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predictive index based on
cuproptosis-related gene in
primary lung adenocarcinoma
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Jia-Yi Qian1, Zhi-Xin Li1, Dong Xie1* and Chang Chen1*

1Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji
University, Shanghai, China, 2School of Pharmacy, Naval Medical University, Shanghai, China,
3School of Medicine and School of Life Science and Technology, Shanghai Tenth People's Hospital
of Tongji University, Tongji University, Shanghai, China
Objective: We aimed to use the cancer genome atlas and gene expression

omnibus databases to explore the characterization of tumor microenvironment

(TME) infiltration and construct a predictive index of prognosis and treatment

effect based on cuproptosis-related genes (CRGs) in primary lung

adenocarcinoma (LUAD).

Methods: We described the alterations of CRGs in 954 LUAD samples from

genetic and transcriptional fields and evaluated their expression patterns from

three independent datasets. We identified two distinct molecular subtypes and

found that multi-layer CRG alterations were correlated with patient

clinicopathological features, prognosis, and TME cell infi ltrating

characteristics. Then, a cuproptosis scoring system (CSS) for predicting the

prognosis was constructed, and its predictive capability in LUAD patients was

validated.

Results: Two molecular subtypes of cuproptosis (Copper Genes cluster A and

cluster B) in LUAD were identified. Copper Genes cluster B had better survival

than those with Copper Genes cluster A (p <0.01). Besides, we found that the

infiltration of activated CD4+ T cells, natural killer T cells, and neutrophils was

stronger in cluster A than in cluster B. Then, we constructed a highly accurate

CSS to predict the prognosis, targeted therapy effect, and immune response.

Compared with the low-CSS subgroup, themutations of the TP53,MUC16, and

TTN genes were more common in the high-CSS subgroup, while the mutation

of TP53, TTN, andCSMD3 genes weremore common in the low-CSS subgroup

than in high-CSS subgroup. The low-score CSS group had an inferior survival

than high-score CSS group (p <0.01). In addition, CSS presented good ability to
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predict the immune response (area under curve [AUC], 0.726). Moreover,

AZD5363 and AZD8186 were the inhibitors of AKT and PI3K, respectively, and

had lower IC50 and AUC in the low-score CSS group than it in the high-score

CSS group.

Conclusions: CRGs are associated with the development, TME, and prognosis

of LUAD. Besides, a scoring system based on CRGs can predict the efficacy of

targeted drugs and immune response. These findings may improve our

understanding of CRGs in LUAD and pave a new path for the assessment of

prognosis and the development of more effective targeted therapy and

immunotherapy strategies.
KEYWORDS

cuproptosis-related gene, lung adenocarcinoma, prognosis, immunotherapy,
targeted therapy
Introduction

Lung cancer is still the leading cause of malignancies-related

death worldwide (1). Non-small cell lung cancer accounts for 80-

85% of all lung cancers, the major part of which is the type of

adenocarcinoma (2, 3). The prognosis of lung adenocarcinoma

(LUAD) is not satisfactory in clinical practice (4, 5). In addition,

many factors affect the survival of LUAD, such as combined

stage, treatment modality, and tumor response heterogeneity (6–

8). There are many reasons for the various prognosis of patients

with the same combined stage or/and similar treatment,

including a difference in clinicopathological characteristics,

tumor heterogeneity, and tumor microenvironment (TME) (9–

11). Therefore, it is important to describe the significance of

TME in the progression, treatment, and prognosis of LUAD.

Previous studies explored the association between TME and

different approaches to programmed cell death in LUAD (12);

however, the relationship between TME and cuproptosis in

LUAD is still not clear.
or microenvironment;

ome atlas; GEO, gene

n; TPM, transcripts per

, differentially expressed

l; PFI, progression free

f Genes and Genomes;
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Cuproptosis is an approach to programmed cell death

dependent on copper ions, which was proved in a recent study

(13). Copper is an essential cofactor for all organisms but is toxic

if concentrations exceed thresholds maintained by evolutionarily

conserved homeostatic mechanisms. However, the mechanism

by which excess copper induces cell death is unknown. Recently,

the Broad Institute has discovered a new mechanism that differs

from known cell death: cuproptosis (13). Cuproptosis occurs

through direct binding of copper to the fatty acylated

components of the tricarboxylic acid cycle, resulting in the

abnormal aggregation of fatty acylated proteins and loss of

iron-sulfur cluster proteins, leading to proteotoxic stress

leading to cell death. Copper ions are involved in cell death

like iron ions, and the Broad Institute article suggests that drug

inhibition of mitochondrial respiration may be a disease-fighting

strategy; in addition, cancer expresses a large number of

lipoylated mitochondrial proteins and is a highly respirator

that utilizes copper. The killing of cancer cells by ionic metal

carriers may become a new method of cancer treatment (13, 14).

Recently, some researchers explored the significance of

cuproptosis-related genes (CRGs) in immune infiltration and

prognosis for melanoma and clear cell renal cell carcinoma (15,

16). They found that CRGs were likely to be prognostic

indicators and provided potential therapy insights (15, 16).

However, there was no related report to study cuproptosis

in LUAD.

The treatment approach of LUAD included surgery,

chemotherapy, radiotherapy, targeted therapy, and immune

therapy (17). In clinical practice, targeted therapy and immune

therapy play important roles in improving survival, especially in

advanced-stage patients (17). Regrettably, the prognosis of some

patients is not satisfactory, though those patients have received

targeted therapy or immune therapy before, as the drug
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sensitivity is poor in those patients (7, 18). Therefore, it is urgent

to find a predictive tool to perform the evaluation of the tumor

response to drug and explore novel target to increase the

sensitivity to therapy. The CRGs may provide key information

about therapy and prognostic assessment according to the

previous findings in other malignancies (12, 16). Thus, we

aimed to use the cancer genome atlas (TCGA) and gene

expression omnibus (GEO) databases to explore the

characterization of TME infiltration and construct predictive

index of prognosis and treatment effect based on CRGs in

primary LUAD.
Materials and methods

Data collection

We obtained data of clinical data and sample information of

LUAD patients from the TCGA database (https://portal.gdc.

cancer.gov/) using the R package TCGAbiolinks (19). The

LUAD transcriptome fragments per kilobase million (FPKM)

data from TCGA were downloaded from the UCSC Xena

browser (GDC hub: https://gdc.xenahubs.net), which

contained 507 LUAD tissues and 59 normal lung tissues. For

TCGA-LUAD data, in order to eliminate the error caused by the

quantitative mRNA abundance of FPKM in multiple samples,

we converted FPKM to transcripts per kilobase million (TPM)

values for standardization (20). The GSE68465, GSE11969,

GSE72094 data sets were downloaded from the Gene

Expression Omnibus database (http://www.ncbi.nlm.nih.gov/

geo) (21, 22). The data were uniformly pre-processed using

the Robust Multichip Average algorithm for background

correction, quantile normalization, and log2-transformation

(23). The probes were converted into corresponding genes

using the annotation information available from the gene

platforms (GPL96-57554).
Variance analysis and gene set
variation analysis

In order to investigate the expression pattern of CRGs in the

LUAD patients’ tumor tissues and adjacent nontumor tissues, as

well as different clinical subgroups, we used Wilcoxon’s method

to calculate differential genes in clinical subgroups of immune

subtype, epidermal growth factor receptor (EGFR) mutation,

age, gender, pathological combined stage, pathological nodal

(pN) stage, pathological tumor (pT) stage, pathological

metastasis stage, chemotherapy, echinoderm microtubule-

associated protein-like 4- anaplastic lymphoma kinase (EML4-

ALK) fusion, and pathological type (24). Age was a continuous

variable, and six years old could be selected as the interval to

change it into a categorical variable. Kruskal test was selected for
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multi-category clinical variables. To investigate the differences in

CRGs in biological and function processes, GSVA was

performed by R packages ‘GSVA’ (version 1.34.0) (25, 26).

The gene sets ‘h.all.v7.5.1.symbols.gmt hallmark’ in the

Molecular Signatures Database (MSigDB) was selected as the

reference gene set and a p-value of <0.01 was considered

the threshold (27).
Somatic mutations and copy
number alteration

Somatic mutation and copy number variation (CNV) data

were downloaded from the TCGA database. The high-frequency

mutations in CRGs were visualized using OncoPlot. Based on

Affymetrix SNP6.0 array copy number segmented data,

GISTIC2.0 was used to analyze the change of regions of CNV

in different groups. Deep deletions (GISTIC2 value: −2) were

defined as homozygous losses in comparison to shallow

deletions (GISTIC2 value: −1), which resulted in heterozygous

loss. CNA gains were defined as GISTIC2 value +1, while

amplifications were defined as GISTIC2 value +2. The

threshold was Q-value<0.25, and the confidence level was 0.90.

We used the ‘maftools’ package to provide visualization of

regions of copy number variation across high and low group

samples (28). Chromosome locations of copper death genes were

represented by chromosome ring diagrams. The mutation

frequency was plotted using the ‘ggplot’ package. The genomic

l o c a t i on in f o rma t i on o f CRGs was down loaded

from Gencode.v29.annotation.
Tumor mutation burden

We downloaded the somatic mutation file and calculated

each patient’s tumor mutation burden (TMB) score. The

influence of TMB on patient OS was evaluated by Kaplan–

Meier analysis and compared between the high and low groups

by t-test. Maftools R package was used.
Survival analysis of CRGs

Based on the CRGs obtained above, a univariable Cox

regression model was used to screen the DEGs associated with

good prognosis (overall survival, OS; progression free interval,

PFI), which was performed using the ‘survival’ package in R with

p<0.05 as the threshold. The median was used as a cutoff value to

separate high and low expression groups. Log-rank test was

performed, and the Kaplan-Meier survival analysis was used for

further survival analysis. 18 CRGs were obtained. The R package

“survival” and “survminer” were employed for survival analysis

and drawing.
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Based on TCGA data, the expression matrix of CRGs was

obtained and the interaction between CRGs was calculated.

The correlation coefficient and P value were calculated by

Spearman method. Based on the survival analysis results

obtained above, Cytoscape was used to map the interaction

network of CRGs.
Consensus clustering analysis of CRGs

Unsupervised clustering of TCGA samples was performed

using the ConsensusClusterPlus algorithm based on the

expression level of CRGs to identify different copper

modification patterns. A consensus clustering algorithm was

applied to determine the number of clusters and the stability of

the discovered clusters. Euclidean distance calculation of

similarity measures between clusters and K-means

of unsupervised clustering were used to estimate the number

of CRGs clusters. The optimal number of clusters was

determined by the cumulative distribution function (CDF) and

the delta area and analyzed using the ConsensusClusterPlus R

package with 1,000 repeats.

Principal component analysis (PCA) was done on the CRGs

with the prcomp() R function and visualized using the

Factoextra R package (version 1.0.7). Eigengene values of the

first dimension of PCA (DIM1) were then visualized through a

dot plot. We used the function fviz_contrib() to identify the

genes that contributed more than average to the DIM1 axis. We

used the ‘pheatmap’ package (version 1.0.12) to visualize the

differences in CRGs and clinical characteristics of TCGA

samples between cluster A and B.
Differential expression analysis and
enrichment analysis

Based on the above cluster classification model, the TCGA

data set was divided into two groups, and the DEGs between the

two groups were calculated using the ‘Limma’ (Linear Models

for Microarray Data) package (24). The significance criterion of

differential genes was set as p<0.05 (BH-corrected), and the

absolute value of log fold change was greater than 0.18 (丨log2

(1.2)丨). Gene ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway enrichment analyses were

performed and visual ized by using the R package

‘clusterProfiler’ (version 3.12.0), with a strict cutoff of p < 0.05

and false discovery rate (FDR) of less than 0.05 (25). Among the

genes obtained above, the genes with significantly good

prognosis were screened by the same method as before. We

used the ‘pheatmap’ package (version 1.0.12) to visualize the

differences in CRGs and clinical characteristics of TCGA

samples between DEG-cooper-cluster A and B.
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Construction and validation of
cuproptosis scoring system

Based on the DEGs of the above two subtypes, the

univariable Cox regression analysis and Kaplan-Meier survival

analysis were performed to obtain 474 DEGs with a good

prognosis. We constructed a scoring system to quantify

individual cuproptosis patterns in LUAD patients. The

cuproptosis scoring system (CSS) was established based on the

cuproptosis subtype-related DEGs. CSS was developed using

principal component analysis (PCA), and an overall score was

obtained by calculating the principal component sum.

CSS=∑(PC1i+PC2i)

With the median CSS values as the cutoff value, it was

divided into high and low CSS groups. Patients with CSS values

lower than the median risk score were categorized into the low-

risk group, whereas those with CSS values greater than the

median risk score were placed in the high-risk group.

The CSS scores were evaluated in TCGA and three GEO

validation sets (GSE11969, GSE72094, GSE68465) to verify the

prognostic effect. The prognostic effect of CSS scoring was

analyzed by multivariate regression based on clinical data. The

forest diagram is drawn using the ‘forestplot’ function package.

In order to analyze and verify the similarity of CRGs expression

level between the GEO validation data and TCGA data, the

average value of CRGs expression level in these data was

calculated respectively. Pearson correlation was used to

calculate the correlation of CRGs expression between different

data. Correlation heat map was drawn using ‘corrplot’ function

package, and then correlation coefficients and significant p-

values are also shown.
Hallmark pathways between high- and
low-score CSS groups

Single sample Gene Set Enrichment Analysis (ssGSEA)

scores of the hallmark pathways between high and low CSS

score groups were calculated by the ‘GSVA Bioconductor’

package (version 3.10), using pathway definitions from

Molecular Signatures Database (MSigDB) Hallmark gene sets

collection developed by Broad Institute (http://www.gsea-

msigdb.org/gsea/msigdb/collections.jsp) (26). The Wilcoxon

test was used for comparison of data between two groups.
The analysis of immune cell, TME, PD-1,
and PD-L1 between high- and low-score
CSS groups

We used the ESTIMATE algorithm to evaluate the TME

scores of each individual. In addition, the 23 human immune cell
frontiersin.org
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infiltration levels of a single sample were calculated by ssGSEA.

Furthermore, the levels of immune cell infiltration were also

determined using the CIBERSORT algorithm (29). We also

analyzed the correlations between the two subtypes of PD-1,

PD-L1, and CTLA-4 expression.
Cellular and molecular characteristics of
immune subtypes

The six immune categories of pan-cancer (C1-C6) and

immune-related molecular features were calculated by

Thorsson et al. (30). By using an immunogenomic analysis of

more than 1000 tumor samples from 33 cancer types, six

immune subtypes were identified, including wound healing

(C1); IFN-gdominant (C2); inflammatory (C3); lymphocyte

depleted (C4); immunologically quiet (C5); and TGF-

bdominant (C6). The definitions and characteristics of C1-C6

are as follows:

C1 (Wound Healing) had elevated expression of

angiogenic genes, a high proliferation rate, and a Th2 cell

bias to the adaptive immune infiltrate. C2 (IFN-g Dominant)

had the highest M1/M2 macrophage polarization, a strong

CD8 signal and, together with C6, the greatest TCR diversity.

C3 (Inflammatory) was defined by elevated Th17 and Th1

genes, low to moderate tumor cell proliferation, and, along

with C5, lower levels of aneuploidy and overall somatic copy

number alterations than the other subtypes. C4 (Lymphocyte

Depleted) displayed a more prominent macrophage signature,

with Th1 suppressed and a high M2 response. C5

(Immunologically Quiet) exhibited the lowest lymphocyte,

and highest macrophage responses, dominated by M2

macrophages. IDH mutations were enriched in C5 over C4.

C6 (TGF-b Dominant) displayed the highest TGF-b signature

and a high lymphocytic infiltrate with an even distribution of

Type I and Type II T cells.
Drug susceptibility analysis and immune
response assessment

To explore differences in the therapeutic effects of

chemotherapeutic and targeted drugs in LUAD cell lines

between the high and low CSS score groups, the data that

support the findings of this study were downloaded from

Genomics of Drug Sensitivity in Cancer (GDSC) database

(www.cancerrxgene.org) and Cancer Cell Line Encyclopedia

(CCLE) (portals.broadinstitute.org/ccle). For the above data,

the CSS scores were calculated and the differences in drug

sensitivity between high and low CSS groups were analyzed.

IC50 was quantified via the ‘pRRophetic’ package of R. Pearson

method was used for correlation between CSS scores and IC50 of

different drugs analysis.
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We predicted the response to immune checkpoint blockade

(ICB) through the TIDE website (http://tide.dfci.harvard.edu/

login/). With the use of theWilcoxon test, the difference in TIDE

score between high and low CSS groups was compared. The

predictive AUC of the CSS score was also calculated using

TIDE scores.
Statistical analyses

The data analyses and visualization were conducted in R

(version 4.1.1), and the following packages were used:

“GEOquery,” “dplyr,” “Summarized Experiment,” “TCGA

biolinks,” “readr,” “stringr,” “edgeR,” “org.Hs.eg.db,” “affy,”

“limma,” “data.table,” “dplyr,” “zFPKM,” “ComplexHeatmap,”

“ggplot2,” “ggalt,” “ggpubr,” “maftools,” “ggthemes,” “ggsignif,”

“reshape,” “tidyverse,” “viridis,” “gridExtra,” “hrbrthemes,”

“ggstatsplot,” “RColorBrewer,” “ggsci,” “RCircos,” “rtracklayer,

r g l , ” “p ca3d , ” “R t sn e , ” “ s u r v i v a l , ” “ s u r vm in e r , ”

“ConsensusClusterPlus,” “RColorBrewer,” “pheatmap,” “GSVA,”

“ggalluvial,” “plyr,” “forestplot,” “GSEABase,” “qusage,” “ggforce,”

“survivalROC,” “ggsci,” “scales,” “maftools,” “enrichplot,”

“gridExtra,” “TCGAbiolinks.” The Wilcoxon test was used for

comparison of data between two groups, whereas the Kruskal-

Wallis test was for comparison of data among three groups.

Univariate survival analysis was performed by K–M survival

analysis with the log-rank test. Pearson method was used for

correlation analysis. The tumor mutation burden (TMB) score

was calculated by the package “maftools” in R. A p value <0.05

was considered statistically significant (* p < 0.05; ** p < 0.01; ***

p < 0.001; **** p < 0.0001).
Results

Landscape of cuproptosis related genes
in LUAD

After differential expression analysis in the TCGA dataset

between 512 tumor tissues and 59 normal tissues, upregulated

and downregulated DEGs were obtained. The 100 CRGs,

including 63 upregulated genes and 37 down-regulated genes,

listed in Supplementary Table 1 were obtained from Tsvetkov’s

study (13). After the intersection of the two groups of data, 86

CRGs remained. Based on TCGA gene expression data and

clinical data, we further analyzed the expression differences of

CRGs in LUAD patients’ tumor tissues and adjacent nontumor

tissues, as well as differential genes expression levels in clinical

classification samples, including immune subtype, epidermal

growth factor receptor (EGFR) mutation, age, gender,

pathological combined stage, pathological nodal (pN) stage,

pathological tumor (pT) stage, pathological metastasis stage,

chemotherapy, echinoderm microtubule-associated protein-
frontiersin.org
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like 4- anaplastic lymphoma kinase (EML4-ALK) fusion, and

pathological type (Figure 1A and Supplementary Figure 1).

By analyzing the incidence of somatic mutation in 86 CRGs

above, we found a relatively high mutation frequency in the

LUAD cohort (Figure 1D). Of the 507 LUAD samples, 375

(74%) had mutations in the CRGs (Figure 1D). Among them,

PRKDC, RB1, and CDKN2A were the top three genes with high

mutation frequency, while 12 CRGs (TMEM191B, PDHB, IDH2,

CERT1, MPC1, CEPT1, CIAO2A, CCDC137, C1QBP, SGF29,

GCLM, and NME3) had no mutations (Figure 1D). We explored

CNV in these 86 CRGs. Among them, UBAP2L, CHTOP,

EGLN1, AHR, and HMGCS1 had widespread CNV increases,

while CDKN2A, CNN1, FZR1, LDLR, and RPAP1 showed CNV

decreases (Figure 1B). The locations of the CNV alteration in the

CRGs on their respective chromosomes are shown in Figure 1C.

Interestingly, the expression levels of the top 10 CRGs were

positively correlated with CNV alteration between primary tumor

and normal tissues. CRGs with CNV loss, such as LDLR, CEPT1,

and CNN1, were expressed at lower levels in LUAD tissues

compared to those in normal tissues, while CRGs with CNV

gains, such as CHTOP and UBAP2L, were significantly increased

in LUAD samples (Figures 1A, B). These results showed that CNV

might regulate CRG mRNA expression. However, some CRGs

with CNV loss, such as IDH2, MTHFD1L, and ABCE1, showed

upregulated mRNA expression, while other CRGs with CNV gain,

such as TPK1, showed downregulated mRNA expression between

tumor and normal samples. Therefore, CNV was not the only

factor to regulate gene expression, although many of the observed
Frontiers in Oncology 06
changes in CRG expression might be explained by CNV alteration.

Like some other factors, transcription factors and DNA

methylation might also be involved in CRG regulation.

Our analysis revealed significant differences in the genetic

landscape and expression levels of CRGs between LUAD and

normal tissues, suggesting a potential role of CRGs in

LUAD tumorigenesis.
Development and validation of
cuproptosis consensus clusters in LUAD

In order to comprehensively understand the expression

pattern of CRGs in the LUAD tumorigenesis, based on these

86 CRGs, a univariable Cox regression analysis was performed to

screen the DEGs associated with a good prognosis. With the

median DEGs expression values as the cutoff value, it was

divided into high and low expression groups. The OS and PFI

between high and low expression groups were compared by

Kaplan-Meier analysis with the log-rank test, and p<0.05 was

selected as the threshold for filtering. Finally, 18 CRGs with

significant OS prognostic values were identified (Supplementary

Figure 2). The comprehensive landscape of CRGs interactions,

connection strength, and their prognostic value in LUAD

patients was demonstrated in a cuproptosis network (Figure 2A).

In order to further explore the expression characteristics of

CRGs in LUAD, a consensus clustering algorithm was used to

categorize the individuals with LUAD according to the expression
A
B

D

C

FIGURE 1

Genetic landscape and expression levels of CRGs in LUAD. (A) Expression of CRGs in clinical samples classified by tumor tissue, age, immune
subtypes and pathological tumor stage. (B) Frequencies of CNV gain, loss, and non-CNV among 86 CRGs. (C) Locations of CNV alterations in
CRGs on 23 chromosomes. (D) Mutation frequencies of CRGs in 507 patients with LUAD from the TCGA cohort. CGRs, cuproptosis-related
genes; LUAD, lung adenocarcinoma; TCGA, The Cancer Genome Atlas; CNV, copy number variant.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1011568
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.1011568
profiles of the 18 CRGs. Our results suggested that k = 2 appeared

to be an optimal selection for dividing the entire cohort into

subtypes A (n=263) and B (n=249) (Figure 2B). PCA analysis

showed that there were significant differences in the cuproptosis

transcription profiles between subtypes A and B (Figure 2C).

Kaplan–Meier analysis revealed a longer OS and PFI in patients

with subtype B than that in patients with subtype A (log-rank test,

p<0.0001, p=0.013, respectively; Figure 2D). Furthermore,

comparisons of the clinicopathological characteristics of the two

subtypes of LUAD revealed significant differences between

clinicopathological features and CRGs expression (Figure 2E).
Characteristics of the TME between the
two consensus clusters

GSVA enrichment analysis showed that the signaling

pathways with significant differences between the two groups
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were mainly enriched in the immune microenvironment

signaling pathway, including PI3K-AKT signaling, mTORC1

signal ing, unfolded protein response, MYC target ,

Notch signaling, epithelial-mesenchymal transition, and KRAS

signaling (Figure 3A). To investigate the role of CRGs in the

TME of LUAD, we compared the difference in ssGSEA scores of

23 human immune cell subsets between the two clusters. We

observed significant differences in the most immune cells

infiltration levels between the two subtypes (Figure 3D,

Supplementary Figure 3). The infiltration levels of activated

CD4 T cell, CD56dim natural killer cell, gamma delta T cell,

natural killer cell, neutrophil, type 2 T helper cell were obviously

higher in the cluster A than those in the cluster B, while

eosinophil, immature dendritic cell, mast cell, T follicular

helper cell had significantly lower infiltration in cluster A

compared to those in cluster B. We further analyzed two

important immune checkpoints and found that the expression

of PD1 and PD-L1 increased in cluster A (Figure 3B). We also
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FIGURE 2

CRG subtypes and clinicopathological and biological characteristics of two distinct subtypes of samples divided by consistent clustering. (A)
Interactions among CRGs in LUAD. The line connecting the CRGs represents their interaction, with the line thickness indicating the strength of the
association between CRGs. Blue and orange represent negative and positive correlations, respectively. (B) Consensus matrix heatmap defining two
clusters (k = 2) and their correlation area. (C) PCA analysis showing a remarkable difference in transcriptomes between the two subtypes. (D)
Kaplan–Meier analysis showing 18 CRGs related to the PFI and OS (Copper genes Cluster A: 263; Copper genes Cluster B: 244). (E) Differences in
clinicopathologic features and expression levels of CRGs between the two distinct subtypes. *P<0.05, ***P<0.001. CRGs, cuproptosis-related genes;
LUAD, lung adenocarcinoma; TCGA, The Cancer Genome Atlas; PCA, principal components analysis; PFI, progression free interval; OS, overall
survival.
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evaluated the TME score using the ‘ESTIMATE’ package and

found that immune and stromal scores were elevated in cluster A

(Figure 3C), which suggested higher relative contents of

immunocytes or stromal cells in the TME. In contrast, the

tumor purity decreased significantly in cluster A. The results

demonstrated higher TME levels in patients with cluster A.
Identification of DEGs subtypes based on
cuproptosis consensus clusters

To explore the potential biological behavior of cuproptosis

pattern, we identified 3153 DEGs between two cuproptosis

consensus clusters and performed a functional enrichment

analysis (Figures 4A, B). These CRGs were significantly

enriched in biological processes that were correlated with

extracellular matrix organization, extracellular structure

organization, external encapsulating structure organization,

organelle fission, nuclear fission, DNA replication, and

chromosome segregation (Figure 4A). KEGG analysis

indicated enrichment of PI3K-Akt signaling, focal adhesion,

cell cycle, extracellular matrix receptor interaction, p53

signaling pathway (Figure 4B), suggesting that cuproptosis

plays a vital role in tumor genesis and progression.

We then conducted univariable Cox regression and Kaplan–

Meier analysis, revealing the significant good prognostic values
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of 474 DEGs in patients with LUAD. In order to further validate

the mechanism related to cuproptosis, we used a consensus

clustering algorithm to divide LUAD patients into two gene

subtypes (DEGs-cooper-cluster A and B) according to

prognostic genes. The two cuproptosis gene subtypes showed

significant differences in CRG expression (Figure 4C), consistent

with the expected results of the cuproptosis patterns. Kaplan-

Meier analysis revealed a longer OS and PFI in patients with

subtype A than in patients with subtype B (log-rank test,

p<0.0001, p=0.0028, respectively; Figure 4D). Furthermore,

significant differences between clinicopathological features and

CRGs expression were observed in DEGs-cooper-cluster A and

B (Figure 4E).
Development and validation of the
prognostic CSS

To quantify individual cuproptosis patterns in LUAD

patients, we established a CSS based on the cuproptosis

subtype-related DEGs. The CSS value was divided into high-

and low- CSS groups. Using the TCGA as a training set and GEO

(GSE11969, GSE72094, GSE68465) as a testing set to verify

prognostic efficacy, we found that the prognosis of the high-CSS

group was significantly better than that of the low-CSS group in

both the data sets. The expression level of DEGs was higher in
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FIGURE 3

Characteristics of the TME between the two consensus clusters. (A) GSVA of biological pathways between two consensus clusters, in which red
represent activated and blue represent inhibited pathways, respectively. (B) Expression levels of PDCD1 (PD-1), CD274 (PD-L1), and CTLA4 in the
two consensus clusters. (C) Correlations between the two consensus clusters and TME score (stromal score, tumor purity, and immune score).
*P<0.05, **P<0.01, ***P<0.001, **** P<0.0001. (D) Abundance of 23 infiltrating immune cell types in the two consensus clusters. GSVA, gene set
variation analysis; TME, tumor microenvironment.
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the high CSS group. The distribution plot of the risk of CSS value

revealed that mortality rates decreased while survival times

increased with an increase in CSS value. Heatmap

demonstrated the expression of DEGs between the high- and

low-CSS value groups (Figures 5A–D). The Kaplan-Meier

survival curves revealed that patients with high CSS values had

a significantly favorable overall survival compared to that patient

with low CSS values (log-rank test, p<0.0001, p=0.0093,

p=0.0028, p<0.0001, respectively; Figures 5B–E, Supplementary

Figure 4A, B). In addition, the 1-, 3-, and 5-year survival rates of

CSS values were represented by area under curve (AUC) values

of 0.698, 0.652, and 0.634, respectively. Similar results were

verified by the GEO database (Figures 5C–F). Correlation plots
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showed that the similarity of TCGA samples and GEO databases

(GSE11969, GSE72094, GSE68465) in terms of gene expression

for CRG genes (Supplementary Figure 4C).

To determine whether CSS value might independently

predict OS in patients with LUAD, we combined the clinical

features (age, sex, and TNM stage et al.) with CSS value to

perform univariable and multivariable analyses. As shown in

Figures 6A, B, the TNM stage and CSS value in the training set

(TCGA) showed significant differences through univariable

analyses, with consistent results observed in the testing set

(Figures 6C, D). In multivariable analyses, CSS value was an

independent factor that affects the OS in patients with LUAD in

both training and testing sets.
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FIGURE 4

Identification of DEGs subtypes based on cuproptosis consensus clusters. (A, B) GO and KEGG enrichment analyses of DEGs among two
cuproptosis consensus clusters. (C) Differences in the expression of CRGs among the two DEGs subtypes. (D) Kaplan–Meier curves for OS and
PFI of the two DEGs subtypes (DEG Copper Cluster A: 260; DEG Copper Cluster B: 247) (log-rank tests, p <.001). (E) Relationships between
clinicopathologic features and the two DEGs subtypes. **P<0.01, ***P<0.001, ****P<0.0001. DEGs, differentially expressed genes; GO, Gene
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; CRGs, cuproptosis-related genes; PFI, progression free interval; OS, overall
survival.
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FIGURE 5

Validation of the prognostic value of CSS in the training and testing set. Ranked dot and scatter plots showing the CSS value distribution and
patient survival status in TCGA (A) and GEO (D) database. Heatmaps of expression levels of prognostic DEGs in high and low CSS groups.
Kaplan–Meier analysis of the OS between the high and low CSS groups in TCGA (B) and GEO (E) database. ROC curves to predict the sensitivity
and specificity of 1-, 3-, and 5-year survival according to the CSS value in TCGA (C) and GEO (F) database. ROC, receiver operating
characteristic; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; CSS, cuproptosis scoring system; DEGs, differentially
expressed genes; OS, overall survival.
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FIGURE 6

The correlation and independent prognosis analysis of CSS value and clinicopathological variables in LUAD. Univariable analyses showed the
prognostic value of the CSS in the training (A) and testing (C) set. Multivariable analyses showed the prognostic value of the CSS in the training
(B) and testing (D) set. CSS, cuproptosis scoring system; LUAD, lung adenocarcinoma.
Frontiers in Oncology frontiersin.org10

https://doi.org/10.3389/fonc.2022.1011568
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.1011568
The distribution of patients in the two cuproptosis

consensus clusters, two cuproptosis-related DEGs subtypes,

and two CSS score groups was shown in Figure 7A. We

observed a significant difference in CSS value between

cuproptosis gene clusters. The CSS value of cluster A was

lower than that of cluster B (Figure 7B). More importantly,

compared to DEGs subtype B, DEGs subtype A had a

significantly higher CSS value (Figure 7C).

To investigate the impact of the CSS value on clinical

characteristics, we explored the relationship between CSS value

and different clinical features, including age (≤60 and >60 years),

gender (female and male), TNM stage (different T, N, M stage),

pathological tumor stage (stage I, II, III, and IV), radiation

therapy (yes and no), and EML4-ALK fusion (yes and no). We

observed significantly higher CSS values in patients in age>60,

female, relatively early T stage, N stage, pathological tumor stage,

and did not receive radiation therapy subgroup relative to those

in the corresponding subgroup (Figure 7D).
Molecular characteristics of different
CSS subgroups

Based on MSigDB cancer hallmarks, the correlation between

CSS value and cancer hallmarks was calculated by Pearson

correlation analysis. We found that the CSS value was
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positively correlated with myogenesis, hedgehog signaling,

Kras signaling, bile acid metabolism, coagulation, heme

metabolism, uv response dn (Figure 8A), while CSS values

were negatively correlated with DNA repair, G2M checkpoint,

unfolded protein response, PI3K-AKT signaling, MTORC1

signaling, E2F targets, MYC targets v1, MYC targets v2,

oxidative phosphorylation, glycolysis, uv response up

(Figure 8A; P< 0.05, FDR<0.25). GSEA was performed to

determine the gene sets enriched in different CSS subgroups.

The gene sets of the CSS-high samples were enriched in

arrhythmogenic right ventricular cardiomyopathy, cardiac

muscle contraction, focal adhesion, protein digestion and

absorption, systemic lupus erythematosus. And the CSS-high

samples were enriched in cell cycle, cellular senescence, DNA

replication, oocyte meiosis, progesterone-mediated oocyte

maturation (Figures 8B, C).

To investigate the role of CSS value in the TME of LUAD, we

compared the difference in ssGSEA scores of human immune

cell subsets between the high- and low- CSS groups. We

observed significant differences in the most immune cells

infiltration levels between the two groups (Figure 8D). The

infiltration levels of Dendritic cells resting, Mast cell resting,

Monocytes, T cells CD4 memory resting, Mast Cells, Dendritic

Cells were obviously higher in the high CSS group than those in

the low CSS group, while Macrophages M0, Macrophages M1,

Mast cell activated, Neutrophils, T cells CD4 memory activated,
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FIGURE 7

The relationship between CSS value and clinicopathological variables in LUAD. (A) alluvial diagram showing the distribution of patients in the two
cuproptosis consensus clusters, two cuproptosis related DEGs subtypes, and two CSS score groups. (B) Differences in CSS value between two
cuproptosis consensus clusters. (C) Differences in CSS value between two DEGs subtypes. (D) Differences in CSS value between different clinical
characteristics. **P<0.01, ***P<0.001, ****P<0.0001. CSS, cuproptosis scoring system; LUAD, lung adenocarcinoma; DEGs, differentially
expressed genes.
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T cells CD8, T Cells Follicular Helper, Neutrophils 1 had

significantly lower infiltration in the high CSS group compared

to those in low CSS group. We further analyzed TME scores and

immune checkpoints and then found that the lymphocyte

infiltration signature score increased in the high CSS subgroup

(Figures 8D, E).

Next, we analyzed gene mutations to gain further biological

insight in the CSS subgroups. We found significantly higher

mutation counts in the low-CSS subgroup than in the high-CSS

subgroup. Missense variations were the most common mutation

type, followed by synonymous variations (Figures 9A, B). The

mutation rates of TP53, MUC16, TTN, RYR2, KRAS, CSMD3,

LRP1B, USH2A, and ZFHX4 were higher than 20% in both

groups. Compared with the low-CSS subgroup, the mutations of

the TP53, MUC16, and TTN genes were more common in the

high-CSS subgroup, while the mutation of TP53, TTN, and

CSMD3 genes were more common in the low-CSS subgroup

than in high-CSS subgroup (Figures 9A, B). There was no

significant difference in CNV between the two groups

(Figures 9C, D, Supplementary Figure 5).
The chemotherapeutic and targeted
therapeutic sensitivity in different
CSS subgroups

In order to improve the therapeutic benefit of LUAD

patients from chemotherapy and targeted therapy, we further
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explored whether cuproptosis signature could predict the

sensitivity to several drugs widely used in LUAD between two

CSS groups. According to the results calculated based on the

GDSC database, IC50 and AUCIC50 values of chemotherapy and

targeted therapy drugs covering Acetalax, Cytarabine, EPZ5676,

Pictilisib, GNE-317, AZD8186, Erlotinib, OSI-027, Buparlisib,

Sapitinib, Ipatasertib, Dactolisib, AZD5363, Lapatinib,

Osimertinib, Cediranib, VSP34 8731, Afatinib, AZD7762, and

BMS-536924 were evaluated. The spearman correlation analysis

showed that CSS values were positively correlated with IC50 and

AUCIC50 values of most drugs, except for OSI-027 and EPZ5676

(Figure 10A). Compared with the high-CSS subgroup, IC50

values of AZD5363, and AZD8186 were lower in the low-CSS

subgroup, which indicated that low-CSS patients were more

sensitive to these drugs (Figures 10B, C). The above results

demonstrated that the CSS value had potential predictive value

for chemotherapy and targeted therapy in LUAD.
The immune response in different
CSS subgroups

We then used the tumor immune dysfunction and exclusion

(TIDE) score to assess the rise and fall of immune response in

different CSS subgroups. A higher TIDE prediction score

represented a higher potential for immune evasion, which

suggested that the patients were less likely to benefit from

immune checkpoint inhibitor (ICI) therapy. In our results, the
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FIGURE 8

Molecular pathways of different CSS subgroups. (A) The Pearson correlation between CSS value and cancer hallmarks. (B, C) Gene sets enriched
in CSS-high and CSS-low subgroup (p < 0.05, FDR < 0.25). (D, E) The distribution of immune cell subsets infiltration, absolute purity, stromal
fraction, lymphocyte infiltration signature score, immune checkpoints between two CSS subgroups. *P<0.05, **P<0.01, ***P<0.001,
****P<0.0001. CSS, cuproptosis scoring system.
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FIGURE 9

Genomic alteration of different CSS subgroups. (A, B) The waterfall plot of somatic mutation features established with high and low CSS
subgroups. Each column represented an individual patient. The upper barplot showed TMB, the number on the right indicated the mutation
frequency in each gene. The right barplot and color coding showed the proportion of each variant type. (C, D) Distribution of copy number
amplification and deletion regions in high and low CSS subgroups. Red is amplification, and blue is deletion. CSS, cuproptosis scoring system;
TMB, tumor mutation burden.
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FIGURE 10

Drug susceptibility analysis of different CSS subgroups. (A) The correlation between CSS value and IC50/AUC of different chemotherapeutic and
targeted drugs through Spearman’s method. (B, C) The differences in drug sensitivity (IC50/AUC) between high and low CSS groups were
compared. *P<0.05, **P<0.01. IC50, 50% inhibiting concentrations; AUC, area under the curve; CSS, cuproptosis scoring system.
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high-CSS subgroup had a lower TIDE score than the low-CSS

subgroup, implying that high-CSS patients could benefit more

from ICI therapy than low-CSS patients (Figure 11A). Besides, a

higher TIDE prediction score was associated with a worse

outcome. Accordingly, the high-CSS subgroup with a low

TIDE score might have a better prognosis than the low-CSS

group with a high TIDE score.

In addition, we found that the low-CSS subgroup had a

higher myeloid-derived suppressor cells (MDSC) and T-cell

exclusion score, but there was no difference in T-cell

dysfunction between the two subgroups. Moreover, we

assessed the prediction of the TIDE immune response by CSS.

Receiver operating characteristic (ROC) curve showed that the

AUCs for CSS was 0.726, which was lower than MDSC

(AUC=0.887) and higher than cancer associated fibroblasts

(CAF) (AUC=0.552) (Figure 11B). We suggested that the CSS

has great predictive value for immunotherapy.
Discussion

Some studies described the unique significance of

cuproptosis in predicting prognosis and explored the new

target in other malignant tumors (12, 16). As we introduced

previously, however, there was no related report on the

association between cuproptosis and LUAD. Therefore, we

performed the study to explore the key role of CRGs in the

evolution of LUAD, identification of cuproptosis-related

subtypes, characterization of TME, development of a

prognostic model, and prediction of treatment response

(including targeted and immune therapy). We first presented

the landscape of cuproptosis-related gene mutations and CNV
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and screened out 18 genes affecting survival in LUAD. Based on

those 18 CRGs, two molecular subtypes of cuproptosis were

identified by K-means clustering. Patients with Copper Genes

cluster B had better survival than those with Copper Genes

cluster A. Besides, we further analyzed the immune regulation

mechanism in different molecular subtypes of cuproptosis. We

found that the score of ssGSEA to immune cell infiltration was

different in the two clusters. For example, infiltration of activated

CD4+ T cells, natural killer T cells, and neutrophils was stronger

in cluster A than in cluster B. To validate the abovementioned

molecular subtypes of cuproptosis, we calculated the DEGs

according to those two clusters and reached 474 prognostic

genes. Then, the K-nearest neighbor method was conducted to

confirm the subtypes of DEGs and classify those 474 genes into

two new clusters, DEG Copper cluster A and cluster B. The DEG

Copper clusters also showed a good stratified effect on the

prognosis of LUAD. In addition, the predictive index, CSS

based on 474 genes, was developed and validated. The CSS

was related to age, sex, radiotherapy, pT category, pN

classification, PDCD1, CTLA4, and CD274. Besides, the

subsequent analysis found that CSS was associated with

multiple tumor hallmark pathways and immune cells. We also

explored the significance of CSS in predicting the effect of the

drug and uncovering novel targets. Finally, we found that high-

level CSS might imply a better AUC value of drugs, including

Dacomitinib, Osimertinib, and Erlotinib which were important

to LUAD patients. In addition, CSS provided a better predictive

ability to assess the effect of immune therapy, which had vital

reference information about clinical practice.

Immunotherapy plays an important role in elevating the

prognosis of LUAD patients. For patients with advanced and

metastatic NSCLCs, ICIs were recommended as the first-line
A B

FIGURE 11

The immune response in different CSS subgroups. (A) The comparation of different forms of TIDE scores between high and low CSS subgroups.
(B) ROC curves for predicting immune response. TIDE, tumor immune dysfunction and exclusion; ROC, receiver operating characteristic curve.
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treatment (17). However, about 50% of NSCLC patients did not

benefit from immunotherapy (31). We further investigated the

correlation between the cuproptosis-related prognosis signature

and TME, and the differences in TME characteristics and

immunotherapy response between the two CSS subgroups, as

TME was highly associated with immunotherapy response (32).

The expression of immune checkpoints was highly distinct

between two CSS groups. Specifically, the low CSS group had a

significantly higher abundance of CD8+ T cells and CD4+

memory T cells than it in the high score CSS group. It is

reported that tumor-infiltrating T cells, especially CD8+ T

cells, were associated with tumor cell killing and response to

ICIs (33). However, the high score CSS group had much

improved outcomes than low score CSS group in the present

study. This phenomenon may imply that the abundance of

CD8+ T cells is not necessarily positively correlated with good

prognosis; the reason may be that the number of CD8+ T cells in

the TME had a weak association with the response to

immunotherapy and patient prognosis. Besides, it is necessary

to evaluate the ratio and abundance of immune, stromal, and

tumor cell comprehensively. In this study, we calculated

immune signature scores including the above and found that

high CSS scores were positively correlated with high immune

signature scores. Those results revealed that LUAD patients

possibly might be more sensitive to immunotherapy in the

group with high CSS values than those with low CSS scores. In

addition, we compared the predictive ability of immune

response among MDSC, CAF, and CSS, and we found that

CSS had the potential possibility to predict the immune

response. In the clinical practice, tumor mutation burden, PD-

1, and PD-L1 are used as predictive tools for immunotherapy

(31, 34, 35). However, those markers are limited by poor

accuracy. Moreover, the test of PD-1, PD-L1, and MDSC were

used in biopsy tissues routinely; however, CSS provided

feasibility for blood testing to predict the immune response.

Accordingly, CSS could be a predictive tool for immune therapy

and prognostic assessment.

In the second cluster analysis based on 474 genes, we found

that PI3K-AKT-mTOR signaling was the first ranked in the

KEGG pathway analysis. PI3K-AKT-mTOR is downstream of

EGFR and Kras (36). The resistance of Erlotinib was related to

the PI3K-AKT-mTOR signaling according to reports (37). Thus,

the CSS might be an approach to observe the resistance of some

targeted drugs. In addition, AZD5363 and AZD8186 were the

inhibitors of AKT and PI3K, respectively, and had lower IC50

and AUC in the low-score CSS group than it in the high-score

CSS group. Those findings suggested that patients with the low-

score CSS were more sensitive to targeted therapy than those

with high-score CSS. According to our results, patients in the

low-score CSS group had a poor prognosis; however, those

patients in the low-score CSS group might benefit from

treatment of AZD5363 and AZD8186. We still need further

clinical trials to demonstrate those results.
Frontiers in Oncology 15
This study has some limitations. First, the information on some

important clinical variables including neoadjuvant chemotherapy,

chemoradiotherapy, and surgery was unavailable in some datasets,

which may influence the exploration of TME and cuproptosis state.

Second, the association between cuproptosis and TME needs

additional experimental verification. Third, the findings of our

study are further needed to be validated in the data of our

hospital. Fourth, the results of some drug susceptibility studies still

need to be further validated and explored in cell lines and animals.
Conclusions

In conclusion, CRGs are associated with the development,

TME, and prognosis of LUAD. Besides, a scoring system based on

CRGs can predict the efficacy of targeted drugs (such as

osimertinib). In addition, CRGs are significantly enriched in the

PI3K pathway, and the drug sensitivity of AZD363 and AZD8186,

the targeted inhibitors of this pathway, are different, so a scoring

system based on CRGs may be able to guide medication. Finally,

this scoring system is a potential predictor of the immune response.
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