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Necroptosis-related lncRNAs:
Combination of bulk and
single-cell sequencing reveals
immune landscape alteration
and a novel prognosis
stratification approach in
lung adenocarcinoma

Yizhu Yao †, Liudan Gu †, Ziyi Zuo †, Dandan Wang,
Tianlin Zhou, Xiaomei Xu, Lehe Yang*, Xiaoying Huang*

and Liangxing Wang*

The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
Necroptosis, which is recently recognized as a form of programmed cell death,

plays a critical role in cancer biology, including tumorigenesis and cancer

immunology. It was recognized not only to defend against tumor progression

by suppressing adaptive immune responses but also to promote tumorigenesis

and cancer metastasis after recruiting inflammatory responses. Thus the crucial

role of necrosis in tumorigenesis has attracted increasing attention. Due to the

heterogeneity of the tumor immune microenvironment (TIME) in lung

adenocarcinoma (LUAD), the prognosis and the response to immunotherapy

vary distinctly across patients, underscoring the need for a stratification

algorithm for clinical practice. Although previous studies have formulated the

crucial role of lncRNAs in tumorigenicity, the relationship between

necroptosis-related lncRNAs, TIME, and the prognosis of patients with LUAD

was still elusive. In the current study, a robust and novel prognostic

stratification model based on Necroptosis-related LncRNA Risk Scoring

(NecroLRS) and clinicopathological parameters was constructed and

systemically validated in both internal and external validation cohorts. The

expression profile of four key lncRNAs was further validated by qRT-PCR in 4

human LUAD cell lines. And a novel immune landscape alteration was observed

between NecroLRS-High and -Low patients. To further elucidate the

mechanism of necroptosis in the prognosis of LUAD from a single-cell

perspective, a novel stratification algorithm based on K-means clustering was

introduced to extract both malignant and NecroLRS-High subsets from

epithelial cells. And the necroptosis-related immune infiltration landscape

and developmental trajectory were investigated respectively. Critically,

NecroLRS was found to be positively correlated with neutrophil enrichment,

inflammatory immune response, and malignant phenotypes of LUAD. In
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addition, novel ligand-receptor pairs between NecroLRS-High cells and other

immunocytes were investigated and optimal therapeutic compounds were

screened to provide potential targets for future studies. Taken together, our

findings reveal emerging mechanisms of necroptosis-induced immune

microenvironment alteration on the deteriorative prognosis and may

contribute to improved prognosis and individualized precision therapy for

patients with LUAD.
KEYWORDS

necroptosis, lung adenocarcinoma, neutrophil, immune infiltration, prognosis, single-
cell sequencing, long non-coding RNA
1 Introduction

With an estimated 1.8 million deaths, lung cancer is

considered the leading cause of cancer deaths worldwide (1).

Moreover, as the most common pathological subtype, lung

adenocarcinoma (LUAD), contributes to a huge health care

burden (2). Despite the growth of molecular targeted therapies

and immune checkpoint inhibitors (ICIs) partly improving the

overall survival (OS) of patients with LUAD, the prognosis is

poor with a 5-year OS of only 21% (3). Due to the high tumor

heterogeneity, it is still very hard to accurately predict the

prognosis of patients individually. Thus, emerging approaches

for predicting the prognosis and therapeutic effects in patients

with LUAD are of crucial importance.

Apoptotic evasion and resistance trigger tumorigenesis and

drug resistance, which result in chemotherapy failure. Hence,

excluding strategies to overcome resistance to apoptosis,

inducing non-apoptotic forms of programmed cell death is a

promising option. Necroptosis, mainly mediated by Receptor-

Interacting Protein Kinase 1 (RIPK1), Receptor-Interacting

Protein Kinase 3 (RIPK3), and Mixed Lineage Kinase Domain-

Like (MLKL) are being proposed as a novel programmed form of

necrotic cell death (4). As an alternative form of regulated cell

death, necroptosis mimics apoptosis as well as necrosis, with a

highly controversial role in tumorigenesis. Crucial mediators of

necroptosis pathway stimulate tumor metastasis and tumor

progression (5–7), whereas evidence suggests that necroptosis

plays an ‘immuno-sensitizer’ role, enhancing anti-tumor

immunity by inducing and activating CD8+ T cells (8, 9).

Given its critical role in cancer biology and tumor immune

microenvironment, necroptosis is emerging as a novel target in

cancer therapy, especially immunotherapy.

Immunotherapy was considered a great breakthrough and

hope for patients with no added benefit from traditional

treatment. Evidence suggested that the immune phenotypes
02
defined by components of the tumor microenvironment (TME)

affect patient prognosis and response to immunotherapy

simultaneously (10). Jérôme Galon defined hot and cold

tumors and creatively proposed a strategy to convert an

immune cold into a hot tumor (11). However, the innate low

sensitivity and drug resistance of immunotherapy hindered

further treatment. Further elucidation of the mechanisms of

immunotherapy resistance revealed insufficient immunogenicity

resulting in an immunotherapy failure (12). Prior studies clarified

that programmed cell death induced immunogenicity, and thus

enhanced cancer immunotherapy (13). Consequently,

necroptosis occurring in TME, especially involving immune

cells, requires further exploration.

Long non-coding RNAs (lncRNAs) are being re-recognized

and researched as emerging regulatory molecules that play a

complex and precise regulatory role in the development and

progression of cancer. The lncRNAs play a pivotal role in

necroptosis via endogenous competition with miRNA and

other signals (14–17). Additionally, the role of lncRNA in the

tumor immune microenvironment has received considerable

attention. A high level of lncRNA NKILA leads to elevated T

cell sensitivity to activation-induced cell death (AICD) by

inhibiting the NF-kB activity, which is associated with shorter

patient survival (18). LINC00301 promoted Treg and repressed

CD8 T cell infiltration by regulating the HIF1a pathway, which

resulted in an immune-suppressing microenvironment (19).

Hence, it is critical to identify necroptosis-related lncRNAs

and acquire a deeper understanding of the interaction

with immunotherapy.

In this study, a robust and novel prognostic stratification

model based on NecroLRS and clinicopathological parameters

was constructed and validated. By combining both bulk- and

scRNA-seq, we investigated the developmental trajectory

transition of NecroLRS-related cell subtypes for the first time,

and further explored the correlation between NecroLRS and tumor
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immune microenvironment. In addition, novel ligand-receptor

pairs and optimal therapeutic compounds were investigated to

provide potential targets for future studies. The detailed workflow

of our study was clearly demonstrated in Figure 1. Taken together,

our findings may contribute to improved prognosis and

individualized precision therapy for patients with LUAD.
2 Materials and methods

2.1 Acquisition of necroptosis-related
genes

The necroptosis-related genes were obtained from the Kyoto

Encyclopedia of Genes, Genomes (KEGG) database (https://www.

kegg.jp/) and the Molecular Signatures Database (MSigDB),

combined with the necroptosis-related genes summarized by

Zhao et al. (20). A total of 145 necroptosis-related genes were

identified for further analysis (Supplementary Table 1).
2.2 Acquisition of transcriptome data

The RNA transcriptome profiling data (HTSeq-Counts and

HTSeq-FPKM) were downloaded from The Cancer Genome

Atlas (TCGA) through the R package “TCGAbiolinks” (21).

Foremost, according to the human gene set annotation file of

GRCh 38.105 version, we re-annotated the RNA transcriptome

datasets from TCGA, followed by further distinguishing of

lncRNAs and mRNAs. After filtering the duplicate samples, a

total of 513 samples were recognized as tumor tissues and 59
Frontiers in Oncology 03
samples as normal tissues. To reduce statistical bias, lung

adenocarcinoma patients with missing overall survival (OS)

values or unknown survival status were excluded, resulting in

a final collection of 558 samples (Tumor patients, n = 499;

Normal patients, n = 59). We subsequently transformed the

transcript per million mapped reads (FPKM) data into

transcripts per million (TPM) data. The count data were used

only for Pearson correlation and differential expression analysis,

while the TPM data were used for other downstream analyses.

TCGA expression cohort was randomized into training (n =

313) and test (n = 186) cohort at a ratio of 6:4, while the

expression profile of a GEO dataset (GSE81089) was acquired

from GEO database (https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi) and utilized as an external validation (n = 108), the

baseline of the corresponding clinicopathological characteristics

was demonstrated in Supplementary Table 2.
2.3 Acquisition of necroptosis correlated
differential expressed lncRNAs

Co-expressed lncRNAs between TCGA and GSE81089 were

first acquired, followed by differential expression analysis of

tumor and normal tissues. Those with absolute log2 fold

change (|log2FC|) > 1 and adjusted P-value < 0.05 were

selected for the downstream analysis. A correlation analysis

between necroptosis-related genes and differentially expressed

lncRNAs was then performed, and those with absolute Pearson

correlation coefficient >0.4 and P-value <0.001 were finally

recognized as necroptosis-correlated differentially expressed

LncRNAs (DELncs).
FIGURE 1

Flow diagram of the current study.
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2.4 Construction and validation of
NecroLRS and hybrid models

Univariate Cox regression was first used to determine

prognosis-related necroptosis-correlated DELncs (p < 0.05). To

avoid overfitting and resolve severe covariance, 10-fold cross-

validated LASSO regression was performed. The iteration cycle

was set to 1000, and prognosis-related necroptosis-correlated

DELncs were further screened and filtered. Finally, the

NecroLRS model was constructed based on multivariate step-

Cox proportional risk analysis, and the risk score (NecroLRS) of

each patient was calculated based on the coefficients of the

corresponding variables. To reduce the heterogeneity between

cohorts, the Youden index-based cut-off values were calculated

independently in both TCGA and GEO cohorts and utilized to

categorize patients into NecroLRS-High and -Low groups.

Multiple clinicopathological factors including NecroLRS, age,

microsatellite instability score (MSIsensor), gender, race, AJCC

stage, AJCC T, and AJCC N were utilized for hybrid model

construction. AJCC M was excluded because of the large number

of missing and uncertain values. Patients lacking complete clinical

information (including missing values and uncertain stage

definition) were deleted from the corresponding cohort.

Clinicopathological factors of statistical significance (P-value <

0.05) in univariate Cox analysis were subjected to multivariate

Cox analysis, and the variables with statistical significance were

finally utilized to construct the hybrid model. Similarly, the risk

score of the hybrid model was calculated as described before, while

the cut-off values were obtained as described before. Additionally,

all independent prognostic factors identified in the hybrid model

were incorporated into the nomogram based on R package “rms”,

in which the probability of 1-, 3-, and 5-year overall survival was

further calculated.

In addition, Kaplan-Meier survival curves as well as receiver

operating curves were obtained to determine the utility of

NecroLRS and Hybrid models. Furthermore, calibration

analysis was used to evaluate the accuracy of the model for

predicting the overall survival of patients. Decision curve

analysis (DCA) was used to explore the clinical utility of

models in different cohorts.
2.5 Unsupervised clustering based on
NecroLRS-related lncRNAs

Based on the expression profile of risk LncRNAs in the

model as previously constructed, we performed unsupervised

clustering using the R package “ConsensusClusterPlus” to

explore the potential phenotype subgroups (22). Following

dimension reduction via tSNE and PCA algorithms, the
Frontiers in Oncology 04
sample distribution was visualized using R packages

“FactoMineR”, “factoextra”, and “Rstne”. The conformance

between unsupervised clusters and NecroLRS-related patient

groups was inspected based on Cohen’s Kappa value and

visualized using a confusion matrix. Furthermore, the

ESTIMATE and the ImmuneCellAI algorithms were used to

determine immune infiltration in different subtypes (23, 24).
2.6 Exploration of the tumor immune
landscape in bulk-seq

To explore the distribution of immune cells in NecroLRS-

High and NecroLRS-Low groups, the abundance of immune

cells was imputed using the ImmuneCellAI algorithm. Based on

the expression profile, we quantitatively imputed the immune

infiltration condition including the proportion of both immune

and stromal cells of each sample based on the ESTIMATE

algorithm. To elucidate the potential association between

immune cell infiltration and NecroLRS, based on the

expression profile of each immune cell, subgroups were

created through the R package “survminer” and utilized for

downstream analyses.
2.7 Prediction of drug sensitivity
in bulk-seq

Based on the “oncopredict” R package” the drug sensitivity

of each patient was imputed (25). The batch effects of expression

matrix and CTRPv2 training matrix were first removed through

the “Combat” algorithm (26–28), and the drug sensitivity (IC50)

of each patient was inferred based on the CTRPv2 training

matrix via ridge regression. The t-test was utilized to compare

differences in IC50 between the different groups.
2.8 Functional enrichment and gene set
enrichment analysis in bulk-seq

To validate the biological rationale of the NecroLRS model,

risk lncRNA-related genes in the original necroptosis-related gene

list were back-traced, then GO and KEGG pathway analyses were

performed based on the R package “clusterProfiler” (29) and

“org.Hs.eg.db”. In addition, GSEA 4.0.1 software was utilized for

gene set enrichment analysis (GSEA) to assess trends in

expression distribution across NecroLRS-High and -Low groups

in the context of “c2.cp.kegg.v7.5.symbols.gmt” as a reference gene

set. Pathways enriched in different groups were visualized using R

package “ggplot2”, “grid”, and “gridExtra”.
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2.9 qRT-PCR verification

Human bronchial epithelial cells (BEAS-2B) and human

LUAD cell lines (HCC827, A549, PC9, and NCI-H1975) were

purchased from the American Type Culture Collection (ATCC,

United States). They were cultured in RPMI-1640 medium

(Gibco, China) or high glucose Dulbecco’s Modified Eagle

Medium (DMEM; Hyclone, Logan, UT, United States)

supplemented with 10% fetal bovine serum (Gibco, China) at

37°C in an atmosphere of 5% CO2. Total RNA was extracted

using the UNlQ-10 Column TRIzol Total RNA Isolation Kit

(Sangon biotech) and reverse-transcribed with the

TOROIVD®qRT Master Mix. qRT-PCR was performed using

the Taq Pro Universal SYBR qPCR Master Mix (Vazyme). All

samples were tested in triplicate. Primers were purchased from

Generay Biotech Co., Ltd. (Shanghai, China) and listed in

Supplementary Table 3. The differences in the expression of

NecroLRS-related lncRNAs in each cell line were calculated via

Mann-Whitney U tests.
2.10 Data pre-processing of single-cell
RNA sequencing

A single-cell RNA sequencing (scRNA-seq) dataset

(GSE123902) of patients with LUAD was acquired from the

GEO database. After removing one sample after adjuvant

therapy and another sample histologically diagnosed as large-

cell lung carcinoma, a total of 6 samples acquired from 6

individuals were included in the scRNA-seq workflow. We

performed a standard merge operation of these samples and

the cells that satisfied the following criteria were included in

downstream analysis: a) UMI counts > 1000; b) gene features

more than 500 and less than 6000; c) percentage of mitochondria

< 50%; and d) percentage of hemoglobin < 1%. After quality

control, doublet estimation and removal were performed for

each sample to calibrate the potential double-cell phenomenon,

which might be introduced during the sequencing process.

During the doublet removal, a standard Seurat process was

first performed for each sample (including normalization,

scaling, detection of highly variant genes, dimension reduction,

and clustering). We assumed that each sample has a doublet cell

rate (i represents each sample). A “doubletFinder_v3” function

of R package “DoubletFinder” was used for each sample (30).

We finally retrieved the singlet cells and merged them again into

the working Seurat object (31).

Doublet Ratei = Total Feature numberi � 8� 10−6

After normalizing, data scaling, and PCA dimension

reduc t ion , ce l l c lu s te r s were acqu i red us ing the

“FindNeighbors” and “FindClusters” functions based on

the top 20 PCs of the PCA, and a resolution of 0.7, and the
Frontiers in Oncology 05
“tSNE” and “UMAP” algorithms were used for further

dimension reduction and visualization of cell distribution.

Based on the expression of cell markers reported previously

(32), we first clustered cells into “Epithelial”, “Endothelial”,

“Fibroblast”, “T”, “B”, “Mast”, and “Myeloid” categories. The

“T” and “Myeloid” cells were separated for further dimension

reduction and reclustering. “Myeloid” cells were further

subdivided into “Macrophage”, “Neutrophil”, “Dendritic cells”,

and “Monocyte”, while “T” cells were subdivided into “CD4+ T”,

“CD8+ T”, “NK-T” cells. Additionally, “CD4+ T” cells were

subdivided into “Treg” (regulatory T cells), “Tex” (Exhausted

T cells), and “NOS” (Non-specific) cells, while “CD8+ T” cells

were subdivided into “Tex” and “NOS” cells. All the cell clusters

were visualized through “tSNE” . The expression of

corresponding marker genes was visualized via violin and

dot plots.
2.11 Detection of malignant and
NecroLRS-related cell subsets

To facilitate the segregation of malignant cells from

epithelial cells, Zhang et al. introduced a K-means cluster

algorithm based on the expression features of cells (33). The

same algorithm was used in the current study. First, TCGA-

LUAD expression matrices (HTSeq-Count) were acquired and a

standard limma differential expression analysis workflow was

performed to obtain the top 50 significant gene signatures of

both normal (“Non-malignant Markeri”) and tumor

(“Malignant Markeri”) samples. The “Malignant Score” (Sm)

and “Non-malignant Score” (Sn) of each cell were acquired using

the “AddModuleScore” based on acquired markers. All analyzed

features were binned into 25 bins, and the control features

selected from the same bin were set to 100 per analyzed feature.

After acquiring the “Malignant” and “Non-malignant”

scores, K-means clustering was performed to “initially” classify

cells into “Malignant” and “Non-malignant” cells. During this

process, the total number of centroids was 2. The mean Sm of

cells from a = 1 … N , where N is the number of cells whose

centroid (k) = 1, and the mean Sn of cells from b = 1 … N' ,

where N' is the number of cells whose k = 2 were obtained.

Finally, the malignant centroid (Cmalignant ) was identified based

on the following criteria.

Cmalignat =

1if Mean o
N

a=1
Sma,k=1

� �
> Mean o

N 0

b=1

Smb,k=2

 !" #
∧ Mean o

N

a=1
Sna,k=1

� �
< Mean o

N 0

b=1

Snb,k=2

 !" #

2if Mean o
N

a=1
Sma,k=1

� �
< Mean o

N 0

b=1
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 !" #
∧ Mean o

N

a=1
Sna,k=1

� �
> Mean o

N 0

b=1

Snb,k=2

 !" #
8>>>>><
>>>>>:

After initial clustering based on “Non-malignant Markeri”

and “Malignant Markeri”, “FindMarkers” was used to identify

the refined cell markers (“Non-malignant Markerj” and

“Malignant Markerj”) across these two groups. The two

markers were used in the new round of re-scoring and re-
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clustering based on the above-mentioned algorithm. After

several iterations, the cell markers across two groups reached

convergence. The final classification of cell type was used in the

downstream analysis. The same workflow was also utilized to

detect the NecroLRS-related cell subsets based on the differential

gene signatures expressed in NecroLRS-High and -Low groups

in bulk-seq analysis. Finally, the density and distribution plots

were further performed to visualize the results of classification.
2.12 Biofunction prediction in scRNA-seq

To identify the pathways and GO terms enriched in the

NecroLRS-High cell subset, GO and KEGG analyses were

performed based on the up-regulated features in NecroLRS-

High compared to the NecroLRS-Low cell subset. In the GO

analysis, the top 10 terms that corresponded to each sub-

ontology were identified using the dot plot, while in the KEGG

analysis, the top 30 pathways were demonstrated. In addition,

the “Hallmarks” geneset (“h.all.v7.5.1.symbols.gmt”) was used to

perform the GSEA analysis, pathways with adjusted p-value

(p.adjust) < 0.5 were visualized, and the absolute normalized

enrichment score (NES) > 1.5 was considered statistically

significant. All bars corresponding to significant genesets were

colored in the bar diagram, while others were represented in

unsaturated color.
2.13 Myeloid and T cell abundance
analysis of samples in the scRNA-seq

Due to the heterogeneity of sampling, comparing immune

infiltration from a macroscopic perspective might introduce

bias. Hence, a comparison of immune infiltration based on

immune subtype might provide practical information. To

explore the relationship between the proportion of NecroLRS-

High cells and the abundance of each cell subtype of “Myeloid”

or “T” cells in each sample, we first calculated the proportion

(Ratioi) of NecroLRS-High cells in each sample (i represents

each sample).

Ratioi =
NNecroLRS−Highi

NNecroLRS−Highi + NNecroLRS−Lowi

Then, the proportion of cell subtypes was visualized using a

stacked-bar diagram and sorted based on the Ratioi. For further

exploration of the correlation between Ratioi and the proportion

of specific cell subtypes, a scatter plot with a regressed line was

utilized for visualization, and the Pearson (for Gaussian

distribution) as well as Spearman (for abnormal distribution)

correlation analysis was performed to determine the strength of

the correlation.
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2.14 Cell trajectory analysis

For further exploration of the developmental trajectory across

non-malignant, NecroLRS-High, and NecroLRS-Low epithelial

cells, the pseudo-temporal analysis based on “Monocle2” was

utilized (34). After defining cell progress based on genes that differ

between cell types, the DDRTree algorithm was utilized to reduce

the dimensionality. The cell trajectory was visualized based on the

cell types. Further, we assumed that the non-malignant epithelial

cells were in an earlier phase and set them as the root of the cell

trajectory. A pseudo-time-based diagram was then conducted to

visualize the cell trajectory.
2.15 Cell communication analysis

To explore the crosstalk between NecroLRS-related cells and

immune cells, the “CellChat” package was utilized (35). Based on

the strength and weight of the interaction, the chord diagram

and scatterplot were constructed for visualization. For further

delineation of novel receptor-ligand pairs, signaling pathways

that showed significant communication were retrieved and

further visualized using the chord diagram and heatmap.
3 Results

3.1 Acquisition of necroptosis-correlated
differential expressed lncRNAs

Differentially expressed lncRNAs between tumor and

normal tissues were firstly acquired by differential expression

analysis (|log2FC| > 1, adjusted P-value < 0.05, Supplementary

Table 4). And the 145 necroptosis-related genes acquired

previously were subjected to Pearson correlation analysis to

determine necroptosis-correlated lncRNAs (|correlation

coefficient| > 0.4, p < 0.001, Supplementary Table 5). Finally, a

total of 519 lncRNAs were recognized as necroptosis-correlated

differentially-expressed LncRNAs (DELncs) and utilized in

downstream analysis.
3.2 Construction and validation of
NecroLRS model

3.2.1 NecroLRS model construction
Based on the expression matrix of 519 DELncs, the

univariate Cox analysis was performed to determine survival-

associated lncRNAs, and 61 DELncs were found to be

significantly associated with overall survival (p < 0.05). The

distribution of hazard ratios with corresponding P-value of these
frontiersin.org
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DELncs was presented as the forest diagram (Figure 2A). The

gene expression profile in paired TCGA samples was visualized

through a heat map (Figure 2B). To avoid overfitting, LASSO

penalized regression was used, DELncs with zero coefficients

were filtered out (Figures 2C, D), and those with non-zero

coefficients were subjected to multivariate step-Cox regression

analysis. Finally, four lncRNAs including FAM83A-AS1,

LINC02323, OGFRP1, and WWC2-AS2 were selected to

construct the NecroLRS model (Figure 2E), and the following

formula was used to calculate the NecroLRS:

NecroLRS   = 0:2486147� FAM83A − AS1½ �Log2 TPM+1ð Þ

+0:1862710� LINC02323½ �Log2 TPM+1ð Þ

+0:3906980� OGFRP1½ �Log2 TPM+1ð Þ

+0:6592927� WWC2 − AS2½ �Log2 TPM+1ð Þ

All the patients with LUAD were eventually classified into

NecroLRS-High and NecroLRS-Low groups based on the cut-off

values as described before. And the association between the

expression profile of four LncRNAs and the distribution of

survival states between the NecroLRS-High and NecroLRS-Low

groups in the training, test, whole, and validation cohorts were

shown in Figures 2F–I. Kaplan-Meier analysis of the survival

trends showed that the NecroLRS-High group had a significantly

worse survival than the NecroLRS-Low group (Figures 3A–D).

Moreover, to evaluate the sensitivity and specificity of the model, a

time-dependent ROC was used in all the four cohorts. The areas

under the curve (AUC) associated with 1-, 3-, and 5-year survival

rates were 0.79, 0.699, and 0.643, respectively, in the training

cohort; 0.615, 0.725, and 0.788, respectively, in the test cohort;

0.722, 0.701, and 0.686, respectively in the whole cohort; and 0.741,

0.675, and 0.683 in the validation cohort, respectively (Figures 3E–

H). Further, regardless of the TCGA or GEO cohort, the NecroLRS

model showed good consistency and objectivity, indicating its

strong stability (Supplementary Figures 1A–H). In summary,

these results suggest that the NecroLRS model was a promising

biomarker to predict the prognosis of patients with LUAD.

3.2.2 Unsupervised clustering revealed
favorable conformance across NecroLRS-
related lncRNA profile and NecroLRS-related
patient groups

To further evaluate the phenotypical differences mediated by

the NecroLRS-related lncRNAs, consensus clustering based on the

four lncRNA expression profile was used to regroup patients into

two clusters, with the consistency matrices (k = 2) as shown

(Figure 4A). The t-distributed stochastic neighbor embedding (t-

SNE) was used to identify the distribution of patients based on the

expression profile of four NecroLRS-related lncRNAs. We found

that all patients with LUAD were divided into two subtypes

(Figure 4B). Furthermore, the conformance between NecroLRS-

related patient groups and unsupervised clusters was illustrated
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using a confusion matrix, in which cluster 1 was dominated by

NecroLRS-High patients, while cluster 2 was mainly composed of

NecroLRS-Low patients. Cohen’s test showed that NecroLRS-

related lncRNA profile and NecroLRS-related patient groups

shared good conformance (Kappa = 0.419, p < 0.001,

Figure 4C). Next, we used principal component analysis (PCA)

to project all tumor patients on the two-dimensional axis. Based

on the top two principal components (PC), we found that both

grouping methods were effective in differentiating patients and

compatible with the previous confusion matrix (Figures 4D–E). In

addition, cluster 1 showed a poor survival similar to the Kaplan-

Meier analysis (Figure 4F). Taken together, regardless of the

distribution of patients or overall survival, cluster 1 was similar

to the NecroLRS-High group, while cluster 2 resembled the

NecroLRS-Low group.

3.2.3 Functional enrichment validation and
gene set enrichment analysis

To validate the biological rationale of the NecroLRS model, we

back-traced the four lncRNA-related genes to the original

necroptosis-related gene list and performed GO as well as KEGG

enrichment analysis to analyze potential selection biases. Results

demonstrated that necroptosis-related pathways were highly

enriched (Supplementary Figures 2A, B), which further reinforced

the reliability of the necroptosis-related gene list initially acquired.

In addition, based on the expression profile, GSEA analysis was

performed to assess the enrichment of KEGG pathways in both

NecroLRS-High and -Low subtypes (Figure 4G). Finally, we

identified the nine KEGG pathways highly enriched in the

NecroLRS-High subgroup, including apoptosis, cell cycle,

endocytosis, ubiquitin-mediated proteolysis, ECM receptor

interaction, TGF-beta, P53, ERBB, and MAPK signaling

pathways, while three pathways were highly enriched in

NecroLRS-Low subgroup, including antigen processing and

presentation, cell adhesion molecules, and ribosome. We found

that the pathways correlated with the NecroLRS-High group were

mainly involved in apoptosis, tumor proliferation, progression, and

metastasis, while the NecroLRS-Low group was mainly involved in

immunity and cell development.
3.2.4 Validation of lncRNAs expression
by qRT-PCR

We detected the levels of four risk lncRNAs of the NecroLRS

model in BEAS-2B, H1975, HCC827, A549, and PC9 cell lines

using qRT-PCR. FAM83A-AS1 and OGFRP1 were highly

expressed in LUAD cell lines (Figures 4H–I) compared to the

BEAS-2B cell line, while WWC2-AS2 were poorly expressed in

LUAD cell lines (Figure 4J). The LINC02323 was barely

expressed in the LUAD cell lines we used in the current study.

The results were generally consistent with the TCGA results

(Supplementary Figure 3), which indicates the credibility of our

bioinformatics analysis.
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FIGURE 2

Extraction of necroptosis-related lncRNA signature and construction of Necroptosis-related LncRNA Risk Scoring (NecroLRS) model.
(A) Prognostic lncRNAs extracted by univariate COX regression. The corresponding p-values and hazard ratios are listed following each lncRNA.
The forest plot reveals the value and confidence interval of each lncRNA. The red color demonstrates corresponding lncRNA as a hazardous
factor, while blue color indicates a protective factor. (B) Expression profile of prognostic lncRNAs extracted via univariate COX regression in
matrices with paired TCGA-LUAD expression. Variable selection based on LASSO regression (C) and cross-validated errors of various levels of
regularization (D) were visualized. (E) Necroptosis-related LncRNA Risk Scoring (NecroLRS) model information. (F–I) Exhibition of NecroLRS and
corresponding patients’ survival status in training, test, whole, and validation cohorts.
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3.3 Immune infiltration analysis revealed
a novel immune landscape in bulk-seq

Analysis of tumor immune microenvironment (TIME)

revealed varying composition and proportion of tumor-

infiltrating immune cells suggesting the potential mechanism of

different pathways mediating tumorigenicity. Interactions

between immune cells and other cells determine the strength of

the anti-tumor immunity and were closely related to tumor

progression and clinical prognosis (36–38). Therefore, it is

essential to explore the necroptosis-mediated TIME

heterogeneity in LUAD. Based on ESTIMATE analysis, which

was used to evaluate the immune infiltration across the

NecroLRS-related groups, the NecroLRS-High group had lower

ESTIMATE and immune scores (Figures 5A–C). In addition,

ImmuneCellAI analysis was performed and amajority of naturally

occurring regulatory T (nTreg) cells, effector-memory T (Tem)

cells, monocytes, and neutrophils were found to have a higher

abundance in NecroLRS-High patients (Figure 5D). To

summarize , the NecroLRS-High group showed an

immunosuppressed tumor microenvironment with a higher

infiltration of immunosuppressive cells, whereas the NecroLRS-

Low group exhibited increased immune cell infiltration.

In the subgroups of unsupervised clusters, the ESTIMATE

and ImmuneCellAI algorithms were used to assess immune

infiltration. Cluster 2 showed higher immune infiltration

compared with cluster 1 (Figures 6A–D). The composition of
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immune cells across the clusters (Figure 6E) revealed that naive

CD8+ T cells, T regulated (Tr1) cells, T helper 2 (Th2) cells,

follicular helper T (Tfh) cells, NKT cells, MAIT cells, Tgd cells,

and CD4+ T cells were abundantly distributed in cluster 2, while

Tex cells, Treg cells, nTreg cells, T helper 1 (Th1) cells, T helper 17

(Th17) cells, Tem cells, monocytes, and neutrophils were more

abundant in cluster 1. Emerging studies have proven that Treg

cells, Tex cells, and myeloid-derived suppressor cells (MDSC)

mediate resistance to immunotherapy and exert a pro-

tumorigenic effect (39–43). In our study, cluster 1 showed

immune infiltration of Treg cells, Tex cells, monocytes, and

neutrophils, which indicated that cluster 1 was more inclined to

a cold tumor phenotype, while cluster 2 resembled a hot tumor

phenotype characterized by infiltration of T cells. Taken together,

consensus clusters further complemented the potential immune

infiltration landscape of NecroLRS-related groups.

In general, we analyzed the immune infi ltration

environment of NecroLRS-related groups and clusters. To

narrow the target immune cells, we acquired the co-existed

immune patterns in both the NecroLRS-High group and

cluster1 by intersecting the highly infiltrated immune cells in

these two groups. Thus, we focused our attention on neutrophils,

nTreg cells, Tem cells, and monocytes, and they were subjected

to downstream analyses. Recent evidence suggested that

neutrophils not only exhibited an anti-tumor effect mediated

via chemotactic function but also promoted tumor invasion,

metastasis, angiogenesis, and extracellular matrix remodeling by
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FIGURE 3

Exploration of NecroLRS model. (A–D) Kaplan-Meier survival analysis of NecroLRS-High and -Low groups in training, test, whole, and validation
cohorts. The 1-, 3-, 5-year ROCs (E–H) of training, test, whole, and validation cohorts.
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inhibiting anti-tumor immune surveillance. Accordingly, the

characteristic distribution of neutrophils between NecroLRS-

High and -Low groups is of crucial importance.
3.4 NecroLRS-related cell subgroups
reveal distinct developmental trajectories

Based on the transcriptome profiling, we observed a distinct

functional difference between NecroLRS groups in bulk-seq. To

elucidate the potential cell transition, pseudo-temporal analysis

was performed based on the results of classification of the K-

means classifier. In the current study, we reannotated a LUAD
Frontiers in Oncology 10
single-cell sequencing dataset (Figure 7A and Supplementary

Figure 4A) and acquired the epithelial subset for the next-step

analyses. According to the previously described algorithm,

epithelial cells were classified into “Non-malignant” and

“Malignant” cells, while “Malignant” cells were further

classified into “NecroLRS-High” and “NecroLRS-Low” cell

groups (Figures 7B, C). Based on the three cell subtypes, we

utilized the Monocle2 toolkit for trajectory analysis. The results

revealed a distinct trajectory of transition across cell subgroups

of epithelial cells (Figure 7D). Further, we assumed that the

“Non-malignant” epithelial cells were in an earlier phase in

the trajectory and performed a pseudotime assignment. The

pseudotime trajectory axis indicated that “Non-malignant”
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FIGURE 4

In vitro expression and unsupervised clustering based on NecroLRS-related lncRNAs. (A) Consensus matrix derived from ConsensusCluster
algorithm (k = 2). (B) tSNE of 2 consensus clusters. (C) Confusion matrix revealed unsupervised clusters with good conformance shared with
NecroLRS-related groups. (D, E) PCA analysis reveals efficient stratification of patients via consensus clustering and using NecroLRS model.
(F) Kaplan-Meier survival analysis reveals poor prognosis of cluster 1. (G) KEGG enrichment analysis of NecroLRS-related groups. In vitro qRT-
PCR validation of FAM83A-AS1 (H), OGFRP1 (I), and WWC2-AS2 (J). *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; ns, P≥0.05.
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epithelial cells transdifferentiated into both “NecroLRS-High”

and “NecroLRS-Low” cells (Figure 7E). Interestingly,

“NecroLRS-High” cells might be located in a more terminal

phase than “NecroLRS-Low” cells. These results indicate a

potential transition of epithelial cells from a single-cell

perspective for the first time and generation of NecroLRS-

related cell subgroups via distinct developmental trajectories.
3.5 NecroLRS-High subset associated
with inflammatory microenvironment
and aggressive tumorigenic phenotype

The KEGG analysis of bulk-seq revealed a significant

enrichment of apoptosis-related, ubiquitin-mediated proteolysis,

ECM receptor interaction, and MAPK, ERBB, TGF-b, and p53

signaling pathways in NecroLRS-High groups, which indicated a

significant heterogeneity between NecroLRS-High and -Low

groups. To elucidate the biological function as well as immune
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infiltration heterogeneity between these two groups, GO, KEGG,

and GSEA analyses were performed in the scRNA-seq.

In the KEGG analysis, cellular senescence, p53 signaling, ECM

receptor interaction, inflammation-related pathways including IL-

17 signaling, NF-kappa B signaling, neutrophil extracellular trap

formation, complement and coagulation cascades, cytokine-

cytokine receptor interaction, and chemokine signaling

pathways were more activated in the NecroLRS-High cell subset

(Figure 8A), which was in accordance with the results of bulk-seq.

In GO analysis, neutrophil-related biological processes,

chemotaxis of immunocytes, cytoskeleton-related cellular

components, and molecular functions were highly enriched in

the NecroLRS-High cell subset (Figure 8B). In GSEA analysis, a

total of 15 hallmarks pathways including hypoxia, epithelial-to-

mesenchymal transition (EMT), IFN-alpha and -gamma

response, apoptosis, complement, and KRAS signaling pathways

were enriched in the NecroLRS-High cell subset (Figure 8C).

Taken together, in the NecroLRS-High cell subset, the

activity of apoptosis and cellular senescence was higher than
A B

D

C

FIGURE 5

Tumor immune landscape of NecroLRS-High and -Low groups. (A–C) ESTIMATE algorithm reveals that the NecroLRS-High group has a lower
ESTIMATE and immune score compared with the NecroLRS-Low group. (D) ImmuneCellAI algorithm reveals immune cell abundance across
NecroLRS-High and -Low groups. *P < 0.05; **P < 0.01; ***P < 0.001; ns, P≥0.05.
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in NecroLRS-Low cells. Functional enrichment of inflammatory

mechanisms further indicated that NecroLRS-High cells might

be accompanied by an inflammatory microenvironment.

Additionally, cytoskeleton-related pathways and EMT

pathways were also up-regulated, which indicated a more

aggressive tumorigenic phenotype in NecroLRS-High cells and

explained the distinct clinical outcomes between NecroLRS-

High and -Low patients.
3.6 NecroLRS-High ratio influences
neutrophil enrichment and T cell
exhausting

As the results of the previous analysis, we reported that

NecroLRS-High patients always showed a higher proportion of

myeloid cell infiltration in the TME. Further, we explored the

infiltration of myeloid subtypes in scRNA-seq. As previously

described, we acquired the NecroLRS-High cell proportion

(Ratioi) in each sample and calculated the relative proportion

of each myeloid cell type. Consistent with the findings of bulk-

seq, we found that as Ratioi increased, the proportion of
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neutrophils increased simultaneously (Figure 9A). The

correlation analysis (Figure 9B) further demonstrated the

proportion of NecroLRS-High cells was correlated with the

proportion of neutrophils in myeloid cells (p = 0.0028).

Further, the proportion of monocytes was high in patients

with elevated Ratioi, although no significant correlation existed

between the proportion of NecroLRS-High cells and the

proportion of monocytes. This phenomenon suggested

emerging interactions between malignant epithelial and

myeloid cells during necroptosis.

Tex cells received increasing attention in recent years.

Similar to myeloid cells, we also annotated Tex cells using

markers reported previously (CTLA-4, LAG-3, TIGIT), and

found that as Ratioi increases, the proportion of Tex cells

increases (Figure 9C). However, there was no significant

correlation detected between the proportion of NecroLRS-

High cells and the proportion of Tex cells in T cells (p = 0.36,

Figure 9D). Similar to Tex, no numerical correlation was found

between the proportion of other T cell subtypes and the

proportion of NecroLRS-High cells.

It is well established that neutrophil infiltration is tightly

associated with the progression of various tumors, including
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FIGURE 6

Tumor immune infiltration in unsupervised clusters. (A–C) ESTIMATE algorithm reveals that cluster 1 has a lower ESTIMATE and immune score
compared with cluster 2. (D) ImmuneCellAI algorithm reveals that cluster 1 has lower immune infiltration compared with cluster 2.
(E) ImmuneCellAI algorithm reveals immune cell abundance across clusters 1 and 2 (Red refers to significantly highly expressed in clusters 1,
blue refers to significantly highly expressed in clusters 2). *P < 0.05; **P < 0.01; ***P < 0.001; ns, P≥0.05.
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lung cancer. As previously described, we observed a potential

association between neutrophil infiltration and NecroLRS in

both bulk- and scRNA-seq. Further, we evaluated the

prognostic ability of NecroLRS in combination with neutrophil

infiltration based on ImmuneCellAI algorithm. The results
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showed a positive correlation between NecroLRS and relative

neutrophil abundance (Figure 9F). Distinct survival outcomes

were found under different permutations of NecroLRS and

neutrophil conditions, in particular, among patients with high

NecroLRS and neutrophil infiltration, who showed a relatively
A
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C

FIGURE 7

Single-cell RNA-seq-based NecroLRS-related subcluster exploration. (A) tSNE of the 13989 cells derived from 6 patients diagnosed with lung
adenocarcinoma (left); based on cell type annotation complete cell sets are categorized into 15 cell subtypes, and representative markers of cell
types are visualized using a violin plot (right). (B) Analysis of epithelial cell subset using malignant cell detection algorithm. The first figure reveals
the initial malignant score of each cell. Following iterations, the scores and markers across malignant and non-malignant cell subsets reached a
plateau (second figure). The k-means distributions of both malignant and non-malignant scores were visualized via scatter plot (third figure).
Each point corresponds to a cell and is color-coded to indicate the number of neighbors, which reflects the density. Finally, malignant and non-
malignant cell subsets were obtained based on the malignant and non-malignant scores. (C) Analysis of malignant cell subset using NecroLRS-
associated cell detection algorithm. Cell trajectory of epithelial cells, grouped according to NecroLRS-associated cell subsets (D). Cell trajectory
of epithelial cells, based on pseudo-time assumed in the condition of non-malignant epithelial subcluster as the root of trajectory (E).
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worse prognosis, while patients with low NecroLRS and

neutrophil infiltration showed prolonged survival (Figure 9E).
3.7 Novel ligand-receptor pairs between
immune cells and NecroLRS-High lung
adenocarcinoma cells

Although NecroLRS-High patients showed a relatively lower

level of immune infiltration in the bulk-seq, the abundance of

different subtypes of immune cells differed distinctly between

NecroLRS-High and -Low patients. Therefore, we further

explored the communication between NecroLRS-related cell

subsets and other immune cells in an effort to elucidate the

differences in potential immune landscape between the two

biological subtypes.

In addition to NecroLRS-related epithelial cells, we

incorporated another ten immune subtypes including

neutrophils, macrophages, dendritic, monocytes, mast, B, NK-

T, Tex, Treg, and the remaining T cells (T cell NOS). According

to the summary of incoming and outgoing cellular interactions,

the NecroLRS-Low cell subset exhibited a higher strength of

incoming interaction, while the NecroLRS-High cell subset

revealed a stronger outgoing interaction (Supplementary

Figures 4B–D). Compared with NecroLRS-Low cells,

NecroLRS-High cells received the signal from Tex, monocytes,

macrophages, and dendritic cells via the IFN-II (IFNG-(IFNGR1

+IFNGR2), Figure 10A), SEMA4 (SEMA4A-PLXNB2,

SEMA4D-PLXNB2, Figure 10B), and TWEAK pathways

(TNFSF12-TNFRSF12A, Figure 10C). According to the

outgoing signal perspective, NecroLRS-High cells transmit the
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signal to neutrophils, macrophages, monocytes, dendritic, B, and

NK-T cells via the ANNEXIN pathway (ANXA1-FPR2,

ANXA1-FPR1, F igure 10D) , CD99 (CD99-PILRA,

Figure 10E), MIF (MIF-(CD74+CXCR4), MIF-(CD74+CD44),

Figure 10F), SAA (SAA1-FPR2, Figure 10G), SEMA3

(SEMA3C-(NRP1+NRP2), SEMA3C-PLXND1, Figure 10H),

VISFATIN (NAMPT-(ITGA5+ITGB1), Figure 10I), and CLEC

pathways (CLEC2B-KLRB1, CLEC2C-KLRB1, Figure 10J).

Additionally, NecroLRS-High cells also transmit the signal to

all the immune cells via the LAMININ pathway (LAMB3-CD44,

and LAMC2-CD44, Figure 10K) and MK pathway (MDK-

NCL, Figure 10L).

Taken together, NecroLRS-High cells communicated more

actively with macrophages, monocytes, neutrophils, Tex, NK-T,

B, and dendritic cells compared with NecroLRS-Low cells, which

might explain the differences in immune infiltration between the

two categories of NecroLRS cells.
3.8 Clinical utility of hybrid model

To gain insight into the prognostic value of NecroLRS

combined with clinicopathological variables, both univariate

and multivariate Cox analyses were utilized to identify the

independent prognostic factors. Following univariate Cox

analysis, both AJCC N, AJCC stage, AJCC T, and NecroLRS

were found to be associated with the survival of patients, and

therefore further included in multivariate Cox analysis. AJCC

stage and NecroLRS were independent prognostic factors

(Figures 11A, B). Based on the independent prognostic factors,

a hybrid model was constructed, and a nomogram was
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FIGURE 8

Single-cell RNA-seq-based enrichment analysis. (A) KEGG analysis based on marker genes in the NecroLRS-High subcluster. (B) GO analysis
based on marker genes in the NecroLRS-High subcluster. (C) GSEA analysis based on differentially expressed marker genes among NecroLRS-
related subclusters. Bars corresponding to pathways that meet absolute NES > 1.5 are colored in the bar diagram, while others are shown in
unsaturated color.
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established to predict the prognosis of 1-, 3- and 5-year OS of

patients with LUAD (Figure 11C). Next, patients were separated

into high-risk and low-risk groups according to the hybrid

model. The profile of four NecroLRS-related LncRNAs,

NecroLRS, and clinicopathological factors across two groups

was visualized through a heatmap. Patients in the high-risk

group exhibited a higher NecroLRS and a more advanced AJCC

Stage, as well as AJCC T, N, and M stages. (Figure 11D).

To evaluate the treatment sensitivity of patients in different

subgroups based on the hybrid model, seven common

chemotherapeutic and targeted drugs (“Bleomycin” ,

“Docetaxel”, “Doxorubicin”, “Etoposide”, “Gemcitabine”,

“Gefitinib”, “ Paclitaxel”) were selected for drug sensitivity

prediction. The low-risk group showed a higher IC50 for

Bleomycin and Doxorubicin, suggesting that patients in the

high-risk group exhibited higher sensitivity to Bleomycin and

Doxorubicin, while the low-risk group patients were more likely

to benefit from Paclitaxel (Figure 11E).

To demonstrate the prognostic performance of the hybrid

model, Kaplan-Meier analysis was used to compare the overall
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survival of patients in the high- and low-risk groups

(Figures 12C–F). The time-dependent ROC profi le

demonstrated that the hybrid model exhibited a more robust

and higher level of AUC compared with the NecroLRS model

(Figures 12A, B). In addition, the calibration and DCA analyses

were further performed (Figures 12G–N). The hybrid model

showed superior predictive performance compared with the

NecroLRS model, with higher sensitivity and specificity and

additional clinical benefit. In general, these results revealed that

the optimized hybrid model was a reliable tool to determine the

prognosis of patients with LUAD.
4 Discussion

Investigation into the tumorigenicity of lung cancer revealed

emerging pathways in the disease spectrum. However, there is a

desperate need for favorable biomarkers to facilitate precision

diagnosis as well as targeted treatment. As a novel form of

programmed cell death that resembles both apoptosis and
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FIGURE 9

Immune abundance analysis of NecroLRS-related cell subgroups. The proportion of myeloid (A) and T (C) cell subtypes were visualized using
stacked-bar diagrams and sorted according to the proportion of NecroLRS-High cells in malignant cells. (B) Correlation between the proportion
of NecroLRS-High cells among malignant cells and the proportion of neutrophils among the myeloid cells. (D) Correlation between the
proportion of NecroLRS-High cells among malignant cells and the proportion of exhausted T cells. (E) Survival analysis across different
permutations of NecroLRS- and neutrophil-related patient groups in bulk-seq (TCGA whole cohort). (F) Correlation between NecroLRS and the
proportion of neutrophils based on ImmuneCellAI algorithm in bulk-seq (TCGA whole cohort).
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necrosis, necroptosis plays a pivotal role in cancer biology (44).

In addition, lncRNA is a basic subtype of noncoding genomes,

and plays a crucial role in tumorigenicity, considering its

sponge-like biological function as well as diverse regulatory

effects. LncRNA has been widely explored and proved to act as
Frontiers in Oncology 16
a promising biomarker in a variety of tumors. Hence, in the

current study, we constructed a novel signature (NecroLRS)

based on necroptosis-related lncRNAs. For clinical application, a

hybrid model showed acceptable sensitivity and specificity was

constructed. Application of the NecroLRS and hybrid models in
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FIGURE 10

Novel ligand-receptor pairs differ between NecroLRS-High cells and immune cells. Ligand-receptor pairs in the incoming (A–C) and outgoing
(D–L) interaction of NecroLRS-High cells with immune cells.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1010976
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yao et al. 10.3389/fonc.2022.1010976
both training, test, whole, and validation cohorts revealed a

distinct survival difference in Kaplan-Meier analysis. Time-

dependent ROC curves, calibration, and DCA further

demonstrated their effectiveness in predicting the overall
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survival of patients with LUAD. Further, qRT-PCR was used

to validate the expression of NecroLRS-related lncRNAs in vitro.

For the exploration of the immune landscape, we used multiple

algorithms to evaluate immune infiltration in NecroLRS
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FIGURE 11

Extraction of clinicopathological signature and construction of necroptosis-related hybrid model. (A) Univariate COX analysis of all
clinicopathological factors including NecroLRS. (B) Multivariate COX analysis of prognostic clinicopathological factors. (C) Nomogram of
necroptosis-related hybrid Model. (D) NecroLRS-associated lncRNA expression and corresponding prognostic clinicopathological factors in
high- and low-risk groups in the hybrid model. (E) The oncoPredict algorithm was used to determine drug sensitivity of seven different chemo-
or immuno-therapeutic compounds.
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subgroups. The unique distribution of neutrophils, nTreg, Tem,

and monocytes attracted our attention due to their high

infiltration in the NecroLRS-High group. Further, combined

with single-cell sequencing, we investigated the developmental

transition between epithelial cells and NecroLRS-related cell

subgroups and explored the potential causes of the unique

immune landscape in bulk-seq via cell communication and

immune distribution analyses.
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Prior studies revealed the pivotal biological effects of

NecroLRS-related lncRNAs in a wide variety of tumors as well

as diseases. For instance, FAM83A-AS1, as a risk factor, promoted

LUAD progression by targeting miR-150-5p and ultimately

promoting the expression of MMP14 (45). A multi-cohort study

conducted by Wang et al. (Jiangsu Cancer Hospital and TCGA

cohort) demonstrated that FAM83H-AS1 enhanced the

expression of RAB8B and RAB14, thereby inhibiting apoptosis
A B

D E F

G IH J

K L M N

C

FIGURE 12

Exploration of necroptosis-related hybrid model. Time-dependent ROCs of both NecroLRS (A) and hybrid (B) model in training, test, whole, and
validation cohorts. Additionally, the 1-, 3-, and 5-year AUC values of the hybrid model in the whole and validation cohorts were further
annotated. (C–F) Kaplan-Meier survival analysis of high- and low-risk groups in training, test, whole, and validation cohorts, respectively. 1-, 3-,
5-year calibration curves (G–J) and DCA curves (K–N) of training, test, whole, and validation cohorts are shown (“None”: assume no patient will
die at the specific time point and offer treatment to no one; “All”: assume all patients will die at the specific time point and therefore treat
everyone; “Model”: gives the expected net benefit of hybrid model on each patient under different threshold probability).
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and facilitating tumorigenesis in LUAD cells (46). In addition,

FAM83A-AS1 promoted the progression of esophageal squamous

cell carcinoma (ESCC) by regulating the miR-214/CDC25B axis

(47). LIN02323, as a novel lncRNA associated with EMT, has been

proposed to mediate the metastasis of LUAD via the miR-1343-

3p/TGFBR1 axis (48). OGFRP1 acts as an oncogene to promote

the development and progression of many kinds of tumors

including lung, colon, gastric, and prostate cancers (49–52).

Although WWC2-AS2 has been mentioned as one of the

favorable prognosis-related predictors of LUAD by Lu et al, the

underlying mechanism of WWC2-AS2 in the prognosis of LUAD

remains to be further investigated (53).

It is reported that necroptosis mediates the differential

response to immunotherapy in a variety of cancers by affecting

the TME, suggesting its role as a promising indicator in cancer

diagnosis as well as treatment. However, the underlying

dynamics of altered immune infiltration landscape was poorly

investigated. In this study, we assessed the relationship between

necroptosis and the immune landscape of LUAD based on bulk-

seq, which indicated that the NecroLRS-High patients exhibited

a highly immunosuppressive phenotype and a higher infiltration

of neutrophils, nTreg cells, Tem cells, and monocytes. The TME

exhibits a “convolutional” pattern due to its highly cross-linked

constituents. To investigate the immune infiltration, several

algorithms were introduced to reveal the potential immune

infiltration status. However, these algorithms only act as useful

references instead of precision quantity tools. Therefore, to

address this limitation, a single-cell-based approach was

introduced in this study, which revealed the potential

correlation between the proportion of NecroLRS-related cells

and neutrophils in myeloid cells. Emerging evidence indicates

that tumor-associated myeloid cells (TAMCs) including

monocytes, tumor-associated macrophages (TAMs), dendritic

cells (DCs), tumor-associated neutrophils (TANs), and myeloid-

derived suppressor cells (MDSCs) play a pivotal and even

contrasting role in tumor progression, and “double-edged”

biological function also attracted increasing attention (54). In

both bulk- and scRNA-seq, we observed the unique distribution

pattern of neutrophils, which indicated a potential correlation

between neutrophils and necroptosis. According to previous

studies, neutrophils were tightly associated with the

progression of various tumors including lung cancer (55, 56).

In particular, TANs were polarized into 2 subtypes (N1 and N2)

based on a variety of environmental factors including cytokines

and chemokines in the TME, and the N1 TANs exhibited tumor

suppression via activation of CD8+ T cells, while the N2

neutrophils stimulated tumor growth, invasion, metastasis, and

angiogenesis (57). In this study, patients with higher NecroLRS

showed a worse prognosis, which might be associated with N2

TANs. However, due to the limited sample size in scRNA-seq,

further studies are needed. Furthermore, several studies have

revealed that the activation of neutrophils facilitated the process

of necroptosis, such as the presence of monosodium urate
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(MSU) crystals or adhesion receptors, which induced

activation of the RIPK3-MLKL complex (58–60). However,

these studies only focused on the inflammatory response

driven by infection or autoimmune disorders, while the

interaction between necroptosis and neutrophils in the tumor

was rarely mentioned. Tex cells attracted increased attention in

recent years as they were found not only in CD8+T cells but also

in CD4+T cells (61, 62). According to Jiang et al., Tex

overexpressed inhibitory receptors, decreased cytolytic activity,

and ultimately resulted in decreased anti-cancer response (43).

Based on the unsupervised clustering of NecroLRS-related

lncRNAs’ expression profile, patients in cluster 1 showed a

higher infiltration of Tex compared with those in cluster 2,

while no significant difference in Tex infiltration was detected in

the NecroLRS-related groups. In the scRNA-seq, similarly, no

significant correlation was found between the proportion of

NecroLRS-High cells and Tex cells, whereas patients with high

NecroLRS-High cell population tended to show a high

infiltration of Tex, which might partly explain the worse

prognosis of NecroLRS-High patients. Overall, the scRNA-seq

results suggest a potential cause of poor prognosis in NecroLRS-

High patients and provide a reference for further research into

the role of necroptosis in tumor development.

Previous studies have stressed that necroptosis triggers

inflammatory responses and promotes immunosuppression (5,

63). In this study, we observed a similar phenomenon. As the

damage-associated molecular patterns (DAMPs) generated

during necroptosis, both antigens and inflammatory cytokines

were released into the TME, which activated both innate and

adaptive immune responses and resulted in tumor elimination.

However, DAMPs also recruit inflammatory cells and promote

tumor progression. In both bulk- and scRNA-seq, we found that

high NecroLRS patients always manifested an inflammatory

TME as well as inflammatory immune cell infiltration, which

further explained the poor prognosis of this group of patients. In

addition, hypoxia as a crucial mediator of necroptosis has been

reported (64). The GSEA analysis of scRNA-seq ranked the

hypoxia-related pathway as the most significant in the

NecroLRS-High group of patients. Two crucial pathways

including NF-Kappa B and glycolysis that are closely

associated with hypoxia were also detected, which further

implied the potential mechanism of necroptosis induction in

LUAD (65).

Another notable feature of this study is that scRNA-seq was

used to investigate the potential ligand-receptor pairs among

immune cells and NecroLRS-High cells. Some of the pathways

including the TWEAK pathway (TNFSF12-TNFRSF12A),

ANXA1-FPR1, and LAMC2-CD44 have been reported

previously in lung disease, which play a pivotal role in

inflammatory immune mechanisms and immunosurveillance

(66–68). Additionally, several novel ligand-receptor pairs were

reported first in this study, including LAMB3-CD44, ANXA1-

FPR2, IFN-II (IFNG-(IFNGR1+IFNGR2)), SEMA4 (SEMA4A-
frontiersin.org

https://doi.org/10.3389/fonc.2022.1010976
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yao et al. 10.3389/fonc.2022.1010976
PLXNB2, SEMA4D-PLXNB2), CD99 (CD99-PILRA), MIF

(MIF-(CD74+CXCR4), MIF-(CD74+CD44)), SAA (SAA1-

FPR2), SEMA3 (SEMA3C-(NRP1+NRP2), SEMA3C-

PLXND1), VISFATIN (NAMPT-(ITGA5+ITGB1)), CLEC

(CLEC2B-KLRB1, CLEC2C-KLRB1), and MK pathways

(MDK-NCL). The role of these ligand-receptor pairs has been

partly demonstrated in other diseases as well as cancers;

however, their potential roles in necroptosis-induced

tumorigenesis of LUAD cannot be disregarded. Studies

revealed that these pathways play a crucial role in the

interaction between malignant cells and TIME. Further studies

focused on these pathways might elucidate the underlying

mechanism of necroptosis-associated tumorigenesis and

provide promising targets for the treatment of patients

with LUAD.

There were already necroptosis-related models developed in

other cancers. For instance, in hepatocellular carcinoma,

consistent with our result, the higher necroptosis risk patients

had shorter overall survival and lower efficiency of

immunotherapies (69). In addition, a cell necroptosis index

(CNI) was established in triple-negative breast cancer (TNBC)

and exactly showed that the poor prognosis of TNBC patients

with high-CNI was linked to chemotherapy resistance (70). Both

studies have shown the promising prognostic significance of

necroptosis-related patterns. Although a necroptosis-related

lncRNA signature has been reported recently, the current

study has shown unique strengths from several perspectives.

In contrast with the results reported by Lu et al. (71), our study

provides a more comprehensive workflow based on a model

established for cross-cohort validation. Our study shows

superior model performance as well as clinical utility. In the

current study, the AUCs of the hybrid model used to predict 1-,

3-, and 5-year OS rates were 0.75, 0.741, and 0.724, respectively,

while in Lu’s study the AUCs were 0.723, 0.679, and 0.715,

respectively. Due to the defects in study design, the study of Lu

et al. lacks external validation. By contrast, our study was

validated both internally and externally, and the AUCs of the

hybrid model predicting 1-, 3-, and 5-year OS rates were 0.794,

0.745, and 0.724, respectively, suggesting the robustness of our

findings. Further, our study involved a systematic evaluation of

the performance of each model, and the prognostic performance

of the models was validated in an independent cohort using the

same sequencing technique as the training cohort, which further

verified the robustness and generalizability of our findings. In

addition, qRT-PCR was used in the current study to validate the

NecroLRS-related lncRNAs’ expression in LUAD cell lines, the

expression of OGFRP1 and FAM83A-AS1 was higher than in

BEAS-2B cell line, while WWC2-AS2 was poorly expressed in

LUAD cell lines than in BEAS-2B cell line, which further

corroborated our bioinformatics results. The LINC02323 was

barely expressed in LUAD cell lines we used in the current study,
Frontiers in Oncology 20
however, Zhang et al. (48) have demonstrated that LINC02323

was highly expressed in the SPC‐A‐1 cell line and barely

expressed in H1299, H1975, and A549 cell lines, which was

generally consistent with the current study. Although WWC2-

AS2 is lower expressed in tumor tissues, it may have potential

biological functions. During the development of cancer, the

molecules vary depending on the type and stage (72). For

example, CHAC1 is down-regulated in kidney renal clear cell

carcinoma (KIRC) samples when compared with normal

samples, but in KIRC samples, a higher expression level was

observed in patients with higher malignancy and later stages

(73). The differential expression analysis is based on the tumor

and normal patients, while the survival analysis is performed on

inner tumor patients. Thus, differential expression and survival

analysis should not be endowed with mathematical

relationships. In our research, the expression pattern of

WWC2-AS2 in different AJCC stages of LUAD patients was

evaluated and an up-regulated expression of WWC2-AS2 was

observed in the advanced stage, which explained why WWC2-

AS2 could act as a risk factor in the current study to some

extents. Further, we have investigated the immune infiltration

landscape in both bulk and single cells. The cell communication

analysis combined with immune analysis using scRNA-seq

further reinforced the findings of bulk-seq. We elucidated the

distinct developmental trajectories of NecroLRS-related cell

subgroups apart from normal epithelial cells and established

that neutrophils might serve a crucial role in necroptosis-related

tumorigenesis of LUAD. Despite the novelty of our study, the

sampling bias generated by tumor heterogeneity could not be

eliminated, and the key molecules have not been experimentally

validated by further functional validation and immune

correlation analysis in the current study. In addition, the

prediction model util ized a public cohort, and the

retrospective nature limits the persuasiveness. Although the

results of ROC analysis are superior to similar published

studies, there are still few variables in the mixed model and

further validation by prospective studies with a large sample

number is needed before clinical application.

In summary, we proposed NecroLRS which constitutes 4

necroptosis-related lncRNAs as a promising prognostic

predicting approach in LUAD. Our study revealed that

NecroLRS was positively correlated with neutrophil

enrichment, inflammatory immune response, and malignant

phenotypes of LUAD. Moreover, combining bulk- and

scRNA-seq has revealed the developmental trajectory

transition from nonmalignant epithelial to NecroLRS-related

cell subtypes for the first time, and novel ligand-receptor pairs

also provide promising targets for future studies. In addition, a

hybrid model that combines clinicopathological factors and

NecroLRS showed superior prognostic performance, which

represents a promising clinical tool.
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SUPPLEMENTARY FIGURE 1

Evaluation of NecroLRS model. Calibration curves (A–D), DCA curves (E–
H) of training, test, whole, and validation cohorts (“None”: assume no
patient will die at the specific time point and offer treatment to no one;

“All”: assume all patients will die at the specific time point and therefore

treat everyone; “Model”: gives the expected net benefit of NecroLRS
model on each patient under different threshold probability.

SUPPLEMENTARY FIGURE 2

Bulk RNA-seq-based enrichment validation. GO (A) and KEGG (B) analysis
of NecroLRS-related genes in the original necroptosis-related gene list.

SUPPLEMENTARY FIGURE 3

Expression profile of four risk lncRNAs in the NecroLRS model. The
expression profile of FAM83A-AS1 (A), OGFRP1 (B), LINC02323 (C), and
WWC2-AS2 (D) between normal and tumor tissues in the TCGA cohort.
The expression pattern of WWC2-AS2 in different subgroups of AJCC

stages (E).

SUPPLEMENTARY FIGURE 4

Cell annotation in single-cell RNA-seq analysis and cell communication
landscape of NecroLRS-associated subclusters. (A) Expression of key cell

type markers in each cell type after annotation. (B) The landscape of
incoming and outcoming interaction strength across each cell cluster. (C,
D) Strength of cell communication among NecroLRS-Low and

NecroLRS-High subclusters.
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