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Prognosis and immune features
of pyroptosis-related RNA
patterns in low-grade glioma

Hanzhang Liu1* and Tao Tao2*

1Morphology Laboratory, Medical College of Nantong University, Nantong, Jiangsu, China,
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Purpose: Low-grade gliomas (LGG), which are malignant primary brain tumors,

are more prevalent in young adults. Pyroptosis, an inflammatory form of

programmed cell death, has been shown in recent years to be directly

associated with tumor growth and tumor microenvironment (TME). However,

the correlation between LGG and pyroptosis remained to be explored. In this

research, we explored pyroptosis-related gene expression patterns and their

prognostic significance based on transcriptome profiles and clinical data

in LGG.

Methods: We identified 31 pyroptosis-related genes differentially expressed at

the mRNA level between the data of LGG patients from TCGA and the data of

normal brain tissues from GTEx. Univariate Cox regression analysis was used to

screen 16 differentially expressed genes (DEGs) based on survival data. Next,

the prognostic model was established using LASSO Cox regression, which

divided LGG patients into high- and low- risk subgroups and showed an

independent prognostic value for overall survival (OS) combined with clinical

factors in the CGGA test cohort. Pyroptosis and immune cells were correlated

through the CIBERSORT R package and the TIMER database.

Results: Based on the analyses of 523 LGG and 1152 normal tissues, nine

significant differential genes were identified. The AUC remained at about 0.74

when combined with the risk score and clinical factors. Enrichment analyses

revealed that DEGs were mainly enriched in cytokine-cytokine receptor

interactions, immune response and chemokine signaling pathways. Immune

cell enrichment analysis demonstrated that scores for most immune cell types

differed significantly between the high-and low-risk groups, and further

infiltrating analysis showed obvious differences between these two

risk subgroups.

Conclusion: Pyroptosis-related genes play a pivotal role in LGG and are

associated with tumor immunity, which may be beneficial to the prognosis

and immunotherapy of LGG.
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Introduction

According to the World Health Organization (WHO), low-

grade gliomas (LGG) account for about 20% of gliomas and are

often diagnosed in young patients (1, 2). While most LGGs are

inactive in patients, some cases rapidly deteriorate to

neurological disorders and death in the short term (3). Based

on prior clinical experience, an accurate and sensitive prognostic

model may serve as the foundation for more effective diagnostic

and therapeutic approaches.

According to the WHO classification guide, many molecular

biomarkers are used to detect tumor occurrence, proliferation,

infiltration and migration. These biomarkers provide clues by

which to assess the comprehensive status of gliomas and then

formulate personalized precision treatment (4). Previous studies

on the biomarkers of glioma mainly focused on epidermal

growth factor receptor (EFGR) amplification, chromosome 1p/

19q deletion, O6-methylguanine DNA methyltransferase

(MGMT) promoter methylation, and isocitrate dehydrogenase

(IDH) mutations (5, 6). The literature confirms many studies

with an appreciable quantity of reporting on prognostic models

related to LGG, such as those involving metabolism (7),

autophagy (8), ferroptosis (9), cuproptosis (10), and so on.

While such markers and models are present in a wide variety

of gliomas, they are insufficient for predicting the prognosis of

LGG. Even though there have been many studies on prognostic

models for LGG, no unified prognostic models have been

applied in clinical practice. The complexity of glioma

development and biological pathways call for the discovery of

novel and specific LGG biomarkers.

Studies on malignancies of the nervous system have

consistently highlighted the phenomena of programmed cell

death (PCD) (11, 12). First, the formation of nerve tissue

depends on the regulation of PCD. Abnormal death of nerve

cells can promote tumor growth (11, 12). Second, tumor cells

can resist or escape from cell-killing effects mediated by immune

cells through a variety of adaptive mechanisms (13, 14). Thus,

the detection and regulation of PCD performed an essential

function in the diagnosis and treatment of nervous system

tumors. Newly discovered close relationships among different

kinds of tumors have made pyroptosis a hotspot as a new kind of

PCD. Inflammasomes have been found in a large number of

tumor cells, which activate the caspase pathways to initiate

pyroptosis. Furthermore, pyroptosis can regulate the TME

through proinflammatory effects to play a dual role in

carcinomatosis and cancer promotion. This all indicates the

potential of pyroptosis as a new biomarker of nervous system

tumors (15, 16). Li et al. have constructed a prognostic model of

glioblastoma (GBM, grade IV glioma) based on pyroptosis-

related genes to provide accurate one, three, and five years

overall survival rates (OS) of malignant gliomas (17).

However, the indicators of LGG patients are still unclear,
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making it worthwhile to investigate the role of pyroptosis-

related genes. Therefore, we developed a risk model for

pyrolysis-related genes, which provides a new perspective for

improving the prognosis and treatment of LGG.
Material and methods

Datasets

The transcriptome profile and clinical data of LGG patients

were obtained from The Cancer Genome Atlas (18) (TCGA,

https://www.tcga.org/) database and the Chinese Glioma

Genome Atlas Project (19) (CGGA, http://www.cgga.org.cn/,

Supplementary Table 1). Transcriptome profiles of 1152 normal

brain tissues were collected from the Genotype-Tissue

Expression Project (20) (GTEx, https://xenabrowser.net/)

database. We acquired 523 low-grade gliomas in the TCGA

database and 422 patients in the CGGA database to construct a

validation set.
DEGs identification

The gene expression data were normalized in all sets to

fragments per thousand base million (FPKM) (21). The

differentially expressed genes (DEGs) with P< 0.05 were

identified by using the ‘limma’ R package (22). There are 33

pyroptosis-related genes were retrieved in Pubmed with

‘pyroptosis’ as the key word (23–25). In addition, a protein

interaction network (PPI) was construct by using an interactive

gene/protein search tool (String, http://www.string-db.org/) to

analyze the correlation among DEGs. A Pearson correlation

analysis diagram was drawn among DEGs.
Development and validation of
prognostic models for pyroptosis-
related gene

In the training set, univariate COX regression analysis was

adopted to determine the correlation between DEGs and overall

survival (OS) to evaluate the prognostic value of DEGs in LGGs

with the truncation condition as P< 0.05 and HR unequal to 1

(26). Next, Lasso were used to adjust COX proportional hazard

regression to avoid overfitting (27). The above operations were

performed through ‘glmnet’ R package, and penalty parameter l
was determined through minimum criterion (28). The

prognostic model was constructed based on multivariate COX

regression analysis (29). Based on the median risk score, LGG

patients were assigned into low-risk group and high-risk group.

The risk score formula following: risk score =on
i Xi ×Yi, where
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n is the number of surviving genes after Lasso regression, Y is

gene expression level, and X is coefficients. The OS time between

subgroups was compared by using Kaplan-Meier analysis. The

3-year and 5-year ROC analyses were performed using the

“survivalroc” R package and the area under the curve (AUC)

was calculated. We used CGGA data as validation set to calculate

the risk score. The Kaplan-Meier curves and ROC (Receiver

Operating Characteristic) were plotted.
Analysis of functional enrichment

The GO (Gene Ontology) (30) and KEGG (Kyoto

Encyclopedia of Genes and Genomes) enrichment analysis (31)

were performed by using ‘ClusterProfiler’ R package based on the

difference between risk subgroups (|log2FC|≥mean(|log2FC|) +

4*sd(|logFC|);P<0.05).
Estimation of tumor−infiltrating
immune cells

According to the transcription profile of LGGs in TCGA, the

relative proportion of immune infiltrating cells in all tumor

samples was calculated by using cell type identification analysis

in the ‘CIBERSORT’ R package (32, 33). We used the Wilcoxon

rank-sum test to evaluate differences in immune cell infiltration

levels between risk subgroups.
TIMER database and GDSC database

The TIMER database provided a reliable estimate of the level

of immune infiltration for tumor-immune interactions (34). The

level of tumor immune infiltration and the correlation between

gene expression were calculated by using ‘GENE’ module of the

TIMER database (35). We screened a wide range of drugs from

the GDSC database (36) and calculated the IC50 value of drugs

using the pRRophetic algorithm (37) for patients with LGG.
Quantitative real-time polymerase
chain reaction

The HEB (human normal glial cell line) was obtained from

Mingzhoubio (Ningbo, China) and was cultured H-DMEM

medium with 10% FBS (fetal bovine serum). Human glioma

cell lines, including U251 and U87, were obtained from the

ATCC (American Type Culture Collection; Manassas, VA,

USA) and were cultured in Roswell Park Memorial Institute

(RPMI)-1640 with 10% fetal bovine serum (FBS). Total RNA

from the cell lines was extracted by applying RNA simple Total

RNA Kit (Tiangen, China). Subsequently, Total RNA was
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reverse transcribed with PrimeScript RT reagent kit (Takara,

Otsu, Japan) to obtain cDNA. Using 2 mL cDNA and SYBR

Premix Ex Taq (Takara, Otsu, Japan) and primers, the

expression of the target genes was determined using the

Biosystems StepOne Plus real-time PCR system (Life

Technologies, Grand Island, NY, USA). The Primers of the

target genes were obtained from Sangon Biotechnology

(Shanghai, China), and the sequences are shown in

Supplementary Table 2.
Statistical analysis

Normally distributed variables were compared using

Student’s t-test. Wilcoxon test was used to compare non-

normally distributed data. Utilizing the Survminer package

from R, we estimated the OS status between the two

subgroups by Cox regression analysis and Kaplan–Meier

curves. Ggplot2 package from R were used to plot the figures,

thus visualizing our data. Test level was set at both sides a =0. 05,

P < 0.05 was considered statistically significant unless

otherwise specified.
Results

The flow chart of this study is shown in Figure 1.
Identification of DEGs between tumor
and normal tissues

First, we compared 33 pyroptosis-related genes in the pooled

GTEx (Genotype-Tissue Expression) and TCGA (The Cancer

Genome Atlas) data from 523 LGG and 1152 normal tissues and

then identified 31 differentially expressed genes (DEGs) under

the condition of P<0.05 (Figure 2A and Supplementary Table 3)

besides ELANE and GSDMD. Among these DEGs, upregulated

of 27 genes, while downregulated of 4 genes, in LGG tissues. The

expression levels of DEGs were presented as heatmaps in Figure

S1. We then constructed protein interaction networks (PPI) to

investigate the interactions of DEGs (Figure 2B). As a result of

the analysis, most DEGs showed obvious positive correlations,

among which CASP4 and SCAF11 were significantly positively

correlated (Cor = 0.87), while PRKACA was not connected to

other DEGs.
Development of a prognostic gene
model in the training and testing sets

Next, A total of 388 LGG patients were matched based on

their survival data. We used univariate Cox regression for
frontiersin.org
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preliminary analysis of DEGs, and 16 survival-related genes were

screened at P<0.05 (Figure 2C). According to the optimum L
value (Figures 2D, E), a prognostic model of 9 genes (CASP3,

CASP4, CASP8, CASP9, GSDMC, IL18, IL6, PLCG1 and

PRKACA) was construct by using Least absolute shrinkage

and selection operator (LASSO) Cox regression analysis, thus

calculating the risk score for each LGG patient.

A total of 388 LGG patients were divided into high- (n=194)

and low-risk (n=194) subgroups according to the median score

calculated by the risk score formula(Figures 3A, B). Time-

dependent Kaplan-Meier curves and receiver operating

characteristic (ROC) curves were constructed to evaluate the

sensitivity of the prognostic model (Figures 3C, E). The results

showed differences in the survival curve between the low-risk

group and the high-risk group (P<0.001) as the one year, three

years, and five years AUC values were 0.856, 0.832 and 0.742,

respectively. In addition, we matched 420 LGG patients in

CGGA (Chinese Glioma Genome Atlas) as the validation set
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to further verify the model, resulting in one year, three years, and

five years AUC values of 0.596, 0.636 and 0.659, respectively

(Figures 3B, D, F).
Clinical evaluation of the prognostic
risk model

In order to verify practical value of prognostic model,

univariate and multivariate COX analysis were used to

evaluate whether the risk score of the model could also be an

independent prognostic point compared with such clinical

factors as grade, gender, age and radiation therapy. Univariate

Cox regression analysis showed that risk scores were not

associated with poor survival in both TCGA and CGGA

groups of patients (Figure S2A). Interestingly, multivariate

COX analysis showed similar trends to univariate COX
FIGURE 1

Specific workflow diagram of data analysis.
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regression results, suggesting that the prognosis of LGG is closely

related with pyroptosis. According to ROC curve analysis, the

AUC value remained at about 0.8 when combined with the risk

score and clinical factors (Figures 4A–C). In addition, we used

the TCGA and CGGA cohorts to analyze clinical factors and

found that age, grade, and radiotherapy differed in the

distribution of low- and high-risk categories (Figures S2B, C).
Frontiers in Oncology 05
We then integrated clinical variables and created a nomogram in

the TCGA cohort (Figure 4D). The total score for each LGG

patient was acquired by combining the scores of each prognostic

standard in the nomogram. A higher total score would indicate

patients with a worse prognosis. As a comparison, the predicted

survival rate showed more consistency with the observed

survival rate (Figures 4E–G).
B C

D E

A

FIGURE 2

Expressions and screening of pyroptosis-related genes in low-grade glioma. (A) Box plot demonstrating 31 differentially expressed pyroptosis-
related genes between normal tissue (n=1152) and lower-grade glioma (n=523). **P< 0.01; ∗∗∗∗P< 0.0001, ns: not significant. The green box
shows normal tissue, and the red box shows tumor tissue. (B) PPI network showing the interactions of DEGs (interaction score=0.9). The darker
the color of a node in a PPI network, the closer its connection to other nodes. (C) Univariate COX analysis of 16 DEGs (CASP1, CASP3, CASP4,
CASP5, CASP6, CASP8, CASP9, GSDMC, IL18, IL6, NLRC4, NOD1, PLCG1, PRKACA, PYCARD, and SCAF11). P<0.05; HR, Hazard Ratio. (D) Cross-
validation for tuning parameter selection in LASSO regression. (E) LASSO analysis of 9 prognostic pyroptosis-related genes.
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Functional and mutational analyses
based on the risk model

Subsequently, the DEGs were extracted and further explore

the signal pathways related to different subgroups in the risk

model. There are 181 differential genes were identified in the

TCGA cohort, among which up-regulated of 109 genes and

down-regulated of 72 genes in the high-risk group. Based on the

differences between the risk subgroups, GO enrichment
Frontiers in Oncology 06
(Figure 5A) and KEGG (Figure 5B) pathway analysis was

conducted. The results revealed the differential genes were

mainly enriched in chemokine signaling pathways, cytokine-

cytokine receptor interactions and immune response (Figure 5).

Combined with the results of gene enrichment in immune-

related pathways, as suggested by functional analysis, we first

compared the effects of cell mutations that tumors may induce.

We used the ‘maftools’ R package on the high-risk group

(Figure 5C) and the low-risk group (Figure 5D) to achieve a
B

C D

E F

A

FIGURE 3

Subgroups of LGGs based on the construction of risk signature. (A, B) Distribution of risk score, differences in survival between the high- and
low-risk groups and heatmap of the expression patterns of 9 pyroptosis-related genes in the training set (A) and testing set (B). Red dots
indicate dead, whereas blue dots indicate live. (C, D) Kaplan-Meier curve for the OS of LGG patients in the high- (n=194) and low-risk (n=194)
groups in the TCGA training cohort (C) and the CGGA (n=420) testing cohort (D). The red curve represents the high-risk group, and the blue
curve represents the low-risk group. (E, F) Time-dependent ROC curve based on the prognostic model regarding OS and survival status in the
TCGA training cohort (E) and the CGGA testing cohort (F). Green, blue and red curves represent 1-year, 3-year and 5-year, respectively.
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visual analysis of differences in the distribution of somatic

mutations. Results showed the mutation rates among high-risk

groups (46.06%) and low- (48.82%) to be relatively close.
Immune activity and PCR analysis based
on subgroups of the risk model

In order to further investigate the correlation among risk

score of prognostic model and immune cell infiltration, ssGSEA

module in the ‘GSVAR’ R package was used. This module
Frontiers in Oncology 07
quantifies the function of immune cells and the signal

pathways in tumor samples. The scores for most immune cell

types differed significantly between the low-risk and high-risk

groups, which were confirmed in the validation set. The relative

proportion of 22 types of immune cells associated with each

LGG patient was calculated by using CIBERSOR and Estimate

algorithms. The analysis of the correlation between the risk score

and the degree of immune cell infiltration showed that many

immune cells differed in the degree of infiltration between

subgroups (Figure 6A); especially, plasma cells, TFH cells, and

M2 macrophages were significantly upregulated (P<0.05). As a
B C

D

E F G

A

FIGURE 4

Assessment of the risk model combined with clinical factors. (A-C) Time-dependent ROC to evaluate prognostic power based on risk score and
clinical factors at (A) 1-year, (B) 3-year, and (C) 5-year. Different colored curves represent different clinical factors. (D) A nomogram consisting
of risk score and other clinical indicators for predicting 1-, 3-, and 5-year OS of primary LGG based on the TCGA cohort. (E-G) Nomogram
calibration plots for predicting OS in the TCGA cohort at (E) 1-year, (F) 3-year, and (G) 5-year. The Red line indicates actual survival.
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comparison, the Estimate results suggested the scores of patients

were significantly higher in the high-risk group (Figures 6B–D).

We used TIMER database to analyses the relationship

among 9 prognostic genes and immune cell abundance, and

the results revealed that 9 genes of prediction model were all

closely related to immune cell abundance (P<0.01, Figures 7A-C

and Figure S4). To be more specific, the expression of PLCG1

was positively correlated with neutrophils, macrophages,

myeloid dendritic cells, B cells and CD4+ T cells (Figure 7A),

but negatively correlated with CD8+ T cells (Figure 7A). The

expressions of CASP3 (Figure S4A), CASP4 (Figure S4B),

CASP8 (Figure S4C), IL18 (Figure 7B), and IL6 (Figure 7C)
Frontiers in Oncology 08
were positively correlated with neutrophils. At the level of

cellular immune infiltration, it is worth noting that CASP3

(Figure S4A) and CASP4 (Figure S4B) were positively

correlated with macrophages and dendritic cells, but negatively

correlated with CD4+ T cells and CD8+ T cells.

Furthermore, we randomly selected three pyroptosis-related

genes (PLCG1, IL18, and IL6) in the prognostic model and

confirmed the expression of three genes in cell lines through

qPCR assays. Compared with the human normal glial cell line

(HEB), PLCG1 (Figure 7D), IL18 (Figure 7E), and IL6

(Figure 7F) were highly expressed in cancer cell lines (U251

and U87). These three genes were therefore tightly associated
B

C D

A

FIGURE 5

Functional and mutational analyses based on the risk model. (A) The enriched item in gene ontology analysis. Blue represents BP (biological
process), orange represents CC (cellular component), and the green represents MF (molecular function). (B) The enriched item in Kyoto
Encyclopedia of Genes and Genomes analysis. The color indicates the size of the P-value, and the size of the circle indicates the number of
genes. (C) Mutation profile in the low-risk group. (D) Mutation profile in the low-risk group. The small figure above shows the TMB, whereas the
number on the left shows the mutation frequency of each gene, and the figure on the right shows the proportion of each variant.
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with immunological activity in addition to being substantially

expressed in cancer cell lines.
Discussion

In this study, a prognostic model of 9 genes (CASP3, CASP4,

CASP8, CASP9, GSDMC, IL18, IL6, PLCG1, and PRKACA) was

constructed based on bioinformatics analysis with the survival

data of LGG patients in the TCGA and CGGA cohorts and

validated it by both clinical prognosis and correlation with

tumor immunity. Although there are studies that have

reported prognostic models related to LGG (38–42), these

studies only used data from a single database - TCGA, thus

the accuracy of the constructed models was limited. On the

contrary, the present study used an external database (CGGA),

which makes it more reliable for modeling. Furthermore, the

constructed prognostic model was based on a newly discovered

PCD, pyroptosis, making this current research fundamentally

different from the others.
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Initially, pyroptosis was thought to be PCD-activated by

Caspase-1 only. However, Caspase-3/4/5/6/8/9/11 were

successively identified to cause pyroptosis in different cell

types; notably, Caspase-3 was found to be an essential

molecule for membrane blistering and activation of apoptosis

(43). Caspase-3 can cleave GSDME to make an alternative

pathway to induce pyroptosis (44), which may be rapidly

triggered by the Caspase-4/9 complex. Caspase-4 can also be

turned on under infectious conditions to make a non-classical

pyroptotic pathway by cleaving GASMD, along with caspase-5/

11 (45, 46). Meanwhile, GASMD can stimulate macrophages to

induce pyroptosis in a PLCG1 (phospholipase)-dependent

pathway (47). Besides cleaving GSDMD directly, caspase-8

cleaves GSDMC when TNF-a is released to promote

pyroptosis (48). By comparison, Xiao et al. (49) found that

Caspase-3 influences dying glioma cells after chemotherapy by

promoting tumor angiogenesis, leading to the recurrence of

gliomas. Caspase-8 can also stimulate the NF-kB pathway and

upregulate the secretion of IL-8, IL-1b, IL-6, VEGF and MCP-1,

improving temozolomide resistance in gliomas (50). Caspase-9

had been reported to repair mitochondrial damage by

maintaining autophagy, which then avoided influencing
B C D

A

FIGURE 6

Immunoassay in the risk subgroups. (A) Boxplot showing the differential abundance of 22 infiltrating immune cells calculated by CIBERSORT
between the high- and low-risk groups in LGG. ∗P< 0.05; ∗∗∗P< 0.001; ∗∗∗∗P< 0.0001; ns: not significant. (B-D) The higher expression level of
Estimate Scores (B), Immune Score (C), and Stroma Score (D) correlated with the high-risk group. The green box shows the low-risk group, and
the red box shows the high-risk group.
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NLRP3 inflammasome to produce pyroptosis (51). These

investigations all suggested that via inducing pyroptosis, the

caspase family plays a dual role in gliomas.

Previous studies have revealed that proinflammatory effects of

pyroptosis are closely related to the regulation of the tumor

immune microenvironment (TIME) (52). In the TIME, tumor

cells are protected by chemokines, cytokines, stromal cells, and

metabolites that allow tumor cells to survive (53). Through

damage-associated molecular patterns (DAMPs) released after

cellular osmotic lysis, pyroptosis can reprogram TIME into an

immune stimulatory state, so as to inhibit tumor cell growth and

metastasis. Under the action of inflammatory factors, it can also

promote the growth of tumor cells (54). Pyroptosis appeared to

have a specific effect on TIME and facilitate immune surveillance

(54). There has research has revealed NLRP3 inflammasome

activation could affect pyroptosis or hyperactivity, resulting in a

cascade of immune or inflammatory responses through the release

of interleukins IL-b and IL-18, affecting antitumor immunity (55).

In addition, IL-18 is upregulated in tumor-infiltrating

lymphocytes (TILs) secreted by inflammasomes (56, 57). It has

a protective pro-inflammatory effect, stimulating the generation of

MDSCs to accelerate tumor progression (58). IL-6 performed an
Frontiers in Oncology 10
essential function in the regulation of macrophages and

lymphocytes in the TME. Past studies reported that IL-6

directly influences the invasion of gliomas by activating the

STAT3 pathway (59). PLCG1 and PRKACA are traditionally

considered to be the executive molecules of apoptosis by signal

transduction of phosphokinases. These molecules play regulatory

roles in macrophage differentiation and inflammatory response to

regulate the tumor microenvironment (60). Our prognostic model

quantified the function of immune cells and signal pathways in

tumor samples such that the scores for most immune cell types

differed significantly between the low-risk and high-risk groups. In

summary, our studies revealed different pyroptosis pathways

(classical/non-classical/alternative/kinase-related), objectively

reflecting the various factors influencing the development of

LGG with a considerable reference value. Interestingly, Shao

et al. (61) reported non-expression of GSDMD in the vast

majority of tumor cells, suggesting that tumor cells can induce

pyroptosis through more than one pathway, which is consistent

with differential gene expression that forms the basis of our model.

Though there is a slight lack of accuracy in judging the 5-year

survival rate of LGGs, we still have a considerable advantage in the

prognosis of LGG by considering the possibility of high-risk
B

C

D E F

A

FIGURE 7

Expression of pyroptosis-related genes in immune cells and cell lines. (A-C) Association between the abundance of immune cells and the
expression of three pyroptosis-related genes for PLCG1 (A), IL18 (B), and IL6 (D). (D-F). Quantitative Real-time PCR in cell lines for PLCG1 (D),
IL18 (E), and IL6 (F). ∗P< 0.05; ∗∗∗P< 0.001; ∗∗∗∗P< 0.0001.
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patients deteriorating into high-grade glioma within a

short timeframe.

In order to analyze the immune infiltration of LGG tissue, our

model compared different risk subgroups and found that naive B

cells, plasma cells, TFH cells, and M2 macrophages were

significantly upregulated in the high-risk group. Studies have

shown accumulation of M2 macrophages can induce chronic

inflammation, which is beneficial to the growth of invasive

tumors. The intratumoral density of macrophages is highest in

malignant gliomas, which is indicative of a negative correlation with

the survival rate of patients (62). On the other hand, when

combined with the analysis of the TIMER database, we further

observed that the risk subgroups showed differences in the level of

CD8+T cell infiltration. This is consistent with J. Robert Kane et al.

whose study revealed that the accumulation of CD8+T cells in the

TME indicates a better prognosis, while their absence is conducive

to the growth of gliomas (63). In summary, we can speculate that

pyroptosis regulates the TIME, which can be quantitated through

our pyroptosis-related risk model, giving, in turn, a better

prognostic picture than previous markers and models. Our

further studies will elucidate the specific mechanisms.

Current tumor treatment strategies include, for example,

immune checkpoint inhibitors, CAR-T, cytokines, virus lysis,

and tumor vaccines, all widely used as representatives of

immunotherapies in recent years (64). These methods have

shown obvious carcinostatic effects in several tumors, but

challenges remain in applying them to the treatment of

glioma. One such challenge involves the physical blocking

effect of the blood-brain barrier on drugs and cells. Another

challenge arises from most gliomas that appear as a ‘cold tumor’

environment showing a higher level of immunosuppression, but

fewer immune targets (65). Hung et al. addressed these

challenges and found that large numbers of PD-L1 molecules

enter the nucleus under tumor hypoxia. The complex of PD-L1

and phosphorylated STAT3 can mediate the expression of

GSDMC and then induce tumor cell pyroptosis. In addition,

pyroptosis combined with PD-L1 inhibitor can promote the

conversion of ‘cold tumors’ into ‘hot tumors’. Liu et al. (66)

reported that CAR-T cells activate the pyroptosis pathway of

Caspase-3-GSDME by releasing GzmB, while co-culture

experiments in vitro found that CAR-T can stimulate

macrophages to release IL-6 and IL-1b by activating the

Caspase-1-GSDMD pathway (67). Based on the studies above,

our LGG prognostic model suggests a new approach to the

treatment of gliomas by using it as a guide for the management

of current mainstream immunotherapy.

There are still several limitations in our study. The analytical

data were from public databases (TCGA and CGGA). To further

confirmed the accuracy of pyroptosis-related gene prognostic

model in predicting prognosis, the LGG tissues need to be

collected and closely followed. Due to the lack of time and
Frontiers in Oncology 11
money for follow-up, the specific mechanism of pyroptosis-

related genes has not been explored yet.
Conclusion

Activation of inflammasome-related sensing proteins causes

pyroptosis, a form of immune cell death. There are several that

detect different substances. We identified differently expressed

pyroptosis-related genes that may be involved in LGG.

Pyroptosis may be an alternative therapeutic target since

differentially expressed genes associated with it have significant

predictive values for patient survival.
Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found here: https://www.tcga.org/, http://www.cgga.

org.cn/ and https://xenabrowser.net/.
Author contributions

TT conceived, designed, and supervised the study. HL

performed data analysis, arranged the figures and drafted the

manuscript. All authors reviewed and approved the final

manuscript. All authors contributed to the article and

approved the submitted version.
Funding

This work was supported by the Zhejiang Provincial Natural

Science Foundation of China (Grant Number LY19H100001),

Zhejiang Province Traditional Chinese Medicine Science and

Technology Project (Grant Number 2022RC255) and Zhejiang

Province Medical and Health Science and Technology Project

(Grant Number 2022ZB331).
Acknowledgments

We appreciate the information provided by The Cancer

Genome Atlas.
Conflict of interests

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
frontiersin.org

https://www.tcga.org/
http://www.cgga.org.cn/
http://www.cgga.org.cn/
https://xenabrowser.net/
https://doi.org/10.3389/fonc.2022.1015850
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu and Tao 10.3389/fonc.2022.1015850
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fonc.2022.1015850/full#supplementary-material

SUPPLEMENTARY FIGURE 1

Expressions of pyroptosis-related genes in LGGs. (A) Heatmap of RNA
expression levels of pyroptosis-related genes. Green represents a low
Frontiers in Oncology 12
expression level, and red represents a high expression level. (B) Pearson
correlation analysis of the 33 pyroptosis-related genes in LGGs. Red

indicates the degree of positive correlation, and blue indicates the
degree of negative correlation.

SUPPLEMENTARY FIGURE 2

Analysis of clinical factors in subgroups. (A) Univariate analysis and
multivariate analysis for hazard ratio values of risk score and clinical

characters in the training set (CI, confidence interval). (B-C) Relationship
between prognostic gene expression and clinical factors. Green
represents a low expression level, and red represents a high

expression level.

SUPPLEMENTARY FIGURE 3

Comparison of ssGSEA scores in high- and low-risk groups. (A) Training
set. (B) Testing set. The green box shows the low-risk group, and the red
box shows the high-risk group. ∗P< 0.05; ∗∗P< 0.01; ∗∗∗P< 0.001; ns:

not significant.

SUPPLEMENTARY FIGURE 4

Association between the abundance of immune cells and the expression

in LGGs. (A) CASP3. (B) CASP4. (C) CASP8. (D) CASP9. (E) GSDMC.
(F) PRKACA.
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