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Introduction: Tyrosine kinase inhibitors (TKIs) that target epidermal growth

factor receptor (EGFR) mutations are commonly administered to EGFR-

positive lung cancer patients. However, resistance to EGFR-TKIs (mostly

gefitinib and erlotinib) is presently a significant problem. Limited studies have

focused on an EGFR-TKI resistance-related gene signature (ERS) in lung

adenocarcinoma (LUAD).

Methods: Gefitinib and erlotinib resistance-related genes were obtained

through the differential analyses of three Gene Expression Omnibus datasets.

These genes were investigated further in LUAD patients from The Cancer

Genome Atlas (TCGA). Patients in the TCGA-LUAD cohort were split into two

groups: one for training and one for testing. The training cohort was used to

build the ERS, and the testing cohort was used to test it. GO and KEGG analyses

were explored for the enriched pathways between the high-risk and low-risk

groups. Various software, mainly CIBERSORT and ssGSEA, were used for

immune infiltration profiles. Somatic mutation and drug sensitivity analyses

were also explored.

Results: An ERS based on five genes (FGD3, PCDH7, DEPDC1B, SATB2, and

S100P) was constructed and validated using the TCGA-LUAD cohort, resulting

in the significant stratification of LUAD patients into high-risk and low-risk

groups. Multivariable Cox analyses confirmed that ERS had an independent

prognostic value in LUAD. The pathway enrichment analyses showed that most

of the genes that were different between the two risk groups were related to
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the immune system. Further immune infiltration results revealed that a lower

immune infiltration score was observed in high-risk patients, and that various

leukocytes were significantly related to the ERS. Importantly, samples from the

high-risk group showed lower levels of PD-1, PD-L1, and CTLA-4, which are

important biomarkers for immunotherapy responses. Patients in the high-risk

group also had more gene mutation changes and were more sensitive to

chemotherapy drugs like docetaxel and sorafenib. The ERS was also validated

in the GSE30219, GSE11969 and GSE72094, and showed a favorable prognostic

value for LUAD patients.

Discussion: The ERS established during this study was able to predict a poor

prognosis for LUAD patients and had great potential for predicting drug

responses.
KEYWORDS

prognostic signature, lung adenocarcinoma, epidermal growth factor receptor-
tyrosine kinase inhibitor resistance, immune microenvironment, drug sensitivity
Introduction

Lung cancer is one of the most common and deadly types of

cancer (1). Non-small-cell lung cancer (NSCLC), which makes

up 85% of lung cancer cases, is thought to be the most common

type (2). Adenocarcinoma, squamous cell carcinoma, and large

cell carcinoma are the three main subtypes of NSCLC (2).

Among these histological phenotypes, adenocarcinomas of the

lung (LUAD) is the most prevalent one. Even though lung

cancer screening and systemic treatments have improved,

most patients don’t respond well to treatment, and the 5-year

survival rate for lung cancer patients is only 4% to 17% (3).

Molecular technology and targeted therapies can extend the

overall survival (OS) of lung cancer patients (4, 5), but resistance

to targeted drugs is still a big problem.

The epidermal growth factor receptor (EGFR) gene is often

changed in people with NSCLC. About 10% to 20% of Caucasian

patients and about 50% of Asian patients have EGFR gene

mutations (6, 7). In lung cancer patients with EGFR gene

mutations, tyrosine kinase inhibitors (TKIs) that target mutant

EGFR genes are associated with a therapeutic advantage. As an

established first-line standard therapy, EGFR-TKIs have greater
r; TKI, tyrosine kinase

gnature; LUAD, lung
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efficacy than standard chemotherapy (8). However, because of

individual mutations and varieties of EGFR-TKIs, patients have

diverse sensitivity to EGFR-TKIs and will eventually experience

disease progression because of acquired resistance (8, 9). First-

generation EGFR-TKIs, primarily gefitinib and erlotinib, are the

most frequently used and prevalent treatments for acquired

resistance (10). Various trials in clinic have implied that

second-generation and third-generation TKIs are more

effective than first-generation TKIs (11–13). Although the

second-generation and third-generation EGFR-TKIs are

substitutes for first-generation EGFR-TKIs, drug resistance

and poor LUAD prognoses are problematic. Therefore, new

biomarkers are necessary for predicting better prognoses.

With the development of bioinformatics analyses, it has

become convenient to use public genomic datasets for risk

model construction and survival prediction. In our study, we

explored the potential value of EGFR-TKI resistance-related

genes in LUAD by bioinformatics methods and aimed to find

potential biomarkers for predicting LUAD prognosis. We

discovered EGFR-TKI resistance-associated genes using Gene

Expression Omnibus (GEO) datasets and developed a five-gene

EGFR-TKI resistance-associated gene signature (ERS) using the

LUAD dataset from The Cancer Genome Atlas (TCGA).

According to ERS-calculated risk scores, TCGA-LUAD

patients were accurately classified into two groups: high-risk

and low-risk. The ERS was found to be an independent

prognostic factor for LUAD patients compared to other

clinical pathological markers. Moreover, functional and

pathway enrichment studies suggested that the differentially

expressed genes between the two risk groups are primarily

involved in immunological activities. Further immune cell
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analyses also suggested that the ERS and immune cells

infiltration were closely linked. Interestingly, we found the

differential expression of multiple immunotherapy response

biomarkers between the two risk groups. We also found that

patients with a high risk score had more gene mutation changes

and lower IC50 levels for chemotherapy drugs like docetaxel,

gemcitabine, sorafenib, and tipifarnib than patients with a low

risk score. The verification of the ERS by GSE30219, GSE11969

and GSE72094 also showed a favorable prognostic value for

LUAD patients. We considered that the construction of our five-

gene signature will help predict the prognosis and potential

mechanism studies of LUAD and contribute to optimized

therapeutic strategies.
Materials and methods

Patients and datasets

The gene expression files of gefitinib-sensitive and gefitinib-

resistant lung cancer cell lines were obtained from the GSE60189

and GSE122005 datasets (14, 15). The GSE80344 dataset was

used to retrieve the expression profile data of erlotinib-sensitive

and erlotinib-resistant lung cancer cell lines (16). All the data

above were acquired from the Gene Expression Omnibus (GEO)

database (https://www.ncbi.nlm.nih.gov/geo/; May, 15, 2021).

The gene expression data and clinical details of LUAD patients

were extracted from the TCGA database (https://portal.gdc.

cancer.gov/; May, 28, 2021). From the TCGA-LUAD dataset,

535 tumor specimens and 59 surrounding normal tissues were

ultimately screened for additional investigation. The gene

expression levels and clinical information of GSE30219

(n=83), GSE11969 (n=90) and GSE72094 (n=389) were

obtained from GEO database for validating the risk model. All

data downloaded from GEO and TCGA were normalized and

used for subsequent analyses using R software (17).
Identification of EGFR-TKI resistance-
related genes

A differential expression analysis of TKI-sensitive and TKI-

resistant LUAD clones (gefitinib: PC9 and HCC827; erlotinib:

HCC827 and HCC4006) was used to identify EGFR-TKI

resistance-associated genes (14–16). The differential analyses

were conducted using the “limma” R package, with false

discovery rate (FDR) <0.05 and absolute log2fold change

(|log2FC|) >1. Addition, the “venn” R packages was used to

confirm the intersection genes in different cell clones of gefitinib

and erlotinib and create the venn diagram. Finally, the

aforementioned intersection genes were regarded as EGFR-

TKI resistance-related genes for further analyses.
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Construction of the ERS

AfterdownloadingthedataofLUADpatients fromTCGA,EGFR-

TKI resistance-related genes were examined using the “limma” R

package to identify differentially expressed EGFR-TKI resistance-

related genes between the normal and tumor groups. Significant

genes were determined to have FDR<0.05 and |log2FC| > 1. Based

on the endpoint of patients’ death, TCGA-LUAD cohort was then

randomly divided into a training set and a testing set in a ratio of 1:1 by

using the receiver-operator characteristic (ROC) curves. We

determined the two sets until the two sets reached their best

predictive value. Next, univariate and multivariate Cox regression

analysis was done on the training cohort to build the five-gene

model. P<0.05 was deemed statistically significant. Among the genes

associatedwithERS, hazard ratio (HR)>1was considered a risk factor,

whereas HR<1 was considered a protective factor. In addition, LUAD

patientswere separated into low-riskandhigh-riskgroupsbasedonthe

risk scores calculated by the ERS (the cutoff value was set at 1).

Additionally, the “survivalROC” R package was used to generate

ROC curves for the three sets of the TCGA-LUAD cohort: the

training set, the testing set, and the total set.
Survival analyses of the high-risk and
low-risk groups

The “pheatmap” R package was then used to compare the gene

expression, risk score and survival time distribution of ERS in the two

risk categories. Additionally, the association between ERS and

survival time was evaluated using the “survival” and “survminer” R

packages. All aforementioned comparison analyses were performed

in the three sets of TCGA-LUAD cohort. Log-rank test were used to

compare the difference of overall survival time in the two-risk groups.
Independent prognostic value evaluation
of the ERS

After acquiring the clinicopathological data of LUAD patients,

the risk score of ERS and other traditional clinical parameters (age,

sex, stage, T stage, N stage) were incorporated in the univariate and

multivariate analyses of prognosis. The M stage was not included

because that information was unknown for many patients. The

“survivalROC” R package was then used to display the predictive

value of ERS relative to other clinicopathological variables in the

three TCGA-LUAD cohort sets.
Correlation analyses of
clinicopathological factors with the ERS

LUAD patients were separated into distinct subgroups based

on their clinical features (age, gender, stage, T stage, and N stage)

for the comparison study involving the ERS. This was performed
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through the combined analysis by the “limma” and “ggpubr” R

packages. Additionally, these results were summarized with a

heatmap through the R package of “ComplexHeatmap”. The

comparison analyses of the clinical factors in different risk

groups were assessed by Wilcoxon signed-rank test.
Functional enrichment analyses

To explore the putative molecular mechanisms linked with the

prognostic signature of ERS, Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analyses were performed (18). The “limma” R

package was used to determine the differential gene expressions

between the two risk groups (the cutoffs were FDR<0.05 and

|log2FC|>1). A bar plot was drawn using “clusterProfiler,”

“org.Hs.eg.db,” “enrichplot,” and “ggplot2” R packages with the

following filter conditions: Q<0.05 or P<0.05. The GO analysis

mainly evaluated the biological process, cellular component, and

molecular function; the results of top 10 were shown. The KEGG

analysis mainly evaluated the differentially expressed pathways in

different risk groups; the results of top 30 were shown.
Immune infiltration analyses of different
risk groups

Various software, most notably CIBERSORT and single-

sample gene set enrichment analysis (ssGSEA), were used to

analyze the expression levels of immune cells and immunological

functions (19). Using ssGSEA, the infiltration scores of immune

cells and immunological functions for LUAD patients were

evaluated. Various tools, such as XCELL, TIMER, QUANTISEQ,

MCPCOUNTER, EPIC, CIBERSORT-ABS, and CIBERSORT,

were utilized to validate the immune cell distinctions of ERS

further (20). Additionally, a correlation heatmap of CIBERSORT

was used to examine the relationships between immune cells by the

Wilcoxon signed-rank test. TCGA-LUAD patients’ gene

expressions for immunotherapy response biomarkers PD-1, PD-

L1, and CTLA-4 were also analyzed for a thorough study.
Tumor gene mutation and drug
sensitivity analysis of ERS

Then, the “Maftools” R package was used to analyze the

tumor mutation burden (TMB) of each sample in the TCGA-

LUAD patients. The top 20 genes, which were most frequently

mutated in tumor were shown in the waterfall plot. Each column

presented a patient. The drug sensitivity of each sample to

various drugs was evaluated by using “pRRophetic” R package.

The IC50 value of these drugs were compared by the Wilcoxon

signed-rank test between groups.
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57 patients in the TCGA-LUAD cohort with paired LUAD

and normal tissues were screened. The R package was used to

find out how the ERS (PCDH7, DEPDC1B, SATB2, S100P, and

FGD3) were expressed differently between the LUAD and

normal tissues. Next, quantitative real-time PCR (qRT-PCR)

was utilized to confirm the gene expression levels of ERS in 24

pairs of surgically resected, frozen LUAD tissues and

neighboring normal tissues. RNA was extracted using Trizol

reagent (Sigma, USA), and GAPDH served as an internal control

for ERS. The relative mRNA expression levels of the five genes

were measured using the 2-DDCt technique. The primer sequences

utilized in this study were as follows: GAPDH: forward 5′-
ACAACTTTGGTATCGTGGAAGG-3′ and reverse 5′-
GCCATCACGCCACAGTTTC-3′; PCDH7: forward 5′-
TGATCTTCGACGAGAACGAGT-3 ′ and reverse 5 ′-
CGTTGATGTCAAGCACGATGA -3′; FGD3: forward 5′-
AAGATGTACGGCGAGTATGTCA-3′ and reverse 5′-
GGAGCCTCTTCAGATAGTCCTT-3′; DEPDC1B: forward

5′- CTGAAGTGACCCGCAAACAAA-3′ and reverse 5′-
CTGGTGGGAGATCATTCCATTC-3′; SATB2: forward 5′-
GACAGTGGCCGACATGCTAC-3 ′ and reverse 5 ′ -
AGGCAAGTCTTCCAACTTTGAA -3′; S100P: forward 5′-
AAGGATGCCGTGGATAAATTGC-3′ and reverse 5′-
ACACGATGAACTCACTGAAGTC-3 ′ . The prote in

expression levels of the ERS in normal lung tissues and LUAD

tissues were evaluated through the Human Protein Atlas (HPA)

database (https://www.proteinatlas.org/; April 4, 2022).
Statistical analysis

All bioinformatics data were processed using R (version

3.6.4) and the respective R packages. The experimental data and

immunotherapy response biomarkers analysis were performed

using GraphPad Prism version 8.0 software (La Jolla, CA, USA).

Mann-Whitney test was used for data analysis. P value < 0.05

was considered statistically significant.
Results

Construction of the ERS for
predicting prognoses

Figure 1 depicts the flow pertaining to this investigation. A

total of 211 EGFR-TKI resistance-related genes from the

GSE60189, GSE122005 and GSE80344 datasets were screened,

including 80 gefitinib resistance-related genes and 137 erlotinib

resistance-related genes (Figures 2A, B). Six genes were excluded

because they were identified as both gefitinib and erlotinib
frontiersin.org
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FIGURE 1

The flow of this study. From GEO databases, genes associated with EGFR-TKI resistance were identified and subsequently studied in the TCGA-
LUAD cohort. Cox regression analysis was used to establish the risk model. Based on the computed risk scores of the risk model, TCGA-LUAD
patients were divided into high-risk and low-risk groups. The differential analyses among the two groups, such as immune cells and
immunotherapy response biomarkers, were explored.
B C

D E

F G

H

A

FIGURE 2

Construction of a five-gene ERS for predicting prognoses. (A) 80 gefitinib resistance-related genes were identified through the GEO datasets of
GSE60189 and GSE122005. (B) 137 erlotinib resistance-related genes were identified through GSE80344. (C) 77 differentially expressed EGFR-
TKI resistance-related genes were identified between the normal (N) and tumor (T) groups of TCGA-LUAD cohort. (D–F) The training set and
testing set of TCGA-LUAD cohort respectively for risk model construction and validation were chosen until the ROC curves of the two sets
reached a best predictive value. The ROC curve in the total set of TCGA-LUAD cohort was also shown. (G–H) Five genes (FGD3, PCDH7,
DEPDC1B, SATB2, and S100P) were selected for risk model development based on univariate and multivariate Cox regression analyses
conducted on the training set of the TCGA-LUAD cohort.
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resistance-related genes. Finally, 211 genes were selected for

further analysis (Supplementary Table 1). To learn more about

these genes in the TCGA-LUAD cohort, 77 EGFR-TKI

resistance-related genes with different levels of expression were

found (Figure 2C and Supplementary Table 2). Of these, 52 were

upregulated and 25 were downregulated.

In the TCGA-LUAD cohort, data on the OS of 490 individuals

was eventually discovered. Based on the OS time, the TCGA-LUAD

cohort (n=490) was randomly divided into the training set (n=246)

and testing set (n=244) (Supplementary Table 3) with a ratio of 1:1 by

running a ROC analysis. Lastly, we determined the training set and

testing set until the area under the curve (AUC) values of the ERS in

the two sets achieved the highest predictive value. As illustrated in

Figures 2D–F, the AUC for the training set was 0.787, the AUC for

the testing set was 0.729, and the AUC for the entire cohort was
Frontiers in Oncology 06
0.757. The baseline features among the three sets (training set, testing

set, total set) for LUAD patients were summarized in Table 1.

Based on the clinical objective of OS, the univariate Cox

proportional hazards regression analysis revealed 10 differentially

expressed EGFR-TKI resistance-related genes to be significant in

the training set (Figure 2G and Supplementary Table 4) (P<0.05).

Using a multivariable Cox regression analysis, five genes were

finally chosen for model design (Figure 2H and Supplementary

Table 5). Among the five genes identified, an HR >1 was defined as

a factor at risk (PCDH7, DEPDC1B, SATB2, and S100P), and an

HR <1 was defined as a factor with protective role (FGD3). The

following formula was used to calculate the risk score for each

sample based on the expression levels of the five genes: risk score =

0.298386164 × PCDH7 + (-0.351049257) × FGD3 + 0.242280512 ×

DEPDC1B + 0.613634016 × SATB2 + 0.139662184 × S100P. With
TABLE 1 The baseline characteristics of LUAD patients in the three sets of TCGA cohort.

Clinical characteristics TCGA-training set (n=246) TCGA-testing set (n=244) TCGA in total set (n=490)

Survival status, n (%)

alive 168 (68.3%) 161 (66.0%) 329 (67.1%)

dead 78 (31.7%) 83 (34.0%) 161 (32.9%)

Age, median (range)

>65 72 (66~87) 73 (66~88) 72 (66~88)

<=65 58 (38~65) 59 (33~65) 59 (33~65)

Gender, n (%)

female 132 (53.7%) 134 (54.9%) 266 (54.3%)

male 114 (46.3%) 110 (45.1%) 224 (45.7%)

Stage, n (%)

stage I 132 (53.6%) 129 (52.9%) 261 (53.3%)

stage II 56 (22.8%) 61 (25.0%) 117 (23.9%)

stage III 40 (16.3%) 39 (16.0%) 79 (16.1%)

stage IV 13 (5.3%) 12 (4.9%) 25 (5.1%)

unknown 5 (2.0%) 3 (1.2%) 8 (1.6%)

T, n (%)

T1 89 (36.2%) 77 (31.6%) 166 (33.9%)

T2 124 (50.4%) 134 (54.9%) 258 (52.6%)

T3 20 (8.1%) 25 (10.2%) 45 (9.2%)

T4 11 (4.5%) 7 (2.9%) 18 (3.7%)

unknown 2 (0.8%) 1 (0.4%) 3 (0.6%)

N, n (%)

N0 162 (65.9%) 155 (63.5%) 317 (64.7%)

N1 46 (18.7%) 46 (18.9%) 92 (18.8%)

N2 32 (13.0%) 36 (14.7%) 68 (13.9%)

N3 2 (0.8%) 0 2 (0.4%)

unknown 4 (1.6%) 7 (2.9%) 11 (2.2%)

M, n (%)

M0 163 (66.3%) 159 (65.2%) 322 (65.7%)

M1 12 (4.9%) 12 (4.9%) 24 (4.9%)

unknown 71 (28.8%) 73 (29.9%) 144 (29.4%)
frontiersin.org

https://doi.org/10.3389/fonc.2022.1008283
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhou et al. 10.3389/fonc.2022.1008283
a median risk score of 1, all patients in the TCGA-LUAD cohort

were categorized into distinct risk groups.
Characteristics and survival analyses of
the ERS

To gain a deeper understanding of the strength of the ERS, the

features of the ERS and its association with OS in high-risk and low-

risk groups were investigated. The distributional comparisons of

gene expression levels, risk score, survival time, and survival status

between the two groups are depicted in Figure 3. As described in

Figures 3A–C, there were higher levels of PCDH7, DEPDC1B,

SATB2, S100P and lower expression of FGD3 in high-risk patients.

The ERS effectively categorized TCGA-LUAD patients into high-

risk and low-risk groups (Figures 3D–F). In addition, the high-risk

group had more deceased patients and a shorter survival period

(Figures 3G–I). Moreover, the Kaplan-Meier analysis revealed a

significant association between ERS and poor OS (Figures 3J–L) (P

<0.01). All of the aforementioned analyses were conducted on the

training test, testing set and total set of the TCGA-LUAD cohort

and yielded identical results.
Frontiers in Oncology 07
Independent prognostic power
evaluation of the ERS

After determining the ERS’s prognostic value, we assessed

its independent prognostic value. As seen in Figures 4A–C,

univariate Cox regression analysis revealed that ERS and

clinical variables (stage, T stage, and N stage) were

substantially linked with poor OS in the training set (HR>1;

P<0.001). Moreover, a multivariate analysis indicated that the

ERS had an independent prognostic value for LUAD patients

(Figures 4D–F) (P<0.001). Age and gender variations in the OS

were not evident (Figures 4A–F) (P>0.05). In addition, a

multiple ROC curve analysis was done to examine the

prognostic prediction abilities of the ERS and clinical

variables. As depicted in Figures 4G–I, the AUC values of the

ERS were greater than those of all the clinical factors in the

training set of the TCGA-LUAD cohort, indicating that the

ERS had superior prognostic predictive value for LUAD. All of

the analyses above were also validated on the testing set

andtotal set of the TCGA-LUAD cohort and showed

identical results.
B C

D E F

G H I

J K L
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FIGURE 3

Characteristics and survival analyses of the ERS in the three sets of TCGA-LUAD cohort. (A–C) The gene expression heatmap of the ERS in the
three sets of TCGA-LUAD cohort. (D–F) The risk score distribution plot indicated that the ERS effectively categorized TCGA-LUAD patients into
high-risk and low-risk groups. (G–I) The survival time distribution plot indicated that the high-risk group had more fatalities and shorter survival
times. (J–L) The Kaplan-Meier survival study demonstrated the disparity in survival status and survival time between the two risk groups.
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Clinicopathological association of the ERS

As previously stated, the ERS and clinical indicators are crucial

prognostic variables for LUAD. In addition, we investigated the

relationship between ERS and clinicopathological variables. The

clinical information and risk score of TCGA-LUAD patients were

summarized in Supplementary Table 6. There were significant

relationships between the ERS and sex, stage, T stage, and N

stage, as shown in Figure 5A. It is demonstrated that male

patients had greater risk scores than female patients (Figure 5C)

(P<0.05). Additionally, advanced-stage LUAD patients tended to

have higher risk scores (Figures 5D–F). As shown in Figure 5D,

patients with stages N1 and N2–3 had higher risk scores than those

with stage N0 (P<0.05). Patients with stages II and III–IV had

greater risk scores than those with stage I (Figure 5E) (P<0.05).

Patients with stages T2 and T3–4 had higher risk scores than those

with stage T1 (Figure 5F) (P<0.01). In conclusion, all of the

aforementioned studies suggested that the ERS was associated

with a variety of clinicopathological variables. However, the risk

score values were comparable between older and younger patients

(Figure 5B) (P=0.38).
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GO functional enrichment and KEGG
pathway enrichment analyses

After identifying the differentially expressed genes between

the high-risk and low-risk groups, we ran GO functional

enrichment and KEGG pathway enrichment analyses to

investigate the putative biological activities and signaling

pathways of ERS. According to the results of the GO

analysis, the genes were primarily involved in humoral

immune response, response to corticosteroids, hormone

metabolic process, protein processing, antimicrobial humoral

response, and response to glucocorticoids (Figure 6A and

Supplementary Table 7). The KEGG analysis revealed that

the majority of the genes were associated with hematopoietic

cell lineage, arachidonic acid metabolism, amoebiasis,

complement and coagulation cascades, and linoleic acid

metabolism (Figure 6B and Supplementary Table 8). All of

these findings suggested that the ERS was primarily associated

with hematopoietic cell lineage and the cellular immune

response process, and that it may function via immune-

related pathways.
B C

D E F

G H I

A

FIGURE 4

Independent prognostic power evaluation of the ERS in the three sets of TCGA-LUAD cohort. (A–C) Analyses of univariate Cox regression
revealed that both the risk score and clinical variables were associated with a poor prognosis. (D–F) Multivariable Cox regression analyses
confirmed the independent prognostic value of the ERS compared to other clinical factors. (G–I) Multivariate ROC analysis indicated that the
risk score had prognostic predictive significance for LUAD patients.
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Immune infiltration analyses of the high-
risk and low-risk groups

To further examine the immune status of high-risk and low-

risk groups, we assessed the expression of immune cells in LUAD

patients using ssGSEA algorithms and a variety of tools, such as

XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC, and

CIBERSORT-ABS. The ssGSEA data indicated that the difference

in immune infiltration between the two risk groups was statistically

significant (Figures 7A, B and Supplementary Table 9). The

infiltration scores of diverse immune cells, including activated

dendritic cells, B cells, dendritic cells, interdigitating dendritic

cells, mast cells, neutrophils, plasmacytoid dendric cells, T-helper

cells, T-follicular helper cells, and tumor-infiltrating lymphocyte

cells, were significantly lower in the high-risk group compared to

the low-risk group (Figure 7A) (P<0.001). Moreover, we found

comparable differences in infiltration scores based on immune cell

functions between low-risk and high-risk patients, including those

of activated protein C coinhibition, cinnamoyl CoA reductase,

check point, cytolytic activity, human leukocyte antigen, T-cell

coinhibition, T-cell costimulation, and type II interferon response
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(Figure 7B) (P<0.001). The lower score for immune cell infiltration

indicates that high-risk patients may have an immunosuppressive

microenvironment.We further studied the relationship between the

differential expression of immune cells and the risk score using a

variety of techniques for analyzing immune cells. In accordance

with the findings of the ssGSEA, various immune cells exhibited a

negative connection with the risk score (Figure 7C and

Supplementary Table 10). Evidently, the immune score, stroma

score and microenvironment score are lower in high-risk groups

(Figures 7D–F). Moreover, correlation analysis between various

immune cells using CIBERSORT revealed that activated natural

killer cells, resting mast cells, resting memory CD4 T-cells, activated

dendritic cells, monocytes, M2 macrophages, resting dendritic cells

were negatively correlated with resting natural killer cells, M0

macrophages, naïve B cells, plasma cells, M1 macrophages, CD8

T-cells, activated memory CD4 T-cells and T-follicular helper cells

(Figure 7G and Supplementary Table 11). In summary, these

findings indicated a substantial relationship between the ERS and

the immune microenvironment of tumors.

Considering the immunological relationship of the ERS, we

examined the immunotherapy response biomarker expressions
B C

E F

D

A

FIGURE 5

Clinicopathological association of the ERS. (A) An overview of graphs depicting the relationship between the ERS and clinical characteristics
such as age, gender, stage, T-stage, and N-stage. (B–F) The risk score differences were compared among different clinical subgroups (<=65 vs
>65; female vs male; stage I vs stage II vs stage III-IV; T1 vs T2 vs T3-4; N0 vs N1 vs N2-3). (**P<0.01, and ***P<0.001).
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further. It is recognized that PD-1, PD-L1, and CTLA-4 are

useful biomarkers for predicting the response to immunotherapy

(21), and their high expressions may indicate the need for future

immunotherapy applications. As displayed in Figure 7H and

Supplementary Table 12, the findings of all gene expression

studies revealed lower expressions of PD-1 (P<0.001), PD-L1

(P=0.005), CTLA-4 (P<0.001) in high-risk patients, suggesting a

possible link between the ERS and a poor immunotherapy

response. The analysis results were summarized in Table 2.

However, this could not be proven due to insufficient data.
Tumor gene mutation and drug
sensitivity of the ERS

The TMB of the high-risk and low-risk groups was then

compared. As illustrated in Figures 8A, B, patients in the high-

risk group had greater TMB levels. A review of gene mutation

modification frequencies suggested that the high-risk group had a

gene mutation rate of 92.43%, while the low-risk group was 84.72%

(Figures 8C, D). In the high-risk group, the top five genes were TTN
Frontiers in Oncology 10
(47%), MUC16 (44%), TP53 (43%), CSMD3 (36%) and RYR2

(35%). In general, themutation rate of oncogenes, such as TTN, was

greater in high-risk individuals (47% vs. 34%), although the

mutation rate of anti-oncogenes, such as TP53, was comparable

in both groups (43% vs.44%). Then, based on the optimal cutoff of

TMB by the R packages, the patients were stratified into high-TMB

and low-TMB groups. However, there was no significant difference

in survival between the two groups (Figure 8E) (P>0.05). Moreover,

compared to the other three groups (H-TMB+H-risk score, H-

TMB+L-risk score, and L-TMB+L-risk score), patients with low

TMB and high risk score (L-TMB+H-risk score) had significantly

shorter survival times (Figure 8F).

Next, we investigated the variations in medication sensitivity

between the two groups . The IC50 values of 138

chemotherapeutic agents and inhibitors were determined and

compared between the two risk categories. As shown in

Figures 9A–M, thirteen sample medications were selected.

LUAD patients at high risk had lower IC50 values of

docetaxel, doxorubicin, etoposide, gemcitabine, linsitinib,

paclitaxel, pazopanib, rapamycin, sorafenib, and tipifarnib

than patients with a low risk, which suggested that those drugs
B

A

FIGURE 6

GO functional enrichment and KEGG pathway enrichment analyses. The differentially expressed genes between the high-risk and low-risk
groups were further enriched for (A) GO functional analysis and (B) KEGG pathway analysis.
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FIGURE 7

Analyses of immune infiltration in the high-risk and low-risk categories. (A) ssGSEA was used to undertake the immune cells score between the
two groups. (B) The immune cell function analysis among the two groups was explored by ssGSEA. (C) Immune cells expression analysis was
performed through various methods, including XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-ABS, and CIBERSORT. (D–F) The
immune score, stroma score and microenvironment score were compared between the two risk groups by XCELL. (G) CIBERSORT was used for
the association analysis between immune cells. (H) The expression levels of PD-1, PD-L1, and CTLA-4 were compared between the two groups
(*P<0.05, **P<0.01, and ***P<0.001).
TABLE 2 The differential expression analysis results of PD1, PDL1, and CTLA4 in the high-risk and low-risk patients of TCGA-LUAD.

Gene Mean Median Difference between medians 95%CI *P value

Low-risk High-risk Low-risk High-risk Difference: Actual Difference: Hodges-Lehmann

PD1 2.426 1.775 1.695 1.048 -0.647 -0.453 -0.679 – -0.239 <0.001

PDL1 4.145 4.238 2.533 1.976 -0.557 -0.469 -0.78 – -0.142 0.0054

CTLA4 2.541 1.832 1.995 1.337 -0.658 -0.562 -0.808 – -0.321 <0.001
Frontiers
 in Oncology
 11
 fron
*Mann-Whitney test was used for data analysis.
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may be acceptable therapy for high-risk patients, according to

the data. In contrast, patients at high risk had higher IC50 values

of metformin, methotrexate, and nilotinib, which implied that

those medications may not be suitable for high-risk patients.
External validation and the gene
expression analysis of the ERS

Based on the median risk score, we further validated the risk

model by GSE30219 (n=83), GSE11969 (n=90) and GSE72094

(n=398). As shown in Figures 10A–C, the Kaplan-Meier analysis

showed that patients in the high-risk group had poorer survival

time compared to the low-risk group in GSE30219 (P=0.009),

GSE11969 (P=0.002), GSE72094 (P<0.001). In addition, the ROC

analysis showed an acceptable prognostic value for LUAD patients

(GSE30219: 1-year AUC = 0.865, 3-year AUC = 0.767, 5-year

AUC= 0.776; GSE11969: 1-year AUC= 0.709, 3-year AUC= 0.727,

5-year AUC = 0.659; GSE72094: 1-year AUC = 0.678, 3-year

AUC = 0.682, 5-year AUC = 0.722) (Figures 10D–F).

Then, the gene expression levels of the ERS (PCDH7,

DEPDC1B, SATB2, S100P, and FGD3) were confirmed using

various techniques. As demonstrated in Figure 11A, LUAD

tissues from the TCGA cohort had a greater expression level of

PCDH7, DEPDC1B, SATB2, and S100P and a lower expression

level of FGD3. Evidently, based on the median of the gene

expression levels, we found that the levels for five genes were
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related with LUAD prognoses (Figure 11B). Analysis of gene

expression in paired lung cancer and surrounding normal tissue

from TCGA-LUAD patients indicated a consistent outcome

(Figure 11C). In addition, the results of qRT-PCR indicated that

DEPDC1B was up in LUAD tissues (P<0.001) whereas FGD3 was

elevated in normal lung tissues (P<0.01) (Figure 10D), which was

consistent with the bioinformatics results. Nevertheless, SATB2

levels were lower in LUAD tissues (P<0.01) (Figure 11D).

PCDH7 and S100P were not statistically significant between the

two groups (P>0.05), which may be explained by the small sample

size and high individual variation. The protein expression of five

genes was evaluated further using the HPA database (Figures 11E–

I). The results indicated that the expression of PCDH7 and S100P

was up in LUAD tissues, while the expression of FGD3 and

DEPDC1B was lowered. Moreover, SATB2 was not discovered.
Discussion

cResistance to EGFR-TKIs remains a prominent problem that

limits their clinical application for lung cancer patients with EGFR

mutation. With the advancements in bioinformatics technology, a

growing number of prognostic biomarkers and therapeutic targets

have been identified for LUAD patients (22, 23). However,

indicators associated with EGFR-TKI resistance in LUAD

patients are scarce. To investigate the potential clinical relevance

and molecular processes of EGFR-TKI resistance-related genes in
B

C D

E F

A

FIGURE 8

Tumor mutation burden analyses in lung adenocarcinoma patients. (A, B) Boxplot and correlation plot showed the relation of tumor somatic
mutation with risk score in lung adenocarcinoma patients. (C, D) The summary charts illustrated the distribution of the top 20 tumor somatic
mutations in the high-risk and low-risk groups. (E) The survival status and survival time difference between the high-TMB and low-TMB groups.
(F) The Kaplan-Meier analysis showed the survival status and survival time in four subgroups: H-TMB+H-risk score, H-TMB+L-risk score, L-TMB
+H-risk score, L-TMB+L-risk score.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1008283
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhou et al. 10.3389/fonc.2022.1008283
LUAD patients, we developed a risk model of ERS based on 211

EGFR-TKI resistance-related genes identified from three GEO

datasets. The TCGA-LUAD cohort was separated into training

and testing sets. We created the ERS for the training set of TCGA-

LUAD cohort using univariate and multivariate Cox analysis.

Moreover, the ERS was well-validated for both the testing set and

the full TCGA-LUAD cohort. The multivariate Cox and multi-

ROC analyses further confirmed the independent prognostic and

predictive usefulness of ERS for LUAD patients in comparison to

other routine clinical variables. Interestingly, the GO functional

enrichment and KEGG pathway enrichment studies revealed a

substantial association between the risk score and immunological

processes. Therefore, an examination of immune infiltration was

performed on the high-risk and low-risk groups. Various

immunological profile approaches revealed an evident

relationship between ERS and tumor-infiltrating immune cells,

indicating a link between ERS and immune infiltration. In

addition, individuals in the high-risk group showed decreased

expression levels of numerous indicators of immunotherapy

response, indicating a poor immunotherapy response in these

patients. Moreover, the high-risk group demonstrated greater

TMB and chemotherapeutic medication sensitivity. The ERS was

also verified of the by GSE30219, GSE11969 and GSE72094, and

showed a favorable prognostic value for LUAD patients. This was
Frontiers in Oncology 13
the first ERS associated with a poor prognosis in LUAD patients

and with a high predictive capacity for treatment responses. Further

validation of the putative pathways of the prognostic model

is required.

During our investigation, we collected 80 gefitinib resistance-

related genes and 137 erlotinib resistance-related genes to gain a

comprehensive understanding of EGFR-TKI resistance-related

genes in LUAD patients (14–16). Five prognostic biomarkers

(FGD3, PCDH7, DEPDC1B, SATB2, and S100P) were identified

based on the findings of univariate and multivariate Cox

proportional hazards regression analysis. The FGD3 gene is a

guanine nucleotide exchange factor that may activate cell division

control protein 42 and regulate cell morphology via the formation

of lamellipodia (24). FGD3 mainly exists in breast cancer and is a

promising biomarker of better prognoses for breast cancer patients

(24). Dong et al. also identified the potential role of FGD3 in the

lncRNA-miRNA-ceRNA network (25); however, its expression and

function in lung cancer need to be validated further. PCDH7, also

known as cadherin-related neuronal receptor, is a protocadherin

family member that primarily acts through homophilic cell-cell

contact (26). One study suggested that the expression of PCDH7

was related with lower metastasis-free survival in NSCLC patients

and enhanced brain metastasis by facilitating the formation of

carcinoma-astrocyte gap junctions (26). Moreover, PCDH7 can
B C D
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FIGURE 9

Drug sensitivity analyses in lung adenocarcinoma patients. (A–M) Boxplots of the two risk groups showed the mean IC50 differences of 13
representative drugs (docetaxel, doxorubicin, etoposide, gemcitabine, metformin, methotrexate, nilotinib, linsitinib, paclitaxel, pazopanib,
rapamycin, sorafenib, tipifarnib).
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synergize with EGFR and KRAS, thus inducing MAPK signaling

and lung tumorigenesis (27) and functioning as a potential

therapeutic target. DEPDC1B is a cell cycle-controlled protein

that builds up during the G2 phase and coordinates cell-cycle

progression and de-adhesion during mitosis (28). It is assumed that

DEPDC1B is overexpressed in a variety of malignancies and

predicts worse patient outcomes (29–31). Upregulation of

DEPDC1B is inversely linked with patient survival in NSCLC and

may increase tumor cell motility and invasion by activating Wnt/b-

catenin signaling (31) and functioning as a potential biomarker.

SATB2 is a DNA-binding protein that has an important role in

transcriptional regulation and chromatin recombinant (32). SATB2

has been identified as a tumor suppressor and promoter in cancer

(33). For NSCLC patients, a low expression SATB2 is related to

poor prognoses (32) and may promote tumor progression through

epithelial-to-mesenchymal transition (32–34). S100P is a calcium-

binding protein that participates in multiple biological processes,

including cell cycle progression and differentiation (35). The

overexpression of S100P is linked to treatment resistance,

metastasis, and negative clinical outcomes (36). However, S100P

induction may be considered an important step during the early

stage of LUAD; furthermore, its low expression during advanced

stages seems to be associated with tumor progression (37). Recent

studies have suggested that S100P has an immune role in NSCLC

(38, 39). During our analysis, increased expressions of PCDH7,

DEPDC1B, SATB2, and S100P were detected in lung cancer tissues

and adjacent normal tissue of TCGA-LUAD patients, but

expression of FGD3 was observed to be lower. Further validation

of qRT-PCR in vitro experiment showed that DEPDC1Bwas higher
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and FGD3 was lower in LUAD tissues. However, SATB2 was found

lower in LUAD tissues, and there was no statistically significance of

PCDH7 and S100P between the two groups, which may be

explained by the small sample volume and large individual

differences. A relatively limited number of studies have focused

on these genes and LUAD; therefore, more studies are necessary.

The five-gene signature plays a crucial role in LUAD prognosis

prediction and may be useful in identifying potential mechanisms.

To provide an understanding of the potential molecular

mechanisms and identify new therapeutic targets, we found that

the signaling pathways were primarily focused on hematopoietic

cell lineage, arachidonic acid metabolism, amoebiasis, complement

and coagulation cascades, and linoleic acid metabolism. Hence, a

comprehensive immune infiltration analysis was conducted. The

infiltration scores of most tumor-infiltrating immune cells were

lower for high-risk patients. Considering the relationship between

the ERS and the immune processes, we analyzed the expression of

immunotherapy response indicators further. All immunotherapy

response biomarkers exhibited reduced expression in the high-risk

group, which may indicate a poor immunotherapy response for

ERS. Moreover, the high-risk patients exhibited a higher tumor

mutation burden and treatment sensitivity to a variety of

chemotherapeutic agents, such as docetaxel, doxorubicin,

etoposide, gemcitabine, linsitinib, paclitaxel, pazopanib,

rapamycin, sorafenib, and tipifarnib.

Based on these results, the ERS could independently predict the

prognosis for LUAD patients and is associated with immune

infiltration. However, this study had some shortcomings. First,

there are limited data regarding EGFR-TKIs in the GEO datasets;
B C
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FIGURE 10

External validation of the ERS in the GSE30219, GSE11969 and GSE72094 datasets. (A–C) The Kaplan-Meier survival analysis of LUAD patients in
the two risk groups divided by the ERS in the datasets of GSE30219 (A), GSE11969 (B), and GSE72094 (C). (D–F) The ROC curves of the ERS for
predicting the 1-, 3- and 5-year survival in the datasets of GSE30219 (D), GSE11969 (E), and GSE72094 (F).
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therefore, it is difficult to screen EGFR-TKI resistance-related genes.

More studies of resistance tovariousEGFR-TKIs areneeded. Second,

weonlypreliminarily explored thepossiblemolecularmechanismsof

the risk score and its association with immune infiltration. More

research is required to validate particular mechanisms.

Conclusions

This was the first study to demonstrate the expression profiles

and potential clinical relevance of EGFR-TKI resistance-related

genes in LUAD patients. We also constructed and validated a risk

model for predicting poor outcomes and explored associations with

immune cells in LUAD patients. These findings may improve

disease management in clinical practice and enable optimized

immunotherapy for LUAD patients.
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FIGURE 11

The gene expression levels of ERS (FGD3, PCDH7, DEPDC1B, SATB2, and S100P) in normal and LUAD tissues. (A) The gene expression level
analyses of ERS in normal and LUAD tissues of TCGA-LUAD cohort. (B) The survival rate analyses of ERS in TCGA-LUAD patients. (C) The gene
expression level analyses of ERS in paired lung cancer tissue and adjacent normal tissue of TCGA-LUAD cohort. (D) Relative mRNA expression
levels of ERS in normal and LUAD tissues through qRT-PCR analysis (*P<0.05, **P<0.01, and ***P<0.001). (E–I) Representative
Immunohistochemistry images of ERS in normal lung tissue and LUAD tissue from the HPA database.
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