systemic juvenile idiopathic arthritis (SJIA),
rheumatoid arthritis (RA)

HLH in the context of primary immune deficiency (6, 64) Severe combined immunodeficiency (SCID), chronic granulomatous disease (CGD), X-linked
immunodeficiency with magnesium defect (XMEN)

Immune-effector-related hyperinflammatory syndromes (58, 65) Immune checkpoint inhibitors, chimeric antigen receptor (CAR) T-cell therapy, hematopoietic stem
cell transplant, solid organ transplant
TABLE 2 Genetic mutations associated with primary HLH.

HLH type or syndrome Gene Protein Affected function

Mutations affecting degranulation

Familial HLH type 3 (34) UNC13D Munc13-4 Vesicle priming

Familial HLH type 4 (35) STX11 Syntaxin11 Vesicle fusion

Familial HLH type 5 (36) STXBP2 Munc18-2 Vesicle fusion

Chediak-Higashi syndrome (37) LYST LYST Vesicle trafficking

Griscelli syndrome type 2 (38) RAB27A RAB27A Vesicle docking

Hermansky-Pudlak syndrome type 2 (39) AP3B1 AP-3 Vesicle trafficking

RhoG deficiency (40) RHOG RhoG Vesicle docking

Mutations affecting pore formation in target cells

Familial HLH type 2 (25) PRF1 Perforin Pore formation

Mutations affecting CTL or NK development, survival, and/or regulation

X-linked lymphoproliferation type 1 (41, 42) SH2D1A SAP CTL and NK signaling

X-linked lymphoproliferation type 2 (43) BIRC4 XIAP CTL and NK apoptosis

Mutations affecting inflammasome regulation

NLRC4 Inflammasomopathies (44, 45) NLRC4 NLRC4 Inflammasome regulation
Signaling lymphocytic activation molecule-associated protein (SAP), X-linked inhibitor of apoptosis (XIAP), NLR family, CARD domain-containing protein 4 (NLRC4).
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inflammatory trigger (51, 71). IFN- g, TNF-a, IL-10, and IL-18

are commonly elevated in secondary HLH (72–75). Despite the

etiologic heterogeneity of secondary HLH, the pathophysiology

follows a similar common pathway in which persistent antigenic

stimulation leads to an amplified and unchecked immune

response, excessive cytokine production, and the resultant

development of hallmark features of HLH (1, 50, 57).
Cytopenias in HLH

Many factors contribute to the development of cytopenias in

patients with HLH, including impairment of hematopoiesis

mediated through the action of pro-inflammatory cytokines,

consumption of hematopoiet ic progenitors due to

hemophagocytosis throughout the reticuloendothelial system,

shortened survival of blood cells due to hepatosplenomegaly

and/or disseminated intravascular coagulopathy, co-existing

viral infection, marrow invasion by cancer, and treatment-

related myelosuppression (21, 51, 76–79). Despite the complex

interactions of these factors, two distinct drivers are attributable

to the phenomenon of HLH itself: impaired hematopoiesis as a

result of hypercytokinemia and consumptive hemophagocytosis

by activated macrophages.

Impaired hematopoiesis
Suppression of hematopoiesis by interferon-g and other

inflammatory cytokines is well described (79–82). Indeed,

IFN-g has been implicated in the pathogenesis of aplastic

anemia (83, 84). In the setting of inflammation, interferon-g
exhibits both stimulating and suppressive effects on

hematopoietic precursors in a lineage-dependent manner (80,

85). IFN-g plays a key role in myelopoiesis, directing

differentiation to either monocyte or neutrophil populations

(86). In contrast, IFN-g exhibits a predominantly suppressive

effect on hematopoietic erythroid progenitors and disrupts

thrombopoietin signaling in hematopoietic stem cell

precursors (87–89). Interestingly, interferon-g and TNF-a, two
cytokines frequently elevated in patients with HLH, have

demonstrated the potential to synergistically suppress bone

marrow erythroid and multipotential progenitor cells (79). The

role of inflammatory cytokines as an etiology of bone marrow

failure has substantial implications in the context of the

hypercytokinemia observed in patients with HLH.

InvivopreclinicalmodelsofHLHsupport the roleof IFN-g in the
development of impaired hematopoiesis. In one study, IFN-g
knockout abrogated the development of anemia in a murine model

of toll-like receptor 9 (TLR9)-induced fulminant macrophage

activating syndrome (90). Interestingly, in this study, both IFN-g
wild-type and knockout mice developed an MAS/HLH-like
Frontiers in Oncology 06
syndrome following exposure to a TLR9 agonist, suggesting that

the clinical phenotype was not mediated by IFN-g alone. The IFN- g
knockout mice, however, did not develop anemia despite the

presence of hemophagocytosis. These mice were found to have

compensatory splenic erythroid precursor production, leading

authors to conclude that dyserythropoiesis, not hemophagocytosis,

was primarily responsible for anemia in this model (90). Further

supporting the role of interferon-g in the development of cytopenias

are the findings that anti-interferon-g antibodies correct peripheral
blood cytopenias and histiocytic infiltration of themarrow, liver, and

spleen in perforin and Rab27a-deficient mice (2, 53).

Consumptive hemophagocytosis
Hemophagocytosis is frequently observed in HLH,

although it is neither specific nor required for the diagnosis.

The role of hemophagocytosis in the development of

pancytopenia in HLH is uncertain. In one animal model,

sustained exposure to IFN- g in wild-type mice induced the

development of dose-dependent normocytic anemia and

compensatory reticulocytosis (54). In this model, mice were

infused with IFN- g over a five-day period, during which

anemia became apparent within 48 hours. There was no

change in red blood cell morphology or evidence of a

significant hemolytic process (54). Anemia was accompanied

by thrombocytopenia and leukopenia, and was associated with

diffuse hemophagocytosis. The temporal relationship between

the start of IFN- g infusion and the development of anemia, as

well as the accompanying reticulocytosis, led the authors to

conclude that the cytopenias observed in this model were likely

to be predominantly the result of a consumptive process

secondary to acute inflammation rather than suppression of

hematopoiesis (54). These findings further implicate IFN- g as
a key driver of the cytopenias observed in patients with HLH.
Conclusions

Hemophagocytic lymphohistiocytosis (HLH) is a

hyperinflammatory syndrome that results from persistent

activation of cytotoxic T lymphocytes and macrophages. The

underlying causes of HLH are heterogeneous; however,

peripheral blood cytopenias are almost universally present.

The mechanism of cytopenias is multifactorial and may be

exacerbated by concomitant effects by factors such as infection

of hematopoietic progenitors, bone marrow infiltration, and

myelosuppressive therapy. Inflammatory cytokines, especially

interferon-g, play a significant role in suppressing hematopoiesis

in HLH, leading to cytopenias in animal models and patients. To

a variable extent, consumptive hemophagocytosis throughout

the reticuloendothelial system by macrophages contributes.
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Importantly, recognition of cytopenias as a manifestation of

HLH is essential for patients with bone marrow failure of

unclear etiology.
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38. Ménasché G, Pastural E, Feldmann J, Certain S, Ersoy F, Dupuis S, et al.
Mutations in RAB27A cause griscelli syndrome associated with haemophagocytic
syndrome. Nat Genet (2000) 25(2):173–6. doi: 10.1038/76024

39. Dell'Acqua F, Saettini F, Castelli I, Badolato R, Notarangelo LD, Rizzari C.
Hermansky-pudlak syndrome type II and lethal hemophagocytic
lymphohistiocytosis: Case description and review of the literature. J Allergy Clin
Immunol Pract (2019) 7(7):2476–8.e5. doi: 10.1016/j.jaip.2019.04.001

40. Kalinichenko A, Perinetti Casoni G, Dupré L, Trotta L, Huemer J, Galgano
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