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Background:Over 50% of childhood cancer survivors are exercise intolerant, with

maximal aerobic capacities comparable to individuals decades older, suggesting

early physiologic ageing. In addition, 36% of survivors are obese. Optimal exercise

capacity provides a foundation to support daily function and healthy body habitus

and is associated with benefits to cognition, cardiovascular health, and longevity.

Cellular senescence and inflammation are key mechanisms that drive age-related

disease, quantifiable as biomarkers in peripheral blood.

Aims: This study aimed to evaluate associations between p16INKa, a biomarker

of cellular senescence, and inflammation and exercise capacity among adult

survivors of childhood cancer.

Materials and methods: Eligible survivors were recruited from the St. Jude

Lifetime (SJLIFE) Cohort Study. Exercise capacity was assessed by maximal

oxygen uptake (VO2, ml/kg/min) obtained via cardiopulmonary exercise testing

using amodified Bruce protocol. Body fat (%) was determined from dual energy x-

ray absorptiometry (DEXA). Peripheral blood samples were used to evaluate log2
p16INK4a mRNA expression, a biomarker of cellular senescence, and inflammation

with high sensitivity C-reactive protein (hs-CRP) levels. Multivariable regression

evaluated associations between p16INK4a, hs-CRP, body fat, and exercise capacity.

Results: Participants included 185 five-year childhood cancer survivors (mean

age 36.6 [range 20.1 - 55.7] years, 44% male, 77% non-Hispanic white, 53%

leukemia/lymphoma). Compared tomales, females had lower peak VO2 (mean

± SD, 22.5 ± 8.2 vs. 28.8 ± 7.7 ml/kg/min, p<0.01), higher p16INK4a expression

(9.6 ± 1.2 vs. 9.2 ± 1.2 fold, p=0.02), and hs-CRP concentration (5.9 ± 8.4 vs. 3.3

± 3.9 mg/L, p=0.01). Among females (n=103), hs-CRP concentration (b -0.2,
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95% CI -0.34 to -0.05, p=0.01) and p16INK4a expression (b-5.32, 95% CI 10.42 to

-0.22, p=0.04) were inversely associated and statistically significant with peak

exercise capacity, with a significant interaction between p16INK4a expression

and body fat (b 0.15, 95% CI 0.02 to 0.28, p=0.03). Among males (n=82),

p16INK4a expression (b -1.01, 95% CI -2.14 to 0.12, p=0.08), and body fat (b
-0.54, 95% CI -0.70 to -0.38, p<0.01) were inversely associated with peak

exercise capacity.

Conclusion: Inflammation and p16INK4a expression, a biomarker of cellular

senescence, are associated with lower exercise capacity in childhood cancer

survivors, suggesting potential targets or outcome measures for interventions

designed to prevent or remediate accelerated physiologic ageing in this

population.
KEYWORDS

cellular senescence, p16, inflammation, childhood cancer surivor, exercise capacity
Introduction

Significant advances in treatment of childhood cancers have

contributed to five-year survival exceeding 85% (1, 2). However,

childhood cancer survivors are at risk for adverse health

outcomes associated with cancer treatment, including exercise

intolerance. Exercise intolerance is the result of impairment of or

poor integration of cardiovascular, autonomic, pulmonary,

muscular, and neurosensory system function. Over 56% of

survivors are exercise intolerant (VO2 peak <85% predicted)

(3), with exercise capacities comparable to individuals’ decades

older (4). Young adult survivors of childhood cancer with

exercise intolerance have a 3.9-fold increased risk of mortality

(3). Within this population, risk for exercise intolerance is

highest among those exposed to cardiotoxic therapy such as

anthracyclines and chest radiation (3). However, survivors not

exposed are also at risk, suggesting that either the disease process

or other systemic alteration such as inflammation or cellular

damage also contribute to decline in exercise capacity.

Cellular senescence is the functional consequence of serious

DNA damage (5), resulting in accumulation of cells unresponsive to

growth stimuli. Although these cells appear to remain in a stable

state of proliferation arrest, they are not benign. Senescent cells

accumulate with age (6–10), secrete high levels of inflammatory

cytokines, immune modulators, growth factors, and proteases, and

are associated with an increased prevalence of age-related health

conditions, including both subclinical inflammation and high fat

and/or low lean bodymass (11). Although senescent cells are largely

undetectable in younger populations, p16INK4a expression (mRNA),

a biomarker of biologic ageing and indicator of senescent cells in

older adults, is elevated in skin biopsies of young survivors of

childhood cancer exposed to radiation (12).
02
p16INK4a is an important tumor suppressor gene that prevents

cells with damaged DNA from growing and dividing too rapidly

(13). When expressed, p16INK4a binds to and inactivates cyclin-

dependent kinases (CDK4, CDK6), preventing the phosphorylation

of retinoblastoma protein (pRB), halting cell cycle progression and

initiating cellular senescence (14–16). Expression of p16INK4a occurs

in response to stress, such as DNA damaging radiation and

chemotherapy, and is highly expressed in senescent cells (15).

Thus, it is an excellent biomarker for cellular senescence (17).

Given that children with cancer are exposed to cancer therapies

capable of inducing DNA damage, and that accelerated physiologic

ageing is evident in this population (18–20), it is possible that

senescent cells, with their secretory properties, may contribute to

the pathobiology of exercise intolerance.

Further, cellular senescence is also associated with abnormal

body composition; senescent cells accumulate in white adipose

tissue (21), increasing the release and circulation of senescence-

associated secretory phenotype (SASP) (10, 22, 23).

Unfortunately, children with cancer experience significant

changes in body composition during treatment (24–28), with

increased risk for both obesity and underweight that can persist

into survivorship (28–30). Childhood cancer survivors also have

poor dietary habits (31, 32), which may further influence adipose

tissue senescence (33). Early accumulation of adipose tissue may

be a reservoir for senescent cells and a source of inflammation

(34), underlining the pathobiology of early onset of age-related

chronic conditions in this population. Recent evidence from

murine and human studies suggest that interventions resulting

in clearance of cells expressing the p16INK4a gene are capable of

delaying the onset of, and attenuate existing, metabolic

abnormalities (33) and age-related conditions (11, 35), perhaps

defining a potential targets for intervention among survivors.
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In this study, we measured p16INK4a expression, a biomarker

of biologic age and cellular senescence, and high sensitivity C-

reactive protein (hs-CRP), a biomarker of inflammation, in

young adult survivors of childhood cancer and evaluated the

cross-sectional associations with body fat percent and exercise

capacity. We hypothesized that p16INK4a expression and hs-CRP

levels would be higher among survivors with high body fat and

low exercise capacity.
Materials and methods

Study population

Participants for this study were St. Jude Lifetime Cohort

(SJLIFE) members, a retrospective cohort with prospective

follow-up designed to evaluate childhood cancer survivors as

they age. The study design and characteristics of the study

population have been previously described (36–38). Briefly,

cohort members were diagnosed with childhood cancer

between 1962 and 2012 and treated at St. Jude Children’s

Research Hospital. For these analyses, participants were at

least 18 years old, 10 years from their primary diagnosis, had

no evidence of cancer recurrence, and had previous

chemotherapy exposure. Potentially eligible participants

returning for a second clinical visit to evaluate frail health

(including measures of exercise intolerance and body

composition) were randomly recruited to provide a blood

sample until we reached a powered sample size of 196

participants. Pregnant women or those with a current cancer

diagnosis were excluded. Medical records were abstracted by

trained personnel to collect demographic information, including

age at assessment, sex, height (m), and weight (kg).
Biomarkers

Cellular Senescence Expression of p16INK4a mRNA was

determined from CD3 T-lymphocytes processed from peripheral

blood samples. Cells were isolated and enriched to >90% purity

using RosetteSep™ Human T Cell Enrichment Cocktail

(STEMCELL Technologies, Cambridge, MA). Total RNA was

isolated from T-lymphocytes (ZR-96 Quick-RNA kit, Zymo

Research, Irvine, CA), and reverse transcribed into cDNA using

ImProm-II reverse transcription system (Promega Corp., Madison,

WI). cDNA was reversed transcribed using Taqman® quantitative

reverse-transcription PCR (ThermoFisher Scientific, Waltham,

MA) to determine p16INK4a mRNA expression levels. Expression

of p16INK4a mRNA transcript was normalized to 18s ribosomal

RNA (HS03003631, Applied Biosystems, ThermoFisher Scientific -

US, Waltham, MA) as previously described (39, 40). Data were log

transformed for analysis (log2).
Frontiers in Oncology 03
Inflammation High sensitivity C-reactive protein (hs-CRP)

concentration (mg/L) was determined from serum samples

isolated from peripheral blood. Blood samples of 2ml were

collected in serum preparation tubes and allowed to clot

completely at room temperature. Samples were centrifuged at

1,000-2,000 x g for 10 minutes in a refrigerated centrifuge.

Serum supernatant was separated from samples in 1ml

aliquots into ARUP standard Transport Tubes and refrigerated

until processed on a Quantitative Immunoturbidimetry assay

(reference value ≤3.0 mg/L) (41).
Outcomes

Exercise capacity
Exercise capacity was determined via cardiopulmonary

exercise testing (CPET) on a treadmill using a modified Bruce

protocol (42). A leg (n=4) or arm (n=7) cycle ergometer was

substituted using a ramp protocol if a participant was unable to

walk on a treadmill (lower extremity paralysis, amputations

without prostheses, or poor balance). Continuous breath by

breath analysis, using a metabolic cart (Ultima CardioO2;

MCG Diagnostics, St. Paul, MN), was used to estimate

attainment of VO2 peak. Blood pressure was measured during

each stage of the protocol, and a continuous 12-lead

electrocardiogram (ECG) monitored cardiac symptoms (43).

Cardiopulmonary exercise testing (CPET) was terminated for

safety before maximal exertion for signs of ischemia (>2 mm ST

depression), frequent arrhythmias (bigeminy and trigeminy),

hypertensive blood pressure (BP) response (250/115 mm Hg),

symptoms (e.g. angina, shortness of breath, wheezing), or failure

of heart rate (HR) to increase with increased exercise intensity.

Immediately at test termination, participants were asked for

peak rating of perceived exertion (44).

Body fat
Body fat (percent [%]) was determined with dual x-ray

absorptiometry (DEXA) using a total body scanning mode

(QDR 4500, software version 13.3:3; Hologic, Bedford, MA)

(45, 46).
Covariates

Smoking history
Participants self-reported their smoking history, and were

classified as current, former, or never smokers.
Statistical analyses

Descriptive statistics characterized demographic and

diagnosis related variables (Table 1). Given that exercise
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capacity and body composition are influenced by sex, we

stratified analysis by sex. Comparisons between male and

female participants were made using c2 statistics or two

sample t tests as appropriate. Associations between smoking

history, hs-CRP concentration, and p16INK4a expression were

evaluated using linear regression models. Smoking history was

not associated with either hs-CRP concentration or p16INK4a

expression, and was not retained in final multivariate models.

Separate multivariable linear regression models were used to

evaluate associations between p16INK4a expression or hs-CRP

concentration, and exercise capacity (ml/kg/min). Smoking

status was evaluated as a potential covariate. Models were

stratified by sex and adjusted for body fat % and age at

assessment. Two-way interactions between either p16INK4a

expression or hs-CRP concentration and body fat % were
Frontiers in Oncology 04
evaluated in each model. All statistical analyses were

performed using SAS 9.4 (SAS Institute, Inc., Cary, NC).
Results

Characteristics of study population

Among 2,823 potentially eligible survivors, 234 were

contacted to provide a blood sample. Among these, 30 (12.8%)

declined participation. Of 204 samples collected, 15 (7.4%) did

not pass quality control (low RNA yield), and 4 (2.0%) samples

were not shipped, resulting in 185 participants with complete

phenotype and biomarker data (Figure 1). Demographics of

study participants are displayed in Table 1. On average,
TABLE 1 Demographic and primary cancer characteristics of survivors of childhood cancer.

Characteristic All Participants (n=185) Males (n=82) Females (n=103)

Race/Ethnicity, N (%)

Black 39 (21.1) 13 (15.6) 26 (25.2)

Hispanic 3 (1.6) 2 (2.4) 1 (1.0)

White 143 (77.3) 67 (81.7) 76 (73.8)

Mean Diagnosis Age, years (SD) 8.0 (5.8) 7.5 (5.3) 8.4 (6.1)

Mean Age at Evaluation, years (SD) 36.9 (8.0) 34.9 (8.4) 37.9 (7.7)

Mean Survival Time, years (SD) 28.7 (9.0) 27.8 (8.6) 29.9 (9.2)

Smoking Status, N (%)

Current 21 (11.3) 9 (11.0) 12 (11.7)

Former 25 (13.5) 12 (14.6) 13 (12.6)

Never 139 (75.1) 61 (74.4) 78 (75.7)

Primary Cancer Diagnosis, N (%)

Leukemia 80 (43.2) 49 (49.0) 31 (37.8)

Lymphoma 34 (18.4) 17 (17.0) 17 (20.7)

Sarcoma 18 (9.7) 10 (10.0) 8 (9.8)

Neuroblastoma 15 (8.1) 10 (10.0) 5 (6.1)

Wilms Tumor 13 (7.0) 8 (8.0) 5 (6.1)

Central Nervous System 10 (5.4) 4 (4.0) 6 (7.3)

Retinoblastoma 5 (2.7) 1 (1.0) 4 (4.9)

Other 10 (5.4) 4 (4.0) 6 (7.3)

Treatment Type, N (%)

Chemotherapy only 89 (48.1) 36 (43.9) 53 (51.5)

Chemotherapy + Radiation 96 (51.9) 46 (56.1) 50 (48.5)

Treatment Duration, mean (SD)

Chemotherapy (years) 1.6 (1.3) 1.5 (1.1) 1.7 (1.4)

Radiation (days) 14.5 (18.1) 16.4 (19.1) 13.0 (17.1)

Chemotherapy Agent, N (%)

Vinca Alkaloids 141 (76.2) 66 (80.5) 75 (72.8)

Anthracyclines 136 (73.5) 61 (73.4) 75 (72.8)

Alkylating Agents 131 (70.8) 62 (75.6) 69 (67.0)

Corticosteroids 101 (54.6) 44 (53.7) 57 (55.3)

Methotrexate 96 (51.9) 41 (50.0) 55 (53.4)

Epipodophyllotoxins 91 (49.2) 42 (51.2) 49 (47.6)

Platinum Agents 39 (21.1) 19 (23.2) 20 (19.4)
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survivors were 36.6 years old (range 20.1 to 55.7 years) and 28.7

(± 9.01) years from diagnosis. Forty-four percent were male,

77% were non-Hispanic white, and 44% had a primary diagnosis

of Acute Lymphoblastic or Myeloid Leukemia. Females were

older than males at time of assessment (p<0.01).
Exercise capacity and body fat

Female survivors had lower peak VO2 (mean (SD), 22.5 (8.2) vs.

28.8 (7.7) ml/kg/min, p<0.01) and higher body fat (39.2 (7.9) vs.

27.2 (8.2) %, p<0.01) compared to males (Supplemental Figure 1).
Association between inflammation and
exercise capacity

Female survivors had higher hs-CRP concentrations (5.9

(8.4) vs. 3.3 (3.9) mg/L, p=0.01) than males (Figure 2A). The

results of multivariable linear regression, stratified by sex, and

adjusted for age (years), and body fat (%) are shown in Figure 3.

Among the 103 female survivors, hs-CRP concentration (b -0.2,

95% CI -0.34 to -0.05, p=0.01), body fat (b -0.54, 95% CI -0.70 to

-0.37, p<0.01), and age (b -0.25, 95% CI -0.41 to -0.10, p<0.01)

were inversely associated with peak VO2 (ml/kg/min). Among

the 82 male survivors, hs-CRP concentration (b -0.31, 95% CI

-0.65 to 0.03, p=0.07), body fat (b -0.55, 95% CI -0.71 to -0.39,
Frontiers in Oncology 05
p<0.01), and age (b -0.32, 95% CI -0.39 to -0.07, p<0.01), were

inversely associated with peak VO2 (ml/kg/min), though hs-CRP

concentration did not achieve statistical significance.
Association between p16INK4a expression
and exercise capacity

Female survivors had higher p16INK4a expression (9.6 (1.2)

vs. 9.2 (1.2) fold, p=0.02) compared to male survivors

(Figure 2B). Multivariable linear regression models, stratified

by sex, were used to evaluate the association between p16INK4a

expression and peak VO2 (ml/kg/min), adjusted for age (years)

and body fat (%) (Figure 3). Among the 103 female survivors,

p16INK4a expression (b -5.32, 95% CI -10.42 to -0.22, p=0.04),

body fat (b -2.02, 95% CI -3.26 to -0.78, p<0.01), age (b -0.28,

95% CI -0.43 to -0.11, p<0.01), and the interaction between

p16INK4a expression and body fat (b 0.15, 95% CI 0.02 to 0.28,

p=0.03), were associated with peak VO2 (ml/kg/min). Among

the 82 male survivors, p16INK4a expression (b -1.01, 95% CI -2.14

to 0.12, p=0.08), body fat (b -0.54, 95% CI -0.70 to -0.38,

p<0.01), and age (b -0.22, 95% CI -0.38 to -0.06, p=0.01)

were inversely associated with peak VO2 (ml/kg/min),

though p16INK4a expression concentration did not achieve

statistical significance.

To explore the interaction effect of p16INK4a expression and

body fat on exercise capacity in females, data were sliced by
FIGURE 1

Participant flow.
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progressing levels of body fat percent (Figure 4). Expression of

p16INK4a was inversely associated with exercise capacity at body

fat percentages less than 35%.
Discussion

Adult survivors of childhood cancer are at risk for exercise

intolerance, a predictor of all-cause mortality (3). In this study,

we found increased p16INK4a and low-grade inflammation was

associated with reduced exercise capacity. Among females, this

association was only present among survivors with body fat

percentages less than 35%. To our knowledge, this is the first

study to demonstrate an association between a biomarker of

cellular senescence, low-grade inflammation, and exercise

capacity in childhood cancer survivors.

Expression of p16INK4a is generally undetectable in children

and younger adults (39). However, it is detectable in peripheral

blood T-lymphocytes among older adults and among young

survivors of childhood cancer exposed to radiation (12). More

recently, Smitherman et al (47) showed evidence of p16INK4a

expression in young survivors of childhood, adolescent, and

young adult cancers. They found elevated levels of p16INK4a to be

associated with frailty, an age-associated phenotype indicating

reduced physiological reserve. These data and our findings

support the hypothesis that p16INK4a expression is present in

other tissues (i.e. organs), and thus cellular senescence is
Frontiers in Oncology 06
potential mediator of physiologic deregulation in childhood

cancer survivors.

Further, not only was elevated p16INK4a expression and hs-

CRP concentration associated with lower peak VO2 and exercise

intolerance, but the mean VO2 peak among our survivors was

similar to values in persons several decades their senior (4). This

is concerning as poor exercise capacity is associated with early

mortality (48, 49), future cardiovascular events (50), and

reduced cognitive reserve (51). Early impairments in exercise

capacity concomitant with a hallmarks of ageing suggest that

VO2 may be a new biomarker capable of identifying survivors at

greatest risk of early onset of chronic conditions and mortality.

The detection of these ageing biomarkers is not surprising

given recent work that identified other hallmarks of ageing,

including reduced physiologic reserve (19, 52), telomere attrition

(53), altered DNA methylation patterns (54), and mitochondrial

dysfunction (55). Cellular senescence is an important biological

mechanism, and is a part of normal ageing. Inherently designed

to guard against proliferation of damaged cells, senescent cells

lose the capacity to replicate. As a result of cell cycle arrest,

senescent cells secrete proteins, including growth factors and

proteases that alter tissue structure and function, and cytokines

and chemokines with pro-inflammatory properties. The SASP

promote a state of subclinical inflammation, which results in

tissue fibrosis and deterioration (56). A similar mechanism may

be responsible for the early onset of reduced exercise capacity

seen among young adult survivors of childhood cancer. Early
BA

FIGURE 2

Distribution of biomarkers of inflammation and cellular senescence by sex. (A) hs-CRP concentration (mg/L) (B) p16 INK4A expression. * denotes
statistical significance at p<0.05
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exposure to DNA damaging agents may trigger early

accumulation of senescent cells that is not completely reversible.

Senescent cells also accumulate dysfunctional mitochondria,

capable of influencing SASP production (57). Our recent work

found association between decreased mitochondrial copy

number (mtDNAcn) and increased odds for sarcopenia (55).

Impaired skeletal muscle oxidative phosphorylation is

implicated in exercise intolerance among induvial with

mitochondrial myopathies (58). It is possible that

mitochondrial dysfunction is the pathobiological mediator

between elevated p16INK4a and hs-CRP levels in survivors with

low exercise capacity.

Our data demonstrating elevated p16INK4a expression and

hs-CRP concentration in survivors with impaired exercise
Frontiers in Oncology 07
capacity indicates a potential intervention target, given

evidence that p16INK4a levels are modifiable, potentially with

exercise (59, 60). In an animal model, Schafer et al (59)

demonstrated an improvement in exercise capacity and a

concomitant reduction in diet-induced p16INK4a mRNA

expression in rodents who exercised. Resistance training,

although primarily associated with muscle mass and strength

gains, also has the potential to clear accumulated senescent cells.

Yang et al. noted significant gains in muscle mass and an

associated rapid clearance of senescent cells from skeletal

muscle tissue in young men following a bout of resistance

training (60). Given that childhood cancer survivors respond

to both aerobic and resistance training, with improved exercise

tolerance (61–63) and strength and mass gains (64), following
B

C D

A

FIGURE 3

Results of sex-stratified multivariable models. (A, B) hs-CRP concentration (mg/L), (C, D) p16 INK4A expression. Regression lines represent the
linear associations between individual biomarkers and exercise capacity, adjusted for covariates
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exercise, it is possible that either aerobic training and/or

resistance training may contribute senescent cells clearance.

Additional research to determine if exercise, including type,

frequency, intensity, and duration of activity, can clear senescent

cells and either prevent or delay the cellular ageing in survivors.

Further, cellular senescence is targetable through nutraceuticals

(65). Agents such as Dasatinib and flavonoids (Quercetin;

Fisetin, available as nutritional supplements) interfere with the

senescent pathway, with evidence of safety, tolerability, and

ability to alleviate physical dysfunction in adults with chronic

disease (66). Currently, we have an open-label intervention trial

(NCT04733534) which aims to establish preliminary evidence of

efficacy, safety, and tolerability of two senolytic regimens to

reduce markers of cellular senescence and improve frailty in

adult survivors of childhood cancer. Survivors with reduced

exercise capacity may also benefit from senolytic agents either

alone or in combination with lifestyle modifications.

In general population, overweight and obese individual have

higher proinflammatory plasma profiles, specifically higher hs-

CRP, than non-overweight or obese individuals (67). In our

study, female survivors had significantly higher levels of body fat,

concomitant with higher p16INK4A expression, hs-CRP

concentration, and lower peak VO2 (ml/kg/min) compared to

males. Further, we noted a significant interaction between

p16INK4a expression and body fat among female survivors,

suggesting that the effect of cellular senescence on exercise

capacity may be masked in females who have excess body fat.

In our study, at body fat % values less than 35%, p16INK4a

expression had a strong inverse association with exercise

capacity. This association was not seen in females who had
Frontiers in Oncology 08
body fat % greater than 35% (68–70). Because adipose tissue is a

harbor for senescent cells, is associated with reduced physical

function, and is redistributed with ageing (71–73), it is possible

that an evaluation of senescent cell expression in adipose tissue

may have yielded different results. It is also possible that the

burden of excess body fat is the primary driver of exercise

capacity in females who are overweight or obese. Regardless,

the influence of an interaction between body fat and biomarkers

of ageing on exercise capacity are compelling and deserve

further investigation.

The results of this analysis should be interpreted in the context

of study limitations. Our population was small, and childhood

cancer diagnoses were not evenly represented in the sample;

almost half of the survivors had a history of childhood

leukemia, followed by less than 20% with a history of

lymphoma. While our study is limited by the use of a single

biomarker of cellular senescence, our findings of detectable

p16INK4a mRNA expression levels higher in young adult

childhood cancer survivors than in persons of similar age in the

general population (39), combined with the presence of low grade

inflammation in our population, signifies that cellular senescence

is a potential pathobiological mechanism for premature

physiologic ageing in survivors of childhood cancer,

contributing to exercise capacities comparable to adults decades

older. Further, we did not compare p16INK4a and hs-CRP levels to

individuals without a history of cancer. However, our mean hs-

CRP value was higher than seen in a general population (41),

suggesting a potential ongoing inflammatory milieu in this

population. Liu et al (39) evaluated p16INK4a expression in

peripheral blood T-cells in healthy adults, much older than our
FIGURE 4

Association of p16INK4A expression and exercise capacity by body fat percent in female survivors.
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participants (age [years], median [range], 47 [18-76] vs. 36.3

[20.1-55.7]), who were also overweight (body mass index (BMI)

[kg/m2], median [range], 26.5 [9.4-55.1] vs. 29.6 [16.5-57.4] kg/

m2). However, our participants had higher expression of p16INK4a

than healthy persons in the paper by Liu et al (39) (Figure 2B)

(mean log2 p16
INK4a mRNA expression 9.4 vs. 5.5). We suscept

that individuals without a history of cancer would have lower

levels of both biomarkers given their lack exposure to radiation

and chemotherapeutic agents capable of inducing DNA damage.

Additionally, our analysis was cross-sectional, and thus we are

limited in the ability to determine the direction of causality

between p16INK4a and exercise intolerance, and other participant

characteristics, such as body composition. However, expression of

p16INK4a was not independently associated with BMI (p=0.08) or

body fat (p=0.07), which is consistent with findings by Liu et al.

(39) Further, we previously showed that over 50% of childhood

cancer survivors are exercise intolerant, at BMIs comparable to

healthy community controls (3), thus challenging that high

adiposity is the true etiology of senescence in our survivors.

More likely, adiposity and the accumulation of senescent cells in

adipose tissue is additive to the pathobiology of exercise

intolerance in this population. However, adiposity is a potential

source of senescence etiology and further investigations into its

interplay with biologic ageing, cellular senescence, and

inflammation is warranted in the survivor population.
Impact statement

Cellular senescence is implicated with advancing age and the

onset of chronic condition and disease. Over 50% of young

childhood cancer survivors are exercise intolerant, with maximal

aerobic capacities comparable to individuals decades older,

suggesting early physiologic ageing. In our study, biomarkers

of cellular senescence and inflammation were associated with

lower exercise capacity, which was further mediated by body fat

in female survivors. To our knowledge, this is the first study to

demonstrate an association between p16INK4a expression, low-

grade inflammation, and exercise capacity in childhood cancer

survivors. Our study contributes to growing body of evidence of

accelerated ageing among childhood cancer survivors. Further, it

highlights that interventions designed to improve exercise

capacity and/or body composition have potential to remediate

the accelerating ageing phenotype and early onset of chronic

conditions seen among adult survivors of childhood cancer.
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