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MR image reconstruction from
undersampled data for image-
guided radiation therapy using a
patient-specific deep manifold
image prior

Jace Grandinetti †, Yin Gao †, Yesenia Gonzalez, Jie Deng,
Chenyang Shen and Xun Jia*

Innovative Technology of Radiotherapy Computations and Hardware (iTORCH) Laboratory,
Department of Radiation Oncology, University of Texas Southwestern Medical Center,
Dallas, TX, United States
Introduction: Recent advancements in radiotherapy (RT) have allowed for the

integration of a Magnetic Resonance (MR) imaging scanner with a medical linear

accelerator to use MR images for image guidance to position tumors against the

treatment beam. Undersampling in MR acquisition is desired to accelerate the

imaging process, but unavoidably deteriorates the reconstructed image quality.

In RT, a high-quality MR image of a patient is available for treatment planning. In

light of this unique clinical scenario, we proposed to exploit the patient-specific

image prior to facilitate high-quality MR image reconstruction.

Methods: Utilizing the planning MR image, we established a deep auto-encoder

to form amanifold of image patches of the patient. The trainedmanifold was then

incorporated as a regularization to restore MR images of the same patient from

undersampled data. We performed a simulation study using a patient case, a real

patient study with three liver cancer patient cases, and a phantom experimental

study using data acquired on an in-house small animal MR scanner. We

compared the performance of the proposed method with those of the Fourier

transform method, a tight-frame based Compressive Sensing method, and a

deep learning method with a patient-generic manifold as the image prior.

Results: In the simulation study with 12.5% radial undersampling and 15%

increase in noise, our method improved peak-signal-to-noise ratio by 4.46dB

and structural similarity index measure by 28% compared to the patient-generic

manifold method. In the experimental study, our method outperformed others

by producing reconstructions of visually improved image quality.

KEYWORDS

MRI, image reconstruction, radiotherapy, image guidance, prior information, patient-
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1 Introduction

1.1. MR guided radiation therapy

Online image guidance plays an important role for the

success of radiation therapy (1). Using an imaging device

installed on the medical linear accelerator (LINAC) to acquire

patient anatomy images immediately before, or during treatment

delivery, online image guidance allows the visualization of the

patient anatomy at the treatment stage, which is essential to align

the tumor target accurately with the radiation beam, or to adjust

the treatment plan based on the anatomy to maintain the plan

optimality. Imaging during the treatment delivery also permits

motion monitoring of the tumor and other organs to ensure

delivery accuracy and patient safety. Cone beam CT achieved

using an x-ray tube and a flat panel detector mounted on a

LINAC is currently the most widely used image guidance

modality (2). Nonetheless, its applications are impeded by the

low soft-tissue contrast, the associated ionizing radiation, and

the lack of real-time imaging capabilities. Lately, technological

advancements have enabled the integration of a Magnetic

Resonance (MR) imaging scanner with a LINAC, yielding the

new scheme of MR-guided radiation therapy (MRgRT) (3).

Adoption of this novel scheme has demonstrated improved

tumor targeting accuracy, allowing increased radiation dose to

the tumor, reduced dose to nearby critical organs, and therefore

better treatment outcomes (4).
1.2. MR reconstruction with
undersampled data

For online image-guidance purposes, fast data acquisition is

needed to speed up the overall imaging process. Otherwise,

motion of patient anatomy may occur during the image

acquisition process, defeating the purpose of image-guidance.

Hence, in MRgRT, MR image reconstruction with

undersampled data is of particular importance. This problem

has been extensively studied over the years. Generally speaking,

additional information has to be provided to the reconstruction

workflow to compensate the missing information from the

undersampled data. This can be often achieved by introducing

regularization on image quality. For instance, Tikhonov

regularization was invented to ensure overall smoothness of

the solution (5). In the Compressive Sensing (CS) framework (6–

8), an optimization problem was formed with the regularization

term included in the objective function. The key ingredient was

to find a transformation, such that the unknown image to be

restored is sparse under the transformation. Enforcing the

sparsity of the solution can be used a priori as a regularization

in the optimization problem by minimizing the L0 norm of the
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transformed image, which is often relaxed into minimizing the

L1 norm because of better numerical properties. Under this

framework, a number of transformations have been explored in

different image processing problems. The popular Total

variation (9, 10) method used a gradient transform to ensure

the solution sparsity under this transform. Wavelet (11) and

similar transforms, such as tight wavelet frame (12, 13), were

employed to regularize the solution image at multiple

resolutions with the wavelet basis functions. The idea of low-

rank regularization was also introduced (14, 15). In the problem

of reconstructing images with motions, the matrix composed of

images at multiple time points as columns naturally has a low

rank due to the similarity among images. This property was

introduced into the reconstruction problem by penalizing the

rank. In an effort to find basis functions that can effectively

sparsify an image, a dictionary learning approach was developed,

which learns a dictionary basis from existing MR images. The

learned dictionary was then used in image reconstruction to

regularize the unknown image by requiring that it has a sparse

representation under the basis (16).

Recently, deep learning (DL) has demonstrated its power in

solving a number of machine learning problems in different

domains (17–20). With a deep neural network (DNN) of a

large-scale hierarchical multi-layer structure, it is possible to

approximately represent a very complex distribution of the

dataset of interest. When applying to MRI image processing

problems, this enables description of the desired image

properties, which is valuable to enforce solution quality. A

straightforward approach is to use a DNN to map a low-quality

MR image to a high-quality image. Kwon et al. employed a multi-

layer perceptron (21) and Lee et al. used a deep residual network

(22) to reduce aliasing artifact of MR images caused by data

undersampling. Chun et al. developed a DNN to map a low-

resolution MR image to the high-resolution counterpart,

achieving the goal of super-resolution (23). In the k-space data

domain, a DNN was used to interpolate data to address the

missing data problem in the undersampling situation to improve

the quality of reconstructed images (24). Lately, feasibility of

training a DNN to map data directly from k-space to the image

space has also been demonstrated, hence achieving the MR image

reconstruction task bypassing the physics-based reconstruction

process (25). Viewing the iterative reconstruction process as the

data processing pipeline in a feed-forward DNN, it was proposed

that we could learn parameters in the iterative process, such as

image filter kernels, activation functions, and weighting factors via

the network training process. This idea was realized for a few

commonly used iterative MR image reconstruction algorithms

including the gradient descent algorithm (26) and the alternating

direction method of multipliers (ADMM) (27). Sriram et al.

introduced a novel End-2-End Variational network to train the

network in an end-to-end fashion for multi-coil fast MRI

reconstruction (28).
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1.3. Manifold constrained
image reconstruction

Generally speaking, when dealing with undersampled data,

effectiveness of a reconstruction algorithm lies in how effectively it

can provide prior information to compensate missing

measurements or errors in the data. Mathematically, the prior

information forms a low-dimensional manifold with an intrinsic

dimension much lower than the high dimensional image space.

Images on the manifold follow the characteristics of the desired

images, such as their appearance, intensity, structural contents, etc.

Themanifold can thus serve as a constraint to the solution image to

ensure its desired characteristics. This idea has been explored in a

number of studies using different approaches to construct the

manifold and utilize it. In a seminal work, Chen et al. used a

Compressive sensing approach toconstrain the solution similar toa

prior image (29). Researchers successfully built manifolds by

explicitly modeling the data structure, e.g. using a kernel-based

method (30), manifold learning (31, 32), and analysis dictionary

learning and manifold structure regularization (ADMS) (33). The

manifolds were then incorporated in the problems of MR image

reconstruction (34, 35) or MR parameter mapping (32). With the

flexibility of using DNNs to represent a manifold, DL allowed the

modelingof the imagemanifold via thenetwork trainingprocess, as

well as the incorporation of the manifold in image reconstruction.

The power of this approachhas beendemonstrated in bothMRand

CT reconstruction problems (36–38).

Along this line, when constructing the manifold from prior

image data, the effectiveness of the manifold in the subsequent

image reconstruction problem depends on the relevance of the

prior image data to the image to be reconstructed. Previous

studies (29, 34–38) generally used patient-generic prior images to

construct the manifold, because these images are widely available

and the manifold can effectively provide prior information such

as image intensity, structure, etc, to help the reconstruction task.

Nonetheless, it is expected that the effectiveness of the manifold

can be further enhanced by a patient-specific manifold, i.e. using

images of a patient to construct the manifold and use it to

reconstruct images for the same patient. This approach may

further provide patient-specific information to the image

reconstruction process.
1.4. Our contributions

One of the contexts enabling the use of this patient-specific

prior information is MRgRT. In radiotherapy, high-quality

patient-specific MR images are available for treatment planning

purposes. Hence, the image can be naturally used to build the

manifold specifically for this patient. At the treatment stage,

when a new MR image is to be reconstructed to guide the

treatment delivery, the manifold can be used to facilitate the
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reconstruction task. This may allow rapid data acquisition with

undersampling, while delivering high-quality reconstructed MR

images. In this paper, we present our recent study on MR image

reconstruction for MRgRT using the patient-specific image

manifold prior constructed via DL. The major contributions of

this work are twofold.
1. We point out that the clinical context of MRgRT permits

the use of patient-specific prior information to aid the

reconstruction of MR images for image-guidance

purposes. It is innovative to notice this property that

leads to more effective modeling of prior information

than using the patient-generic approach.

2. We develop a DNN to learn the patient-specific image

manifold prior, as well as a reconstruction algorithm to

incorporate the manifold to the reconstruction process.

We demonstrate the effectiveness of this approach and the

superior performance over other reconstruction methods,

including the one with a patient-generic manifold. The

manifold-based reconstruction algorithm also makes

the image restoration process interpretable, facilitating

the clinical application.
The remaining sections are organized as following: Section 2

will present our method including manifold construction, its

incorporation in reconstruction, and additional implementation

details. In Section 3, we will conduct extensive tests to evaluate

the proposed method and demonstrate its effectiveness. After

giving discussions in Section 4, we will conclude this work in

Section 5.
2 Materials and methods

The overall idea of the proposed approach is illustrated in

Figure 1A. The colored surface represents a low-dimension

manifold of the prior information to be constructed from patient-

specific prior images. Once themanifold is learned from the data, it

serves as a constraint during the iterative reconstruction process,

such that the solution resides on this manifold.
2.1. Deep neural network-based patient
specific image prior

In this study, we used a DNN to represent the manifold

formed by patches extracted from the patient’s prior MR image

available at the radiotherapy treatment planning stage. We

considered the manifold of image patches, because in MRgRT

there is often only one image available for treatment planning.

Breaking an image into a number of patches provided sufficient

data for model training.
frontiersin.org
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To represent the patch-based manifold, we used a deep auto-

encoder (DAE) architecture (39). A DAE first maps input data to

a low-dimensional latent space, based on which it restores the

input data exactly. This dimension reduction established by the

DAE is required to preserve all useful information for exact data

recovery. As such, a DAE is a natural choice for representing a

manifold, and has been widely employed in previous studies (38,

40–45). Here, we built a DAE F(·|q)=D(E(·|qE)|qD) with its

detailed architecture shown in Figure 1B, where D(·|qD) and E

(·|qE) are the decoder and encoders, respectively. qD and qE are
network parameters.F(·|q) denotes the overall mapping with q=
{ qD,qE} . The DAE took a patch xi,(i∈W) of size 64×64 centered

at the i -th pixel of the prior MR image as input, and first

mapped it to a low-dimensional latent space via the first half

(encoder) of the DAE, i.e. zi=E(xi|qE) . In this study, zi∈R512

indicating that the dimension of the input patch was reduced by

a factor of 8 via the encoder. The latent representation zi was

then fed into the second half of the network (decoder) to recover

the input, i.e. xi=D(zi|qD) .
Training theDAEwas formulated as an optimization problem,

enforcing the DAE to exactly recover input image patches

q̂ = argminq o
i∈W

L(F(xijq), xi) (1)

where the loss function L(·) can be any metric measuring

distance between F(xi|q) and xi . We used the mean absolute

error (MAE) as themetric in this study. This optimization problem

was solved iteratively via the gradient descent algorithm, i.e.

q tð Þ = q t−1ð Þ − d∇f L
∂F
∂ q

jq=q t−1ð Þ , t = 1, 2,… (2)

where d is a constant specifying the step size in each update,

and is often referred as learning rate in the DL regime. ∂F
∂ q is
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evaluated in a layer-by-layer fashion based on the chain rule.

Due to the large number of training samples in the training

dataset, a stochastic gradient descent (SGD) algorithm was

employed to improve the training efficiency, which evaluated

the gradient using a random subset of the training data in each

iteration. Training was performed until a maximal number of

iterations was reached, while the optimal parameters denoted as

q̂ achieving the best performance was saved to generate the

trained DAE F( · jq̂ ) to be used in the reconstruction step.
2.2. Reconstruction method

To incorporate the trained DAE as prior information, we

formulated the following reconstruction model:

min
x

∥ FSx − g ∥2F +bo
i∈W

∥Pix −F(Pixjq̂ ) ∥2F : (3)

x represents the MR image to be reconstructed, and g denotes

the acquired signal in k space. F indicates the 2D Fourier transform

operator, while S is the undersampling operator. || . ||F denotes

Frobenius norm. Pi refers to the operator that extracts a 64-by-64

pixel image patch centered at the i -th pixel from xW is the set of all

pixels in the image. The first term in Eq. (3) enforced the fidelity

between the reconstructed image and the acquired k-space data.

The second term incorporated the trained DAE F( · jq̂ ) to

regularize the quality of the reconstructed image. b is a

regularization parameter balancing the contributions from the

two terms. By solving this optimization problem, we expect to

reconstruct an MR image of similar image quality as the prior

image, while its content is defined by themeasurement g , reflecting

the anatomy/structure at the time of scanning instead of being

biased towards the prior information.
A B

FIGURE 1

(A) Illustration of the prior information manifold and the reconstruction process. (B) Architecture of the DNN used to represent the manifold.
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To solve Eq. (3), we employed the forward-backward

splitting algorithm. More specifically, the original problem was

solved by tackling the following two subproblems alternatively in

each iteration until convergence:

x t+1
2ð Þ = argminx ║ FSx − g ║2

F ,

x(t+1) = argminx bo
i∈W

∥ Pix −F(Pixjq̂ ) ∥2F + ∥ x

− x(t+
1
2) ∥2F : (4)

The first subproblem is of a quadratic form, which can be

solved efficiently using the conjugate gradient least-square

algorithm (46) with the initial guess set as x(t) , i.e. the

solution obtained in the previous iteration step. In this study,

we assumed the solution is a real image and hence enforced this

at this step of the iterative process by taking the absolute value.

The second subproblem in Eq (4), on the other hand,

involves the DAE, which is a highly non-linear and non-

convex function. To solve such a complex optimization

problem, we proposed to employ a fix-point scheme, i.e. at

each iteration, we fix F(Pixjq̂ ) as F(Pix
(t+1

2)jq̂ ) and hence the

second subproblem becomes

argminx bo
i∈W

∥Pix −F(Pix
(t+1

2)jq̂ ) ∥2F + ∥ x − x(t+
1
2) ∥2F : (5)

The solution to this modified optimization problem can be

obtained explicitly as

x(t+1) =
boi∈WP

*
i F(Pix

(t+1
2)jq̂ ) + x(t+

1
2)

bn2 + 1
, (6)

where P*i is the adjoint operator of Pi , which simply places

the extracted patch i back to its location in the MR image. In this

case, P*i Pix = n2x, where n is the patch size. Note that we used

one patch for each pixel, so the patches were overlapping and

Each pixel was covered by n2 patches. In the above equation, the

summation indicated that the adjoint operator added each patch

to corresponding locations, and overlapping patches were

summed. The normalization was reflected in the denominator

term of this equation. In general, if patches were overlapped, the

updated pixel value would be the average over all patches

covering this pixel, together with the x(t+
1
2) term.

The complete update scheme to solve the reconstruction

problem in 3 is summarized in Algorithm 1.
Fron
Input: x(0) F, S, g, PiF( · jq̂ )b ∈0, tmax

Output: x̂

Initialization: sett=0

Step 1: compute x (t + 1
2 ) = ConjugateGradient(x(t), F, S, g)

Step 2: Compute x (t + 1) =
boi∈WP

*
i F(Pix

(t+1
2)jq̂ ) + x(t+

1
2)

bn2+1 :
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Step 3: if t<tmax and ∥ x(t+1)−x(t) ∥2F
∥ x(t) ∥2F

>∈0 set t=t+1, go to

Step 2

Step 4: Set x̂ = x(t)
ALGORITHM 1

DAE assisted reconstruction algorithm.

The interpretability of the reconstruction Algorithm 1 can be

illustrated in Figure 1A, which offers a geometric visualization

about the iterative reconstruction process. At the beginning of

each iteration, with the solution x(t) as the initial guess, solving

the least square problem in step 1 generates a new solution x(t+
1
2).

For each patch xi = Pix
(t+1

2), the DAE generates a corresponding

one on the manifold by first computing the coordinate in the

latent space E(xijq̂ E) and then restoring the patch for this

coordinate x̂ i = D(E(xijq̂ E)jq̂ D). These patches are assembled

to form a new image. Finally, the new image and x(t+
1
2) are

averaged with weights proportional to b and 1 , respectively,

yielding a new solution x(t+1) . This process continued until

convergence, where a solution on, or sufficiently close to, the

manifold prior and meeting the data fidelity was generated.
2.3. Implementation details

The proposed training and reconstruction framework was

implemented using Python with TensorFlow (47) on a sever

equipped with eight Intel Xeon 3.5 GHz CPU processors, 32 GB

memory and one Nvidia V100 GPU card. In our experiment, all

the images were first normalized to [ 0,1 ] for simplicity. The

DAE was trained with a learning rate of 1×10−5 and a batch size

of 64. The maximal training epoch number was set to 10,000,

while the training will be terminated if the average MAE was

lower than 1×10−5, or no further improvement was observed in

100 epochs. The time to train the DAE was about 2 days.

As for the reconstruction using the trained DAE, the

maximal number of iterations was set to tmax=15 , while the

algorithm would be stopped earlier if the relative difference

between the solutions of two consecutive iterations was less than

∈0=10
−3 . We manually adjusted the value of the parameter b .

The best value was determined based on the resulting

image quality.
2.4. Evaluation studies

2.4.1. Simulation study
We first evaluated the performance of the trained DAE in

terms of recovering the input image patches, and as prior

information in reconstruction in a simulation study using an

abdominal MR image of a patient treated at our institution. We
frontiersin.org
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followed the standard simulation protocol of gynecological

cancer in our clinic to acquire images using a 3D T2W turbo

spin echo sequence. The parameters for this sequence included

Repetition Time (TR) 1250 ms, Time to Echo (TE) 185 ms and

flip angle 70 degree. The MRI image was acquired for

radiotherapy treatment planning with a resolution of 512×512

voxels and a voxel size of 0.71 mm. One image patch was

extracted for each pixel in the image, resulting in 262,144

training samples to train the DAE. During a radiotherapy

treatment course, patient anatomy varies from day to day but

is expected to be similar to the prior image up to a deformation.

Hence, we deformed the prior image with a smooth motion

vector field with maximum amplitude of 14.2 mm to generate

the test image to reconstruct, see Figure 2.

We first trained the DAE with the patches extracted from the

prior image. To examine the quality of the DAE, we fed the DAE

with image patches extracted from both the training and testing

images. The output from the DAE was compared against the

input both visually and quantitatively to evaluate the quality of

the training process.

After that, we incorporated the trained DAE into the

proposed reconstruction scheme and investigated the

reconstructed image quality. Full k-space data was obtained

for the test image via Fourier transform of the image.

Sampling of k-space was performed to keep the central lines of

k-space, preserving the low frequency and high contrast

components of the image. We reduced the number of phase

encode lines, while fully sampling in the frequency encoding

direction as no time penalty is incurred. The undersampling

ratio was defined as the percentage of phase encode lines

sampled. Figure 3 depicts the undersampling scheme. With

this scheme, it was hoped that the prior manifold trained with

image patches would compensate the missing high-frequency

information along the phase encoding direction. For all testing

cases, we renormalized the intensity range of reconstructed

image during the reconstruction process to [0,1]. Based on our
Frontiers in Oncology 06
experience, the signal intensity was not noticeably affected, as the

down sampling ratio was changed, which was ascribed to the

retention of the lower frequency components in our sampling

scheme. Noise signals sampled from a Gaussian distribution of

different amplitudes were added to the k-space data, mimicking

the amplified noise due to reduced signal averaging to speed up

the acquisition. It is desired that the reconstruction algorithm

only utilizes the prior information to improve image quality,

intensity accuracy and noise reduction, while preserving the

anatomical structure from being biased by the prior image. We

examined the resulting image quality visually from this

perspective. Quantitatively, the image quality was measured

using Structural Similarity Index Measure (SSIM) (48) and

Peak Signal-to-Noise Ratio (PSNR).

To benchmark the proposed scheme, we compared results

with those generated by three other reconstruction methods.

• The first was the direct Fourier Transform (FT) method,

which is widely used in the standard clinical practice.

• The second method was a tight-frame (49) based CS

reconstruction algorithm, which reconstructs the image by

solving the following problem:

min
x

∥ FSx� g ∥2F +l ∥Wx ∥1 : (7)

•W is a set of tight frames. l is the regularization parameter

that was adjusted manually for the best image quality. The

problem was solved using the Alternating Direction Method of

Multipliers (50).

• As the main contribution of this study is the use of a

patient-specific manifold, in the third comparison, we studied

the algorithm with a patient-generic manifold as the constraint

on image quality. The reconstruction algorithm followed exactly

the same scheme as the proposed algorithm except that the DAE

was trained to represent a general manifold for different patients.

We collected abdominal MR images from another 14 patients

and used patches randomly extracted from these images to train
FIGURE 2

Prior MR image (left), MR image with simulated motion (middle), and the overlay of the two illustrating deformation between the two (right).
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the patient-genetic DAE. The total number of patches, as well as

other configurations to train the DAE, were the same as those in

the training of the patient-specific DAE for a fair comparison.

2.4.2. Real patient data study
To further demonstrated the effectiveness of the proposed

patient-specific manifold scheme, under the approval of the

Institutional Review Board, we studied its performance in

three real patient cases with liver cancer treated at our

institution. We followed dynamic liver contrast enhancement

MRI protocol using a 3D T1W mDixon fast field echo sequence

under breath hold. The parameters for this sequence were TR 5.3

ms, TE 1.73 ms and 3.6 ms, and flip angle 15 degree. Contrast

enhanced MR images were acquired at 90 sec and 180 sec post

contrast injection. The one at 90 sec was used as prior image to

construct the patient-specific manifold that was then utilized to

reconstruct the image at 180 sec. The prior image and the image

to be reconstructed differ in image intensity due to contrast

enhancement, as well as in structure due to bowel movement

and respiratory motion. We studied different levels of noise and

undersampling levels. We compared the reconstruction results

from our method with those in the clinical standard FT method,

the CS method, and the patient-generic manifold method. The
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resulting image quality was quantitatively assessed using SSIM

and PSNR.

2.4.3. Experimental study
We also evaluated the proposed algorithm in an experiment

mimicking the clinical practice using a 0.3 T small animal MRI

scanner in our lab with a kiwi fruit as the phantom. Specifically,

we first scanned the kiwi to generate the prior MR image with

512times512 pixels and pixel size of 0.5 mm. The scanning

protocol was a Cartesian T2W Rapid Acquisition with

Relaxation Enhancement (RARE) (51) sequence with TR 5000

ms, TE 75 ms, echo train length 32, and number of excitation

averages 64. The scan was reconstructed with the BM3D

denoising filter to remove noise in order to generate a high-

quality prior image (52). We extracted one image patch for each

pixel and trained the DAE to represent the manifold.

A week later after the first scan, we performed another scan

on the same kiwi using the same pulse sequence parameters

together with BM3D filter to acquire a high-quality reference

ground truth image. The appearance of the kiwi was different

from that of the first scan, resulting in a distinct shape (see

Figure 4). The MRI scanner was then programmed to carry out

scans with different undersampling ratios and repetitions of data
FIGURE 3

Highlighted region in red depicts the undersampling scheme with the frequency encoding =512 points and phase encoding reduced from 512
to 64 lines (by 8 times). This undersampling scheme is overlaid on a fully sampled k-space for illustration purposes.
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acquisitions. We reconstructed the MR image using the

proposed algorithm. Similarly, to the simulation study, we

compared the performance of the proposed method with that

of the FT method and the CS method. As the kiwi study does not

have a dataset of MR images from multiple ‘patients’, we did not

conduct comparison with patient-generic manifold method.
3 Results

3.1. Results of simulation study

3.1.1. Network training
We investigated the performance of the DAE established for

the specific patient involved in this study, since its quality

controls the reconstructed image quality. As such, we first

compared the output patches from the DAE with its input of

patches from the prior MR image. It was found that the DAE was

able to accurately restore the input image patches, achieving an

average PSNR of 34.42 (see some examples in Figure 5A.We also

combined all the output patches from DAE into a complete

image and compared it directly to the original prior MR image,

see Figure 5B. The results show good agreement between the

two. We also fed the established DAE with image patches from

the test MR image. The resulting patches and the combined

image are shown in Figures 5C, D, respectively. The results show

that DAE fully respected the deformed anatomy and was able to

accurately recover image patches for the test image, achieving an

average PNSR of 33.55, illustrating the high quality of the

patient-specific DAE model.

3.1.2. Image reconstruction
In Figure 6 we present the reconstruction results of different

undersampling ratios with different levels of noise added to the
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k-space data. We compared the reconstruction results of the

proposed method with the conventional FT reconstruction, an

CS reconstruction method, and the patient-generic manifold

prior method. For the FT and CS methods, the image quality

degrades severely with less k-space data or increased noise levels.

As the undersampling ratio was increased, the resulting images

gradually lose fine structures. Noise in the images was increased

by the noise in the k-space data. The advantages of the CS

method over the FT method became more obvious in the cases

with low sampling ratios and high noise levels. The patient-

generic manifold algorithm was able to improve the image

quality compared to the direct FT reconstruction method, but

its performance was comparable to the CS method in most cases.

The proposed patient-specific manifold algorithm, on the other

hand, obviously obtained superior reconstruction quality

compared to all the other three methods. It was able to

provide reasonable reconstruction results even with 15% of

added noise and up to an undersampling ratio of 12.5%.

This observation was supported by the quantitative

comparisons presented in Table 1. In all but one cases, the

proposed method using the patient-specific prior achieved the

best SSIM and PSNR. Only in the case with the least amount of

undersampling (50%) without added noise did the FT method

have the highest PSNR. In this relatively easy case, the

performance of all methods was similar and high, as indicated

by the similar SSIM and PSNR values among their results. The

slight improvement of SSIM by 0.002 in this case is not expected

to be significant. The advantages of our proposed method

appeared more significant with larger undersampling rates and

more noise contamination, as indicated in both the quantitative

evaluation in Table 1 and by visual assessment in Figure 6.

To demonstrate that the anatomical structure of the

reconstruction result was not biased by the prior image, we

overlaid the image reconstructed by the proposed method with
FIGURE 4

Prior kiwi image (left), the reference image for testing (middle), and the overlay of the prior (green) and reference (magenta) illustrating the
deformations (right).
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the ground truth testing image in Figure 7. The anatomical

structures in the two images were visually indistinguishable, as

indicated by the sharp edges of the overlaid image. In contrast,

when we overlaid the reconstructed image on the prior image,

the blurry result demonstrated that the reconstructed image had

a different anatomical structure, representing the deformation

between the prior image and the test image.
Frontiers in Oncology 09
3.2. Results of real patient data study

The reconstruction results of one liver case with different

undersampling ratios and different levels of noise are shown in

Figure 8. The advantages of the patient-specific algorithm in

terms of image quality became more obvious at more

challenging cases with high noise levels and undersampling
FIGURE 5

(A) Examples of input patches from the prior MR image and their corresponding outputs from the DAE. (B) The prior image, image formed by
the DAE output patches, and their difference. (C) Examples of input patches from the test MR image and their corresponding outputs from the
DAE. (D) The test MR image, the image assembled by patches from the DAE output, and their difference. All the MR patches and images are
displayed in a window of [0, 1], while the difference images are displayed in a window of [-1,1].
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ratios. Paired t-tests were performed to test if the patient-specific

manifold was better than each of the other methods. P values less

than 0.05 were considered significant. The comparisons between

the proposed method and each of the other three methods are

presented in Table 2. Similar findings were observed to the

previous simulation case. Overall, the proposed patient-specific

manifold algorithm outperformed others in terms of

reconstructing images with higher SSIM and PSNR values.

The advantage was especially prominent in the cases with the

larger amount of undersampling and noise. Generally, the

statistical significance became more obvious in more

challenging cases.

Figure 9 shows the evolution of PSNR and SSIM along the

iteration process for an example of a real patient case. The curves

saturated at the end, indicating convergence of the method. The

patient-specific manifold reconstruction achieved better PSNR

and SSIM than the patient-generic manifold. We also remark

that the convergence behavior was only numerically

demonstrated, but we did not have a theoretical justification

for the reconstruction process involving complex operations by

the DAE.
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3.3 Results of experental study

3.3.1 Network training
We first investigated the performance of the DAE trained

using the prior kiwi image. After feeding in patches of the prior

kiwi images as the input, the trained DAE was able to accurately

recover the input patches with an average PSNR of 37.86. In

Figures 10A, B, we show several example patches and the

combined kiwi image recovered by the established DAE,

respectively. With its effectiveness confirmed on the prior

image, we further evaluated the performance of the trained

DAE on the testing data acquired for the same kiwi several

days after the acquisition of the prior image. The recovering

results for the testing image patches can be found in

Figures 10C, D. Note that the input image was reconstructed

using the direct FT method. Although we have used the fully

sampled data with the largest number of repetitions available in

our experimental dataset, a relatively high level of noise still

existed in the reconstructed image. Through visually examining

the patches processed by the DAE and the completed image

shown in Figures 10C, D, we found that the established DAE was
FIGURE 6

Reconstruction results of the simulation case using data with different undersampling ratios and noise levels. The complete images are displayed
in a window of [0,1] and the zoomed-in patches are displayed in a narrower window of [0, 0.6].
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able to recover most of the structures in the input image while

substantially suppressing the noise contamination.

3.3.2. Image reconstruction
In Figure 11, we present the reconstruction results with

different undersampling ratios and number of data acquisition

repetitions. Note that less repetitions improves the acquisition

efficiency, while the noise level is unavoidably amplified due to

less averaging. Among the three methods, the proposed method

visually provided the best reconstruction image quality in all

testing scenarios. Overall, the direct FT method suffered the

most from noise. The undersampling process also may degrade

its reconstruction quality with loss in detailed textures, but at the

same time reduce noise to a certain extent. Compared to the

direct FT method, the CS method was effective in terms of

improving the reconstruction quality in most cases by
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suppressing noise. However, the images were blurred in the

noise removal process. The advantage of the proposed patient-

specific manifold algorithm over the direct FT method and the

CS method can be easily observed in Table 3. In the most

challenging case with 12.5% undersampling and 8 repetitions,

the SSIM was increased from 0.772 in the FT method to 0.853 in

our method, and the PSNR from 26.80 to 28.40.
4 Discussion

It is generally understood that a DNN, as a universal

function approximator, can be trained to represent an

unknown highly complex function. In this study, we employed

a DAE to represent the manifold of MR images. As mentioned in

Section 1, the effectiveness of the manifold-constrained image
TABLE 1 Quantitative comparisons of FT, CS, patient-generic manifold, and patient-specific manifold methods with different undersampling
ratios and noise levels for three liver cases. Each number is the mean value ± standard deviation. The p-values between the proposed PS-Manifold
and each method are included. The best result in each case and statistically significant p-values are highlighted with bold font. FT: Fourier
Transform. CS: Compressive Sensing. PG-Manifold: Patient-generic manifold. PS-Manifold: Patient-specific manifold.

Under-sampling No noise added 10% noise

Method SSIM p PSNR p SSIM p PSNR p

50% FT 1.00±0.00 NA 58.19±0.78 0.00 0.86±0.02 0.02 38.78±0.60 0.05

CS 1.00±0.00 NA 57.51±1.09 0.04 0.89±0.02 0.04 36.29±0.95 0.03

PG-Manifold 1.00±0.00 NA 40.02±1.02 0.00 0.93±0.01 0.18 37.25±0.68 0.13

PS-Manifold 1.00±0.00 40.87±1.01 0.95±0.00 39.16±0.96

25% FT 0.98±0.00 NA 40.19±0.66 0.12 0.85±0.02 0.00 36.46±0.89 0.17

CS 0.98±0.00 NA 41.29±0.67 0.12 0.89±0.02 0.08 36.05±0.72 0.44

PG-Manifold 0.98±0.00 NA 37.48±1.10 0.33 0.91±0.02 0.12 36.14±0.44 0.25

PS-Manifold 0.98±0.00 38.79±0.81 0.94±0.00 37.01±0.90

12.5% FT 0.93±0.01 0.18 32.90±1.14 0.59 0.80±0.00 0.00 32.14±0.96 0.16

CS 0.94±0.02 0.69 32.75±0.48 0.39 0.87±0.02 0.08 32.35±0.18 0.22

PG-Manifold 0.93±0.01 0.12 32.57±0.93 0.20 0.88±0.03 0.25 32.29±0.80 0.12

PS-Manifold 0.95±0.00 33.22±0.45 0.92±0.01 32.95±0.43

Under-sampling 20% noise 30% noise

Method SSIM p PSNR p SSIM p PSNR p

50% FT 0.70±0.03 0.00 32.77±0.61 0.00 0.60±0.00 0.01 29.27±0.60 0.00

CS 0.80±0.04 0.02 34.19±0.10 0.03 0.67±0.04 0.04 31.30±1.15 0.01

PG-Manifold 0.82±0.03 0.03 34.14±0.41 0.00 0.69±0.03 0.09 31.20±0.34 0.04

PS-Manifold 0.88±0.02 35.29±0.45 0.81±0.03 32.85±0.96

25% FT 0.70±0.03 0.01 32.58±0.61 0.03 0.61±0.04 0.01 29.37±0.70 0.00

CS 0.75±0.06 0.03 33.40±0.96 0.12 0.62±0.05 0.04 30.70±0.83 0.02

PG-Manifold 0.79±0.17 0.18 33.75±0.35 0.27 0.68±0.05 0.14 30.91±0.31 0.09

PS-Manifold 0.87±0.02 35.02±0.73 0.79±0.01 32.51±0.99

12.5% FT 0.66±0.03 0.01 30.38±0.68 0.02 0.58±0.04 0.04 28.44±0.53 0.00

CS 0.72±0.05 0.04 30.89±0.66 0.02 0.62±0.02 0.09 29.33±0.31 0.03

PG-Manifold 0.74±0.03 0.07 31.36±0.62 0.04 0.65±0.05 0.07 29.62±0.44 0.01

PS-Manifold 0.83±0.01 31.98±0.44 0.77±0.07 30.75±0.51
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reconstruction lies in how well the manifold can be developed to

represent the image to be reconstructed, so as to effectively

provide information to compensate the information loss caused

by data undersampling and amplified noise. This study

innovatively noticed that the specific clinical context of

MRgRT offers the opportunity of using the patient-specific

prior MR information. Using the patient-specific prior MR

image to train the DAE allows a focused development of the

manifold that is known to be valid for the patient of interest.

Hence, this ensures the effectiveness of the manifold for the MR

image reconstruction problem of this particular patient.

Another advantage of the reconstruction algorithm is

interpretability. While the trained DNN still maintained a

black-box nature by itself, its role can be generally understood

as improving image quality by mapping an image outside the

manifold to the one on the manifold. As the manifold was

trained to represent the specific patient’s image feature, this

operation enforces relevance of the mapped image to the clinical

context. Furthermore, the DNN was incorporated into a

reconstruction framework with a geographically interpretable

workflow (Figure 1A). These interpretations are expected to be

of critical importance for us to establish trust to the algorithm

and to facilitate its clinical applications (53).

In principle, if the patient-generic manifold can be trained to

represent all patients’ prior images, it should already contain the

patient-specific prior manifold, and thus achieve a non-inferior

performance to the approach using the patient-specific prior

manifold in the image reconstruction problem. Nonetheless, it

may be practically challenging to develop such a manifold. First,

it is difficult to assert that the manifold trained on images from a
Frontiers in Oncology 12
group of patients is valid for the new image to be reconstructed.

Second, for the patient-generic approach, the DNN’s capacity

has to be large enough to represent image characteristics of a

large number of patients, requiring a DNN with a large size and

complex structure. Training this kind of DNN with a substantial

amount of data raises the concern of computational burden.

With these considerations and patient-specific prior information

available, we believe it is preferable to use a DNN to specifically

target the patient of interest, which not only ensures the validity

of this approach, but is also numerically more tractable. We also

emphasize that this study trained the DAEs independent of the

reconstruction workflow. Only after the training was finished,

was the network plugged into the reconstruction algorithm as

one key element. The comparison between patient-specific and

patient-generic training was performed under this setting.

Recently, novel studies demonstrated that training in an end-

to-end fashion could further increase the effectiveness of

network training and hence resulting image reconstruction

(26–28). Therefore, the comparison study between patient-

specific and patient-generic trainings should be understood

only in the particular setting in this study. Under the training

in an end-to-end way, the patient generic method may still

achieve better performance.

Overfitting is a general concern for methods employing prior

information. From an application perspective, since the intended

use of the reconstructed images is for image guidance, avoiding

overfitting to the anatomy from the prior image is most critical.

Our model was trained to learn the prior information at the

patch level, which could be helpful in preventing overfitting in

this regard. As demonstrated in our study, the reconstructed
A B

FIGURE 7

(A) Overlay of the testing image and the reconstructed image using the proposed method. (B) Overlay of the reconstructed image and the prior
image.
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image captured the new anatomy and was not obviously biased

to the prior anatomy. In the model training stage, we used

dropout layers and batch normalization to regularize gradient

and reduce overfitting.

In the reconstructed images, a mild degree of blurring was

noticed. As the undersampling scheme sampled the low

frequency domain, the high frequency information was lost.
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The resulting images hence appeared generally blurry. The role

of the DAE was to provide missing high-frequency information

and hence increase sharpness. However, since this high-

frequency information was not fully recovered accurately, the

residual error manifested as blurriness in the images. We do not

expect this to be a major problem for the specific application of

image guidance in RT, because the alignment could be
FIGURE 8

Reconstruction results of a patient case using data with different undersampling ratios and noise levels. The complete reference image and the
zoomed-in patches are displayed in a window of [0, 1].
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A B

FIGURE 9

Evolution of (a) PSNR and (b) SSIM during the iterative reconstruction process for a real patient case.
FIGURE 10

(A) Input and output patches of the DAE for the prior kiwi image. (B) Prior Kiwi image, the image assembled by patches from DAE output, and
their difference image. (C) Input and output patches of the DAE for a testing kiwi image. (D) A testing Kiwi image, the image assembled by
patches from DAE output, and their difference images. All the MR patches and images are displayed in a window of [0, 1], while the difference
images are displayed in a window of [-1, 1].
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performed with reasonable accuracy without needing all detailed

structures. Down the road, it is also an important study to

investigate the optimal undersampling pattern within this

framework for the best trade-off between image guidance

accuracy and scan time.

The current study has several limitations. First, as an initial

study demonstrating the idea of using patient-specific DAE-

manifold to assist MRI reconstruction, for simplicity, we did not

consider the phase of the images and assumed that the phase

correction step has been performed before reconstruction. This

preprocessing step may be achieved via existing phase correction
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methods (54, 55). As such, we assumed the solution is a real-

valued image, and enforced this during each iteration step. The

performance of this approach was found acceptable in the tests

presented in this study. This assumption has often been

employed in many studies as an initial step to test new MR

reconstruction algorithms [16,8]. Yet in reality, phase errors

caused by variations in the resonance frequency, flow, and

motion may violate this real-value assumption. For iterative

reconstruction algorithms including ours, the algorithm

improves quality of the solution based on prior knowledge at

each iteration step. This is often done on the magnitude image.
FIGURE 11

Reconstruction results of the kiwi using data with different undersampling ratios and with varying noise levels by adjusting the number of scan
repetitions. These are reconstructed using a Fast Fourier Transfer (FFT), a tight-frame compressed sensing method (CS), and the proposed
patient-specific manifold. The complete images are displayed in a window of [0, 1] and the zoomed-in patches are displayed in a narrower
window of [0.65, 0.95].
TABLE 2 Quantitative comparisons of FT, CS, patient-generic manifold, and patient-specific manifold methods with different undersampling
ratios and noise levels in the simulation case.

Under-sampling No noise added 5% noise 10% noise 15% noise

Methods SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR

50% FT 0.949 43.48 0.660 29.83 0.540 25.68 0.400 21.23

CS 0.949 43.38 0.762 33.62 0.737 28.88 0.648 23.58

PG-Manifold 0.947 42.31 0.743 31.77 0.606 26.76 0.581 24.95

PS-Manifold 0.951 43.04 0.821 33.81 0.749 29.52 0.734 27.24

25% FT 0.799 33.35 0.687 30.31 0.588 24.44 0.499 23.48

CS 0.798 33.31 0.729 31.17 0.703 25.42 0.673 25.11

PG-Manifold 0.797 33.19 0.719 30.69 0.614 25.91 0.550 25.19

PS-Manifold 0.852 33.94 0.862 32.04 0.816 29.04 0.735 28.21

12.5% FT 0.676 28.33 0.629 27.68 0.563 22.60 0.503 22.28

CS 0.676 28.32 0.648 27.82 0.627 22.92 0.565 22.65

PG-Manifold 0.674 28.29 0.640 27.72 0.587 23.48 0.591 22.70

PS-Manifold 0.862 31.62 0.853 31.18 0.784 28.25 0.727 27.26
frontie
The best result in each case is highlighted with bold font. FT: Fourier Transform. CS: Compressive Sensing. PG-Manifold: Patient-generic manifold. PS-Manifold: Patient-specific manifold.
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Correcting the phase errors helps improving quality of the

solution and the utilization of prior information. For this

purpose, the iterative algorithms could be extended to include

a phase correction step in the iterative process, for example using

the classical POCS algorithm (56). However, including the phase

correction step will lead to a mathematically complex

optimization problem, and the performance of the proposed

method may decrease.

Second, evaluation of the study could be further improved.

Effectiveness of the proposed method and its advantage over the

patient-generic manifold approach were only demonstrated in a

limited number of patient simulation cases and a non-patient

experimental study. The simple textures in a kiwi may not be

sufficient to simulate the organ movements and anatomical

change due to RT treatments between the image prior that was

used to construct the manifold and the images to be

reconstructed. In a real treatment course, the time duration

between treatment planning and treatment, and the time

between multi-fractionated treatments can allow the patient to

undergo anatomy changes. Our study is the initial step

proposing the idea using a patient-specific prior to facilitate

MR reconstruction in the unique context of MRgRT. Hence, the

changes shown in this paper are for the purpose of illustrating

the principle. It is ongoing work to evaluate the proposed

method on the real patient MR images during a RT course. As

for the metrics used, SSIM and PSNR were utilized to

characterize image quality in terms of structural and intensity

accuracy. Additional metrics could be added, but this may reflect

the results and accuracy from similar perspectives. For future

evaluations in clinical applications, reader studies may

be included.

Third, the reconstruction method is in fact computationally

heavy due to the need to process all the patches in an image
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using the DAE in each iterative step of the Algorithm 1. The

complexity of this operation is of the order of the number of

pixels. This was caused by the fact that the manifold was built

for patches, as opposed to the entire image. A manifold of the

latter is desired from this perspective, but is hard to build due

to the scarcity of prior images of the specific patient. Potential

approaches to overcome this computational challenge include

increasing computational power and designing algorithms to

process only a subset of all patches. Additionally, as a proof-

of-principle study, we only considered a 2D image

reconstruction here for the purpose of easy network

training and computing. While extending the method to 3D

cases is straightforward, e.g. by employing 3D DAE and MR

reconstruction algorithms to accommodate clinically relevant

3D MR sequences in MRgRT, this would certainly further

increase the computational burden.
5 Conclusion

The unique clinical scenario of MRgRT offers high-quality

treatment planning MR images of a patient as patient-specific

prior information to support the reconstruction of MR images

for image guidance purposes. In this paper, we developed an

algorithm exploiting the patient-specific image prior to facilitate

the reconstruction of MR images with an undersampled data

acquisition. We trained a DAE to form a manifold of the prior

MR image of the specific patient. The manifold was incorporated

in the image reconstruction problem as a regularization term to

restore MR images from the undersampled data. Compared with

the standard FT-based reconstruction method, a tight frame-

based CS method, and a patient-generic manifold method, our

method produced reconstructions of improved image quality.
TABLE 3 Quantitative comparisons of FT, CS, and patient-specific manifold methods with different undersampling ratios and noise levels in the
experimental case. .

Under-sampling 64 repetitions 32 repetitions 16 repetitions 8 repetitions

Methods SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR

Full FT 0.747 24.46 0.545 19.77 0.482 17.73 0.421 16.72

CS 0.807 29.44 0.783 25.35 0.788 25.32 0.739 21.21

PS-Manifold 0.958 35.59 0.925 31.42 0.892 28.86 0.748 22.27

50% FT 0.852 30.06 0.729 24.99 0.661 22.69 0.584 21.45

CS 0.818 30.31 0.720 27.94 0.780 27.85 0.693 26.09

PS-Manifold 0.911 32.79 0.944 32.28 0.935 31.69 0.919 30.74

25% FT 0.850 30.50 0.806 27.90 0.762 26.24 0.716 23.42

CS 0.785 29.32 0.788 28.67 0.822 28.62 0.796 25.97

PS-Manifold 0.922 31.08 0.947 31.77 0.894 30.50 0.918 30.57

12.5% FT 0.799 27.73 0.812 27.94 0.806 27.15 0.772 26.80

CS 0.804 27.70 0.780 27.64 0.802 27.79 0.786 27.20

PS-Manifold 0.735 27.51 0.920 29.72 0.811 27.99 0.853 28.40
frontie
The best result in each case is highlighted with bold font. FT: Fourier Transform. CS: Compressed Sensing. PS-Manifold: Patient-specific manifold.
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