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Risk prediction of pancreatic
cancer using AI analysis of
pancreatic subregions in
computed tomography images
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Early detection of Pancreatic Ductal Adenocarcinoma (PDAC) is complicated as

PDAC remains asymptomatic until cancer advances to late stages when

treatment is mostly ineffective. Stratifying the risk of developing PDAC can

improve early detection as subsequent screening of high-risk individuals

through specialized surveillance systems reduces the chance of misdiagnosis

at the initial stage of cancer. Risk stratification is however challenging as PDAC

lacks specific predictive biomarkers. Studies reported that the pancreas

undergoes local morphological changes in response to underlying biological

evolution associated with PDAC development. Accurate identification of these

changes can help stratify the risk of PDAC. In this retrospective study, an

extensive radiomic analysis of the precancerous pancreatic subregions was

performed using abdominal Computed Tomography (CT) scans. The analysis

was performed using 324 pancreatic subregions identified in 108 contrast-

enhanced abdominal CT scans with equal proportion from healthy control,

pre-diagnostic, and diagnostic groups. In a pairwise feature analysis, several

textural features were found potentially predictive of PDAC. Amachine learning

classifier was then trained to perform risk prediction of PDAC by automatically

classifying the CT scans into healthy control (low-risk) and pre-diagnostic

(high-risk) classes and specifying the subregion(s) likely to develop a tumor. The

proposed model was trained on CT scans frommultiple phases. Whereas using

42 CT scans from the venous phase, model validation was performed which

resulted in ~89.3% classification accuracy on average, with sensitivity and

specificity reaching 86% and 93%, respectively, for predicting the

development of PDAC (i.e., high-risk). To our knowledge, this is the first

model that unveiled microlevel precancerous changes across pancreatic
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2022.1007990/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1007990/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1007990/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1007990/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.1007990&domain=pdf&date_stamp=2022-11-09
mailto:Debiao.Li@cshs.org
mailto:Sehrish.Javed@cshs.org
https://doi.org/10.3389/fonc.2022.1007990
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.1007990
https://www.frontiersin.org/journals/oncology


Javed et al. 10.3389/fonc.2022.1007990

Frontiers in Oncology
subregions and quantified the risk of developing PDAC. The model

demonstrated improved prediction by 3.3% in comparison to the state-of-

the-art method that considers the global (whole pancreas) features for

PDAC prediction.
KEYWORDS
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Introduction

Pancreatic Ductal Adenocarcinoma (PDAC) is a lethal

cancer that accounts for more than 90% of pancreatic cancer

incidences (1–3). At present, PDAC is the 4th key cause of

cancer-related deaths (1, 4, 5), with a high expectancy to become

the 2nd most by 2030, in both males and females (4, 6, 7). The

American Cancer Society anticipates 62, 210 new incidences,

and 49, 830 deaths, related to PDAC for the year 2022 in the US

(8). The PDAC mostly remains subclinical in the initial stages

but progresses rapidly once established. Resultantly, in more

than 80% of the cases, cancer has already progressed to later

stages by the time of diagnosis (9–12). The negative margin (R0)

resection of the PDAC promises long-term survival which is

only possible when the cancer is identified at its earliest stages.

Treatment, whether surgical or non-surgical, initiated at later

stages of the PDAC is associated with poor survival benefits.

Although the current overall five-year survival rate of PDAC is

barely 11.5%, recent research suggests that detecting PDAC in

the earliest stage can increase the survival rate up to 50% (1,

13, 14).

Risk prediction of the PDAC assists in improving the

chances of diagnosis at an early stage as follow-up surveillance

of high-risk individuals on a regular basis would allow early

intervention reducing the chance of missing the initial stages of

the disease (15–17). However, since the conventional predictive

biomarkers of PDAC lack specificity, risk prediction is

challenging. Further, signs and symptoms of pancreatic cancer

are either absent or are nonspecific as these are associated with

several different diseases (2, 15–18). Factors including the

complex location and variability of the pancreas may underlie,

in part, the difficulty with an early diagnosis with imaging.

The pancreas undergoes several morphological changes, both

locally (e.g., subregional variations) and globally (alterations to the

whole pancreas), during the development of PDAC (1, 2).

Empirical observations associate PDAC with several

preconditioning disorders that usually lead to such

morphological and textural changes in the pancreas. For

example, complications including IPMN pancreatic tumors (19),

distal parenchymal atrophy (20), and pancreatolithiasis
02
(intraductal calculi) (21) gradually increase the heterogeneity of

the pancreatic tissue and can potentially be used as a noninvasive

risk predictor. Other deformations may include shape and size

variations in the pancreas that are consistently associated with

ductal dilation (22) and inflammation (23) in the pancreas.

However, studies reported that these alterations can be highly

subtle and unique to each pancreatic subregion (the term

pancreatic subregion and subregion are used interchangeably).

For instance, tumor histology differs across pancreatic subregions

(i.e., head, body, and tail) (24, 25) which causes spatial

heterogeneity within the pancreas. Also, most of these micro-

level variations are difficult to comprehend by visual assessment of

abdominal imaging and require computer-based quantification.

AI is the primary choice to perform image-based extensive

analysis of such minute alterations and identify potential risk

predictors for disease (4, 26, 27). AI systems, as opposed

to manual approaches, execute complex tasks without

interruption and ensure highly accurate and precise outcomes.

In the domain of automated processing and analysis of medical

images, AI offers numerous techniques and tools to extract

accurate measurements from different structures, identify

nonlinear features, and evaluate tissue properties. For

prediction modeling, radiomic analysis (28, 29), and machine

and deep learning (26, 27, 30) are regarded as the most reliable

and common AI approaches.

In our recently published work (31), risk prediction of

PDAC was performed using AI analysis of the global features

of the pancreas. However, since the morphology of the pancreas

was assessed “as a whole”, it remained unknown whether the

identified precancerous changes (predictors) were merely the

manifestation of local changes that occurred in a specific

subregion (presumably where the tumor developed) or all

subregions simultaneously adopted such changes.

In this extended study, we thoroughly examined the

precursory changes taking place across pancreatic subregions

during cancer development and characterized the pancreas that

is likely to develop PDAC. A rigorous radiomic analysis of

morphological and textural features of three pancreatic

subregions (head, body, tail) in the pre-diagnostic abdominal

CT scans was performed to identify the features potentially
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predictive of cancer. Subsequently, a machine learning model

was developed that performs risk prediction by automatically

classifying the abdominal CT scans into the pre-diagnostic

(pancreas at high-risk for cancer) and healthy control

(pancreas at low risk for cancer) groups and specifying the

subregion of the pancreas that is expected to develop most part

of the tumor than its neighboring subregions. To our knowledge,

it is the first proposed model to perform the prediction of PDAC

based on the subregional analysis of the pancreas. The model

remained stable throughout the analysis and outperformed our

previous model. The results are promising and encouraging and

further validation with a much larger dataset is warranted.
Materials

CT imaging for PDAC Diagnosis

Of many imaging modalities, CT plays an important role in

the screening for early detection of PDAC. During the initial

evaluation of subjects with suspected PDAC, the abdominal

CT examination is the common choice to seek primary and

secondary signs of cancer. Two institutes, the Cedars-Sinai

Medical Center (CSMC) and the Kaiser Permanente Southern

California (KPSC) in Los Angeles, collaborated in the

proposed study and provided eligible CT scans for

analysis. All CT scans were anonymized before transferring to

the host institute CSMS. No informed consent was required as

the study design is retrospective.
Datasets for the analysis

The data obtained for the study consisted of contrast-

enhanced abdominal CT scans from Diagnostic, Pre

diagnostic, and Healthy controls groups. The diagnostic scan

belongs to the subject with biopsy confirmed PDAC and
Frontiers in Oncology 03
observable tumor on the CT scan. These patients do not have

any history of pancreatic tumor resection. The pre-diagnostic

scan was acquired for the same subject, as in the diagnostic class,

6 months to 3 years before their PDAC was diagnosed. No

primary or secondary signs of PDAC were present at the time

the pre-diagnostic scan was acquired. The healthy control scan

was obtained for a different subject having healthy (‘normal’)

pancreas with no history of any pancreatic disorders. The gender

and age of each subject in the healthy control class and the year

their scan was acquired match those of exactly one unique

subject in the pre-diagnostic class to reduce instrumental and

morphologic differences, respectively. No subject in the healthy

control class developed PDAC within the next 36 months of

their scan. The data design of the study is shown in Figure 1.

The two institutes obtained 108 CT scans from 72 subjects

and were divided into Internal and External datasets. The former

consists of 66 scans (22 from each of the three groups) and the

latter consists of 42 scans (14 from each of the three groups)

from 44 and 28 subjects at CSMC and KPSC respectively. Also,

58 scans (19 diagnostic, 17 pre-diagnostic, 22 healthy control) in

the internal dataset and all 42 scans in the external dataset were

venous phase images, whereas the rest of 8 scans in the internal

dataset belong to multiple phases such as arterial, venous, and

connecting phases. The external dataset was used for external

validation of the proposed prediction model. Table 1 provides

the split of both internal and external dataset.
Data reference labeling
and preprocessing

For precise measurements of pancreatic features, accurate

delineation of the pancreas and the subregions is a prerequisite.

The anatomy of the pancreas is complex and requires

considerable attention and skills during outlining the pancreas

and its subregions. The general shape of the pancreas resembles

a hockey stick (J-shaped) structure. On the axial view of an
FIGURE 1

Proposed design of the data for the study. Each case in the dataset consists of three types of abdominal CT scans: Healthy control, Pre-
diagnostic, and Diagnostic. The Pre-diagnostic and Diagnostic scans were obtained from the same patient.
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abdominal CT, the pancreas lies across the posterior abdomen.

Anatomical subregions of the pancreas consist of the head, body,

and tail that appear in the left-to-right order on the axial view of

the CT. The head is the expanded medial part lying at the

duodenum curve and is attached to the body subregion that

connects to a tapered tail subregion. The anteroposterior

diameter and the length of the pancreas usually lie between 1

to 3 and 12 to 15 centimeters (32) with the head, body, and tail

covering 40%, 33%, and 26% portion of the whole

pancreas respectively.

Two experienced radiologists at CSMC manually outlined

the boundary of the pancreas and three subregions in all 108

scans using the commercial software ITK-Snap (33). To avoid

any prejudgment, findings or information attached to the scans

from previous assessments were removed before labeling. A

three-step labeling process was performed to ensure labeling

consensus. In the first labeling phase, the two readers

independently specified the boundary of the whole pancreas

and subregions in all scans to limit the inter-reader variability,

resulting in 85.4% labeling consistency. In the second phase,

both readers were allowed to evaluate each other’s labels and

update their original labels which resulted in 97% labeling

overlap. Lastly, the 3% labeling conflict in the updated label

sets was discussed and resolved with mutual agreement of

both graders.
Frontiers in Oncology 04
In each diagnostic scan, the readers also specified the

subregion that contained the greatest amount of pancreatic

tumor. This helped grade the subregions in the corresponding

pre-diagnostic scans into high-risk and low-risk classes. For

instance, if most parts of the tumor were observed in the ‘head’

subregion of the pancreas in a diagnostic scan, then the ‘head’

subregion in the corresponding pre-diagnostic scan was graded

as a high-risk subregion, whereas the rest of the neighboring

subregions in the same pre-diagnostic scan were graded as low-

risk subregions, as given in Figure 2. Multiple subregions were

graded as high-risk in the same pre-diagnostic scan if the tumor

was observed in more than one subregion in the corresponding

diagnostic scan. Note that all subregions in the healthy control

scans were graded as low-risk subregions. Moreover, from 132

subregions in 44 CT scans (22 healthy control, 22 pre-

diagnostic) of the internal dataset, the grading identified a

total of 66 and 44 low-risk subregions in healthy control and

pre-diagnostic scans respectively, and 22 high-risk subregions in

pre-diagnostic scans. For 84 subregions from 28 CT scans (14

healthy control, 14 pre-diagnostic) of the external dataset, the

grading identified 42 and 28 low-risk subregions in healthy

control and pre-diagnostic scans respectively, and 14 high-risk

subregions in pre-diagnostic scans. Furthermore, the pancreas

‘as a whole’ was graded as low-risk and high-risk in healthy

control and pre-diagnostic groups respectively.
FIGURE 2

Pictorial description of specifying grades to subregions in pre-diagnostic scans. Tumor is observed in head subregion of diagnostic scans, and
so the corresponding head subregion in pre-diagnostic scan is marked ‘high risk’, whereas the rest of subregions are marked ‘low risk’.
TABLE 1 The table provides the split of the total 108 CT scans used in the study.

Healthy Control scans Pre-diagnostic scans Diagnostic scans Total scans Number of subjects

Internal dataset 22 scans (20 Venous,
2 Arterial)

22 scans (20 Venous, 2 Arterial) 22 scans (18 Venous,
4 Arterial)

66 44

External dataset 14 Venous scans 14 Venous scans 14 Venous scans 42 28
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Each of the 108 scans has 16-bit depth and a slice resolution

of 512 by 512 (along the x- and y-axis) and variable z-axis. No

preprocessing was performed on any of the scans except the

signal intensities in each scan were scaled between 0 and 1.
Methods

Risk prediction modeling was carried out by thoroughly

examining the morphology and the texture of the precancerous

subregions to seek predictive features, followed by utilizing these

features in a machine learning classifier to automatically

characterize the pancreas and subregions into high-risk and

low-risk classes for PDAC. The methodology is explained below.
Radiomic analysis of
pancreatic subregions

A large amount of radiomic features were obtained from

each of 194 subregions in 66 CT scans (22 healthy control, 22

pre-diagnostic, 22 diagnostic) of the internal dataset, i.e., three

sets of features – one for each of the three groups, whereas each

set consists of three subsets: one for each of three subregions.

Each feature in the set expressed a unique quantifiable property

of a subregion that provided information about the spatial

relationship of neighboring voxels in predefined proximity

(29). To calculate a numerical value for each feature, signal

intensities of all 3D pixels specified within a volumetric

subregion (all slices) of a scan were considered.

An important aspect of radiomic analysis is to consider the

variations in a radiomic feature determined by the three

parameters that include the Kernel size, the Angle, and the Bin

size (29). Different combinations of these parameters influence

the entire analyzation to a high extent. The kernel is the square

convolution matrix that specifies the area (proximity) A

surrounding a voxel x, for which the spatial relationships are

calculated with its neighbors lying within area A. The Angle

specifies the directions when calculating associations of x with its

neighbors within the area A. The Bin size was the number used

to discretize the continuous values of voxels in the CT image into

their counter parts equal bins to avoid considering two pixels

(having too-close signal intensities) any different. Each radiomic

feature represented one of the major characteristics of a

subregion that includes shape, size, texture, and signal

intensity using a unique mathematical expression. Common

types of radiomic features considered include first-order

statistics (e.g., kurtosis, coefficient of variation, entropy) and

higher-order statistics (e.g., contrast, homogeneity, coarseness).

With different combinations of three parameters, around 4000

radiomic features from each of 194 subregions were extracted by

considering the whole subregion as a single ‘region of interest’.
Frontiers in Oncology 05
Using the 132 subregions in 44 CT scans (22 healthy control,

22 pre-diagnostic) in the internal dataset, a pairwise feature

comparison between the corresponding subregions (i.e., head-

to-head, body-to-body, tail-to-tail) was performed to identify the

features that were significantly different between high-risk and

low-risk subregions. For example, the extracted features from all

low-risk head subregions in the internal dataset were compared

with the same set of features extracted from all high-risk head

subregions in the internal dataset. About 3.5% of the extracted

features showed significance (found potentially predictive) at a

p-value of 0.05 in the statistical t-tests—supporting the core

hypothesis about the presence of precancerous changes

occurring locally within the subregions undergoing tumor

development. Note that the only purpose of considering the

features extracted from the 66 subregions in 22 CT diagnostic

scans in the internal dataset during the analysis was to help sub-

selecting the predictive features that are highly stable and do not

become insignificant when pre-diagnostic and diagnostic scans

are mixed.
Risk prediction of PDAC

The significant features (predictors) identified through the

subregional analysis were used to perform automated risk

prediction of PDAC by classifying the pancreas into either

low-risk or high-risk categories. The criteria set to perform

binary classification was to mark the pancreas as low-risk if

none of its subregions was classified as high-risk, whereas the

pancreas was marked as high-risk, if at least one of its subregions

was classified as high-risk. A misclassification is counted if a) the

classifier marks one or more subregions as high-risk in a healthy

control scan, or b) the classifier identifies a high-risk subregion

as low-risk in the pre-diagnostic scan or vice versa.

The Naïve Bayes (NB) model was trained for binary

classification in conjunction with the Recursive Feature

Elimination (RFE) (34, 35) method in which the RFE method

eliminated the weak features using different combinations of

identified predictors while maximizing the overall training

accuracy based on the given classification criteria. Of note,

the RFE was prespecified to select up to the seven best features

to avoid overfitting the NB classifier. The NB-RFE identified

seven features (Long-run low grey-level emphasis, Gaussian

left polar, Inverse gaussian left polar, Inverse cluster shade,

Inverse cluster prominence, Inverse cluster tendency, Short-

run low grey-level emphasis) as the best predictors for the

classifier to get the maximum classification accuracy during

training the model on all the 44 CT scans (132 subregions) of

the internal dataset. The external validation of the trained

model was then performed using 24 CT scans (84 subregions)

of the external dataset. An overview of the prediction process is

provided in Figure 3.
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Results

Model performance was evaluated in terms of classification

accuracy, sensitivity, and specificity. The classification accuracy

was calculated as the total number of correctly classified scans

(both healthy control and pre-diagnostic) to the total number of

scans input to the NB classifier. The sensitivity is the true

positive rate which refers to the total number of correctly

classified pre-diagnostic scans (high-risk pancreas) to the total

number of pre-diagnostic scans input to the NB classifier.

Whereas the specificity is the true negative rate which refers to

the total number of correctly classified healthy control scans

(low-risk pancreas) to the total number of healthy control scans

input to the NB classifier.

The mean classification accuracy achieved on the training

data (internal dataset) was 93% (41/44), i.e., the number of

correctly classified scans to the total number of scans observed.

The external validation of the classifier was performed using the

56 subregions in 28 scans (14 healthy control and 14 pre-

diagnostic) in the external dataset. The validation achieved the

mean classification accuracy of 89.3% (25/28), with the

sensitivity and specificity reaching 86% and 93% respectively,

as given in the confusion matrix Table 2.

Compared to the performance of our previous prediction

system (31) which produced 86% classification accuracy, the

proposed model demonstrated improved accuracy by 3.3%.

Also, it was empirically observed that the inter-variability

between the features extracted from corresponding ‘low-risk’

subregions identified in healthy control and pre-diagnostic scans

was significantly low at a p-value of 0.05. This supports our
Frontiers in Oncology 06
primary hypothesis that the precancerous changes predominately

occur locally and are specific to the subregion within which the

tumor is likely developing. Also, the 95% confidence interval (CI)

achieved in the current study is 78-100, showing modest

improvement on the lower bound of the CI obtained in the

previous study (i.e., 73-99). Further improvement in the current

CI was possible if the model training was not enforced to use a

fixed limited number of predictors to avoid model overfitting.

Moreover, the radiomic analysis infers that it is essentially

the texture of the pancreas that changes locally and appears

abnormal on a CT scan during cancer development. These

textural changes are the possible indication of the stage the

underlying healthy cells are transitioning into tumor cells (e.g.,

the tumorous region turns more hypointense than the non-

tumorous peripheral region on a CT image). Furthermore, the

shape of the whole pancreas (in healthy and pre-diagnostic

scans) and subregions (belong to high-risk and low-risk

classes) was observed indifferent, partly because the shape of

the pancreas is highly irregular in general. However, the size of

the high-risk subregions was observed slightly higher than their

corresponding low-risk subregions, though not significantly

different to be considered a stable predictor.
Discussion

Clinical significance of PDAC prediction
using CT imaging

The Centers for Disease Control and Prevention reports that

7 million patients with abdominal pain visit to ER in the US each

year. These patients undergo CT examinations as per the

standard care protocol. The initial evaluation of these scans

assists clinicians to identify the underlying cause of abdominal

pain. Though the scans of majority of these patients do not

present any signs of cancer at this stage, some ultimately develop

PDAC in coming years. These pre-diagnostic scans, even with

no prominent signs of cancer, are clinically useful as these might

contain significant morphological signatures of early biological

adaptations associated with cancer. AI techniques can efficiently
TABLE 2 Confusion matrix for classification of 28 CT scans of the
external set consisting of 14 from each of Healthy control and Pre-
diagnostic group.

True Healthy True Pre-diagnostic

Predicted Healthy 13 2

Predicted Pre-diagnostic 1 12
Numbers in the orange blocks show true positives.
FIGURE 3

The major steps performed in the analysis and prediction process.
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assist in identifying these signs and forecasting cancer incidence

for the future. However, AI-based exploration of precancerous

signs is challenged by data scarcity as the PDAC has a low

prevalence. In this retrospective study, we examined the

quantitative difference of the CT-based features between pre-

diagnostic and healthy control scans. The study allowed

quantitative analysis of the subregional changes that occurred

in the precancerous or pre-symptomatic pancreas and helped

reduce limitations of low prevalence and low cancer yield in

prospective studies as half of the subjects have cancer.

The unique data structure designed for this study is the

foundation of the proposed prediction model as it allowed

examining precancerous changes retrospectively. Although the

overall prevalence of PDAC is significantly low, the percentage

of enrolled subjects who were at the preclinical stage was set to

50% to reduce the risk of class imbalance during model

development. Also, most of the literature considers that the

duration of 6-36 months between the pre-diagnostic and

diagnostic scan is a reasonable window to seek early signs.

Also, most of the scans used for mode training and testing are

portal venous phase. It is because tumors slowly uptake contrast

whereas the venous phase provides the optimal view of the tumor

edges and is thus considered the most valuable phase for PDAC

diagnosis. Also, viewing of the vasculature passing across or

alongside the pancreas is optimized in this phase. Changes

occurring to the vasculature during PDAC development can be

quantified and used as potential predictors. Nevertheless, other

phases also provide valuable information during PDAC screening

and treatment. For example, the arterial phase provides a unique

value when seeking lesions or during surgical treatment of PDAC

when the arteries are encased or distorted by the pancreatic tumor.

Thus, including multiphase scans in the model training helped

identify highly stable predictors to ensure the model is

sufficiently robust.

In accordance with the evidence provided, the proposed

research work assures the appropriate blend of imaging type,

feature analysis, and modeling techniques to address the

challenges of prediction and elevate the chances of cancer

diagnosis in the earliest stage. To our knowledge, it is the first

automated system developed that predicts the PDAC by

identifying early signs through analyzing the precancerous

irregularities occurring within pancreatic subregions using CT

scans. The proposed model not only demonstrated improved

prediction accuracy to existing models but also enabled the

system to identify subregions that are at higher risk of

developing tumors.
Significance of the subregional analysis

Several studies suggest that tumor development differs

across pancreatic subregions (Head:H , Body: B, Tail:T) in
Frontiers in Oncology 07
terms of histology, presentation, and symptoms (24, 25, 36–

39). For instance, tumors in the head are mostly non-

squamous, whereas the body and tail tumors are usually

squamous. This results in spatial heterogeneity and various

discrepancies across the pancreatic sub-regions; such as tumor

presentation (e.g., head tumors are usually well-differentiated

and less aggressive than those in body/tail), related symptoms

(head tumors: unexplained weight loss, body tumors: pain in

the upper abdomen, tail tumors: pain in the lower abdomen),

sensitivity to drugs (head tumors are highly responsive to

Gemcitabine regimen and less responsive to Fluorouracil

regimen, whereas the body and tail tumors are vice-versa),

and the different rates of incidence (H: 71%, B: 13%, T: 16%),

metastasis (H: 42%,B: 68%, T: 84%), %), 2-year survival (H:

44%, B: 27%, T: 27%), and resection (H: 17%,B: 4%, T: 7%) (24,

25, 36–39).

This study examined the subregional changes in the

precancerous pancreas and enabled automated identification of

subregions undergoing tumor development. Knowledge of the

location of likely tumor will not only alert clinicians/radiologists

to pay attention to certain regions of the pancreas to avoid

misdetection of PDAC at an early stage but also enhance the

overall management of PDAC by helping determine more

appropriate and effective treatment, improving forecasting of

the treatment outcome, planning better resection, and ultimately

increasing the overall survival rate.
Improvement to previous model

In our previous study (31), we proposed the first model for

risk prediction of PDAC using AI analysis of the morphology of

the ‘whole pancreas’. The current study has three major new

contributions which were not included in the previous study

(31): a) investigation performed to identify whether all three

subregions concurrently adopt precancerous changes, or the

changes are predominant (or only occur) in the subregion

where the tumor is likely developing, b) analysis performed to

identify new CT-based predictors and improved the prediction

(in terms of model accuracy), and c) trained the model to specify

the subregion that is at highest risk of developing most part of

the tumor or where the tumor will likely originate.
Study limitations and future work

Due to the low prevalence of PDAC, the eligible pre-

diagnostic CT scans were found rare in the data archives of

the CSMC and KPSC. Limited training data may have

increased the chance of overfi t t ing during model

development. Another limitation is the insufficiency of pre-

diagnostic CT scans of non-venous CT phases. Also, since the
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incidence of PDAC in the general population is fairly low, the

model specificity of 93% still requires further enhancement to

avoid too many false-positive cases. The aim of the study was to

present the proof of the concept which encourages the

collection of larger datasets including the information on

non-imaging factors associated with risk of PDAC from the

repositories of different institutes for substantial training and

validation of the proposed prediction model. With sufficient

data, the biological interpretation of predictive image features

and their correlation with genetics would be achievable. A

model trained on large data will improve model specificity and

will efficiently assist in future prospective research on detecting

PDAC at the initial stages.
Conclusion

The current study presented the findings of the AI analysis of

precancerous changes that occurred across three subregions of

the pancreas using pre-diagnostic abdominal CT scans. The

study concluded that the pancreas adopts textural changes

during PDAC development, predominantly within the

subregion undergoing tumor development, potentially

regarded as a ‘high-risk’ subregion. A first model was built

that performed risk quantification of PDAC using the

identified textural changes as potential predictors and

characterized the pancreas into ‘high risk’ and ‘low risk’ for

PDAC classes. The model also specified the subregion that is

likely to develop the tumor, which can potentially assist in

improving early diagnosis, treatment planning, forecasting

treatment outcome, and overall disease management. The

proposed model demonstrates a 3.3% improved prediction

when compared with the existing prediction model that

considers the global changes occurring in the whole pancreas

during PDAC development. The results of this preliminary

study are promising and encouraging to further validate the

model on a large dataset.
Frontiers in Oncology 08
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