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in clinical practice of NSCLC
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Department of Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, School of
Medicine, Tongji University, Shanghai, China
One of the most frequent distant metastases of lung cancer occurs in the brain.

The average natural survival duration for patients with lung cancer who have brain

metastases is about 1 to 2 months. Knowledge about brain metastases is currently

restricted since they are more difficult to acquire than other metastases. This

review begins with an analysis of the immune microenvironment of brain

metastases; focuses primarily on the functions of microglia, astrocytes, neurons,

and tumor-infiltrating lymphocytes in the microenvironment of brain metastases;

and offers an atlas of the immune microenvironment of brain metastases involving

significant cells. In an effort to give researchers new research ideas, the study also

briefly covers how immunotherapy for non-small cell lung cancer with brain

metastases is currently faring.
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1 Introduction

Lung cancer is the leading cause of cancer-related deaths worldwide. The majority of lung

cancers (85%) are non-small cell lung cancers (NSCLCs), which are typically found at an

advanced stage and have a dismal 5-year overall survival (OS) of 15%–21% (1). The greatest

worry in advanced NSCLC is metastasis, which is typically defined as a process in which

malignant cells migrate from the initial location to distant sites and indicates considerable

mortality and worse quality of life (2). The metastasis of NSCLC has complex organ-tropism

mechanisms, mainly involving the organs of the brain, liver, and bone (3). Due to the

challenges in obtaining the tissue, the field of brain metastasis (BM) is by far the least

explored of these sites. BM affects 15%–43% of lung cancer patients, with an OS of about 1–2

months for untreated individuals (4, 5). Systemic therapy such as chemotherapy and topical

medications such as surgical resection, whole-brain radiation therapy, and stereotactic

radiosurgery (SRS) are routinely performed, with limited improvement of OS for patients

(6). Immunotherapy provides insight into this dilemma.

The landscape of advanced NSCLC has changed dramatically as a result of the findings

from clinical trials like KEYNOTE-024 (7) and KEYNOTE-189 (8). However, the fact that
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the efficacy of therapeutic agents against BM was discouraging

excluded the enrollment of patients with BM in immune

checkpoint inhibitor (ICI) clinical trials, resulting in the blank of

NSCLC with BM in the ICI field. The impermeability of the blood–

brain barrier (BBB) and the complicated location of brain metastases

restrict the use of treatment medicines and put a cloud over BM

patients (9). The BBB, a structure peculiar to the central nervous

system (CNS) and made up of astrocytes, pericytes, and endothelial

cells with tight connections, protects the CNS from circulating toxins

and inflammation. The BBB has historically been assumed to be

difficult for therapeutic medicines with large molecular sizes and

limited solubility to pass, making them impossible to exhibit the anti-

tumor effect of these regimens in the CNS (10). However, more ICIs

have recently shown promise in the routine care of BM patients,

pointing to the possibility of a remote interaction between tumor cells

and the distinct tumor immune microenvironment (TIME) (11).

In this review, we will summarize the complex TIME in the brain

parenchyma and the evolving scenario of the application of ICIs in

BM patients to construct a comprehensive understanding of BM.
2 TIME and clinical practice

2.1 TIME

2.1.1 Microglia/BMDMs is the main immune
cells in the CNS

The CNS’s principal resident immune cell and the first line of

innate immunity, the microglia, is an essential part of the CNS (12).

Microglia, which are referred to as the “third element of the nervous

system”, are only produced from progenitors found in the yolk sac

and developed during the embryonic stage (13). Presenting

throughout the CNS, mainly the gray matter (14), these myeloid

lineage cells are estimated to constitute up to 5%–10% of the cellular

composition (15–17).

The CNS’s homeostasis and the growth of the brain are primarily

supported by microglia. Evidence from time-lapse recording

suggested that microglia might scan the brain parenchyma during

neuronal activation and play a role in synapse modulation (18, 19).

In addition, microglia participate in a variety of physiological

activities, including the removal of cellular waste and neurogenesis

(20, 21). Microglia typically undergo a transformation toward

an active phenotype in response to pathogens and cancerous cells

as part of their defensive function, allowing them to monitor the

microenvironment and keep an eye out for any potential disturbances

(22). Pro- and anti-inflammatory cytokines and chemokines are

usually released to modulate the scenario of infection or metastasis

foci as well (23).

However, bone marrow-derived macrophages (BMDMs) are

frequently recruited in the TIME of BM in addition to microglia

(24). It is challenging to distinguish between microglia and BMDMs

in part because there are few experimental methods and biomarkers

available. The advancement of technology gives us opportunities to

learn more in this area that have never existed before. Microglia is a

differentiated cell that can self-renew (25), while BMDMs replenish

through peripheral monocytosis (24). Under physiological settings,

microglia appear in a ramified resting status, but when activated, they
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transform into hypertrophic and finally ameboid active forms (14). In

contrast to microglia, BMDMs exhibit a roundish morphology while

quiescent and turn stretched and elongated in M2 phenotypes (26),

demonstrating the distinction. Microglia and BMDMs shared certain

similar markers, such as CD11b, ionized calcium-binding adaptor

molecule 1, CD68, and CX3C chemokine receptor 1, even though

distinct ontogenesis gave the two different physical characteristics

(27–30). The distinction between microglia and BMDMs is the

subject of more widespread debate. Among the inflammatory of T.

gondii, the analysis of mouse brain revealed that microglia were the

CD11b+/CD45low population, compared with the CD11b+/CD45high

for macrophage (31). More stable markers are urgently required due

to the volatility of CD45 expression after the injury or disease.

Transmembrane protein 119, which was not expressed in BMDMs,

was discovered by Bennett et al. using a fluorescence-activated cell

sorter in conjunction with RNA sequencing to identify microglia as a

stable and reliable marker (32). Using Ccr2RFP/+ mice, in which

monocytes infiltrating the brain are marked with a red fluorescent

protein (RFP) and presenting with the result that RFP+ monocytes

were negative for sialic acid-binding immunoglobulin-like lectin H

(Siglec-H), Konishi et al. confirmed that Siglec-H was unique to

microglia. Siglec-H, a transmembrane lectin, has also been discovered

as a marker for microglia from developmental to mature stages by

transcriptome analysis and immunohistochemistry (33, 34). All

microglia expressed green fluorescent protein (GFP), while only

approximately 5% of CNS-associated macrophages did, according

to research by Buttgereit et al. using Sall1 reporter mice (Sall1GFP/+).

This finding demonstrated that Sall1 was confined to microglia (35).

Other markers have also demonstrated the capacity to differentiate

between microglia and BMDMs such as CD49D/integrin subunit

alpha 4, a marker exclusive to tumor-infiltrating BMDMs (24).

However, it should be highlighted that knowledge of microglia and

BMDMs is still in its infancy, necessitating a deeper examination of

functional analysis in light of the complex situation.

Microglia/BMDMs are crucial to the CNS processes of metastasis,

dormancy, and relapse. Clarifying the relationship between microglia/

BMDMs and cancer cells is essential. BBB protects BM by acting as a

guard to maintain homeostasis. Numerous microglia have been seen

in the perivascular region, suggesting that they may be involved in the

BBB’s regulation (36). By using the purinergic receptor P2Y, G-

protein coupled, 12 (P2RY12) inhibitor clopidogrel, and P2RY12−/−

mice, Lou et al. confirmed that microglia could contribute to the

resealing of BBB and keep its integrity in a P2RY12-dependent

manner (37). Claudin-5 is initially expressed by microglia in order

to make contact with endothelial cells and preserve the BBB’s

integrity. Astrocytic end-feet are engulfed by activated microglia,

which also promote persistent inflammation and BBB damage (38).

Other pro-inflammatory cytokines including tumor necrosis factora
(TNF-a), interleukin-1b (IL-1b), and interleukin-6 (IL-6) are also

used by microglia to maintain the integrity of the BBB (39).

As the most prevalent tissue-resident macrophage, microglia/

BMDMs contribute to the preservation of the BBB as well as the

destruction of cancer cells and the growth of BM. The polarization

status of M1 microglia is characterized by secreting pro-inflammatory

cytokines such as IL-1b, TNF-a, inducible nitric oxide synthase, and
reactive oxygen species. M2-type microglia promote tumor growth

and are activated by interleukin-4, interleukin-10, and transforming
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growth factor-b (40). The cytokines secreted by the different states of

microglia/BMDMs played the opposite effect. This field needs to be

further explored as well.

2.1.2 Astrocyte play a bidirectional role in
patients with BM

The largest and most prevalent cell type is the astrocyte, a star-

shaped neuroglia that has five times as many cells as neurons. Recent

research has demonstrated that the function of nearby neurons is

matched by the astrocytes, which occur in intraregional heterogeneity

(41, 42). Astrocytes perform a number of crucial tasks, such as ion

homeostasis, neurotransmitter recovery, synapse formation, and BBB

modulation, due to their diverse physiological activities and

ubiquitous nature. Astrocytes cause morphological and

transcriptomic alterations and turn into reactive astrocytes (RAs) in

response to a stimuli, such as a disease or injury (43). RAs are

traditionally characterized by high glial fibrillary acidic protein (44).

Technology advancements have made it possible to define the status

of RAs using cutting-edge methods like transcriptome analysis, and

studies reveal that complex functional alterations occur in RAs across

various disease models (45).

At the beginning of metastasis, astrocytes had the ability to cause

Fas-dependent death in brain-tropic cells (46). However, it should be

noted that RAs succumb to tumor progression because of the

paracrine cytokine communication loops between them and cancer

cells, which create a pro-tumorigenic environment. Seike et al. carried

out co-culture studies based on the aforementioned theory,

confirming the reciprocal connection between lung cancer cells and

astrocytes. The researchers discovered that substances targeting

tumor cells, such as macrophage migration inhibitory factor,

interleukin-8, and plasminogen activator inhibitor-1, might activate

RAs. Additionally, RAs may emit cytokines like IL-6, TNF-a, and IL-

1b that may encourage the growth of cancer cells like PC-9, QG56,

and EBC-1, which are generated from human lung cancer (47). The

melanoma-to-brain metastasis evidenced the bidirectional signaling

in BM. The RAs reprogrammed by melanoma cells expressed

interleukin-23 to enhance the invasiveness of cancer cells, and

cancer cell-derived matrix metalloproteinase-2 affected the status of

astrocytes (48). In patient-derived xenografts of melanoma,

polyunsaturated fatty acids, such as amino acid and mead acid,

were found to be an RA-derived component to triggered

proliferator-activated receptor signaling, hence boosting the growth

of the tumor as well (49). Further analysis labeled a subpopulation of

RAs with signal transducer and activator of transcription 3 (STAT3),

providing the significant role of these RAs in BM. Additionally,

microglia and macrophages could interact with RAs with activated

STAT3 to create growth-promoting substances and prevent CD8+ T-

cell activation (50).

The direct contact between RAs and brain-tropic cells and the

pervasive communication through secreted substances play a part in

the TIME of BM. Gap junction intercellular communication (GJIC)

serves as a possible target and is crucial for preserving tissue

homeostasis. Through the GJIC, calcium (Ca2+), an ion involved in

homeostasis, is exchanged between RAs (51). Numerous

gliotransmitters are said to be released as a result of the Ca2+

signaling. Due to the fact that it causes DNA damage, it is thought

to be harmful to cancer cells (52). Lin et al. conducted co-culture
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experiments and found that the communication of Ca2+ between RAs

and tumor cells process the ability to determine the fate of BM. The

study suggested that direct physical contact rather than the factors

secreted by RAs play a role in the chemoresistance of tumor cells. The

proliferation and chemoresistance of melanoma to brain metastasis

cells were aided by RAs’ capacity to remove Ca2+ from tumor cells

(53). Additionally, recent studies proved that protocadherin 7

(PCDH7) expressed by breast and lung cancer cells could promote

the carcinoma–astrocyte gap junction mediated by connexin 43

(Cx43). The gap junction, which sent the second messenger

cGAMP from the cancer towards the astrocytes, may be

substantially hampered by PCDH7 downregulation. Activating the

STING pathway by cGAMP enables astrocytes to express

inflammatory factors such as TNF-a and interferon-a .
Consequently, STAT1 and NF-kB pathways are activated in

metastatic cells to support their proliferation and chemoresistance

(54). All the above evidence suggested that GJIC between RAs and

malignant cells possess the ability to regulate and rebuild the TIME

of BM.

As a result of a number of discoveries, it is clear that RAs play a

crucial role in BM by interacting in a variety of ways and serving as a

necessary part of the CNS. Malignant brain-tropic cells have taken

control of RAs, making them no longer passive spectators. Research is

still needed to fully understand the intricate structure of the

BM microenvironment.

2.1.3 Neuron is hijacked by tumor cells in BM
As highly specialized cells, the role of neurons in the CNS

structure and function has been appreciated for a long time (55,

56). Neuron is the most important cell that processes high plasticity; it

exerts functions such as action understanding, empathy, imitation,

intention understanding, and language development in the CNS (57–

59). Although extensive study has been done on the examination of

neurons, it is still unclear how much function neurons have in BM.

Classical electrochemical communication is frequently mediated

by neural chemicals released by neurons, such as neurotransmitters

and neuropeptides (60). However, as revealed by recent studies,

cancer-infected neurons operate as both a hub for information

transmission and a driver of tumor growth and development (61,

62). The study by Deshpande et al. focused on the tumor–neuron

interaction at the initial state of metastasis. By co-culturing neurons

with breast and lung cancer cells, they tried to mimic the potential

interaction between brain-seeking tumor cells and neurons and

survey the induction of neurotransmitter and synaptic signaling. It

was shown that neurons could cause the overexpression of

neurotransmitters in tumors by observing the activation of genes

for classical neurotransmitter receptors and neuronal synaptic

mediators in tumors (63). The interaction between tumor and

neurons allows one to target cancer in a neuron-dependent way.

Cordero et al. engineered human neural stem cells LM008, which

could continuously secrete functional antibodies against HER2 (anti-

HER2Ab). By inducing similar effects to trastuzumab in HER2+

overexpressing breast cancer brain metastases (BCBM) models, the

LM008 showed the ability to inhibit the proliferation of BCBM in the

PI3K-Akt signaling pathway (64).

Additionally, a study of resected breast to brain metastasis

(B2BM) specimens revealed a GABAergic phenotype comparable to
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neurons, which suggested that tumor cells escape their genetic

restraints and are prepared for the microenvironment in the BM

(65). As more is learned, the direct synapses between neurons and

cancer cells aroused curiosity among scientists. According to Zeng

et al., B2BM can construct pseudo-tripartite synapses with

glutamatergic neurons, using the glutamate released by neurons to

stimulate colony development via GluN2B-mediated N-methyl-D-

aspartate receptors (NMDARs) (66). They demonstrated that

NMDARs, a receptor involved in the transmission of nerve

impulses, were upregulated on the cell membranes of B2BM as well

(66). Additionally, as presented by Venkataramani et al.,

glutamatergic synapse also exerted its function in gliomas. Contrary

to B2BM, malignant cell activity is promoted by the connections

between presynaptic neurons and postsynaptic glioma cells via

glutamate-mediated AMPA receptors (67). According to the studies

mentioned above, BM may act like neurons to create connections in

the CNS that will support the growth of that region. The findings

show a bidirectional link between them and suggest that these

signaling axes could one day lead to promising treatment options

for BM.

2.1.4 Tumor-infiltrating lymphocytes are the
atypical cells in the BM

Lymphocytes, which develop from bone marrow stem cells, often

serve as barriers against the invasion of various immune system

disorders in the periphery (68). Regarding the CNS, the distinctive

BBB structure restricts lymphocyte permeation and patrolling to, in

the majority of cases, prevent additional damage to the CNS

parenchyma (69).

However, with the impairment of the BBB’s integrity resulting

from the malignant cell, lymphocytes could be recruited to the CNS

and play bidirectional functions, which refers to restricting the

metastasis of cancer cells or causing an inflammation in the brain

parenchyma (70, 71). Fully understanding the complete scenario of

CNS after the influx of lymphocytes caused by BM may yield an even

more pronounced effect on developing new therapeutic

regimens (72).

The presentation of TILs in the BM is sophisticated, in which

the percentage and composition of tumor-infiltrating lymphocyte (TIL)

subtypes vary a lo t (73 ) . Berghoff e t a l . conduc ted

immunohistochemistry for biomarkers in the 116 BM specimens (61

from NSCLC BM). The findings demonstrated that the majority of

samples exhibited infiltration of CD8+ TILs and dense CD3+ TILs,

which suggested a potential successful TIME for immunotherapy;

26.2% of NSCLC specimens also had PD1+ TIL infiltration (74). TIL

comparisons between BM and primary tumors revealed more data. In

order to assess the expression of programmed death-ligand 1 (PD-L1),

the profile of important T-cell subsets, activation and proliferation

indicators, and coinhibitory receptors in lung and brain metastases, Lu

et al. employed multiplexed quantitative immunofluorescence. In

comparison to the main tumor, BM tissue displayed decreased levels

of granzyme B, a marker for the efficiency of T cells, as well as CD3+,

CD4+, CD8+, and FOXP3+ TILs. In addition, BM showed decreased

amounts of T-cell immunoglobulin and mucin domain-containing

protein 3, programmed death 1 (PD-1), and lymphocyte-activation

gene 3 in CD3+ T cells (75).
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2.1.5 Others
Other BM cel ls presented in TIME of BM include

oligodendrocyte, fibroblast, pericytes, and endothelial cells. All the

above components play a unique role in BM’s development. Further

analysis is needed. The scenario of TIME in BM is generalized

in Figure 1.
2.2 Scenario of efficacy of ICIs in NSCLC
with BM

2.2.1 ICI monotherapy
KEYNOTE-024 was a phase III randomized clinical trial (RCT)

that showed the significant superiority of pembrolizumab in advanced

NSCLC with PD-L1 expression of at least 50% (7). The median OS

(mOS) and median progression-free survival (mPFS) in

pembrolizumab were 26.3 months and 7.7 months, compared with

13.4 months and 5.5 months in chemotherapy, respectively (76).

However, in the subgroup analysis of brain metastasis patients, which

includes 28 (9.2%) patients, the benefit of pembrolizumab was not

significant (7). Moreover, Mansfield et al. conducted a pooled analysis

of KEYNOTE-001, KEYNOTE-010, KEYNOTE-024, and

KEYNOTE-042, which explored the outcomes of pembrolizumab in

PD-L1-positive [tumor proportion score (TPS) ≥ 1%] NSCLC with

BM (77). Among the 293 (9.2%) patients with BM, pembrolizumab

showed a better OS and PFS in both TPS ≥ 1% [OS: hazard ratio (HR)

0.83 95% confidence interval (CI) 0.62–1.10; PFS: HR 0.96 95% CI

0.73–1.25) and TPS ≥ 50% (OS: HR 0.67 95% CI 0.44–1.02; PFS: HR

0.70 95% CI 0.47–1.03) subgroups, while the difference was not

significant as well. Another analysis exploring the efficacy of

pembrolizumab in patients with BM was conducted in a cohort of

melanoma and NSCLC (11). This prospective study enrolled 37

(88.1%) NSCLC patients with PD-L1 expression of at least 1%, of

whom the mPFS was 1.9 months (95% CI 1.8–3.7), and the mOS was

9.9 months (95% CI 7.5–29.8) (78).

Nivolumab, another anti-PD-1 antibody, yields similar results to

pembrolizumab. In the subgroup analysis of CheckMate-078, 72

(14.3%) patients presented with BM. The nivolumab group

containing 45 NSCLC experienced longer OS (HR 0.82 95% CI

0.62–1.10) (79). CheckMate-017, as well as CheckMate-057,

explored the efficacy of nivolumab in patients with treated

advanced NSCLC. With the success of both trials, nivolumab was

approved by Food and Drug Administration and recommended by

the National Comprehensive Cancer Network (80, 81). However, due

to the limited number of patients with BM included in both trials,

further analysis may conduct a large bias. Until recently, a pooled

study of CheckMate-017, CheckMate-057, and CheckMate-063 that

compared nivolumab with docetaxel showed that NSCLC with BM

benefited more from nivolumab (mOS: 8.4 versus 6.2 months HR not

mentioned) (82). The EMPOWER-Lung 1 trial examined the efficacy

and safety of cemiplimab in untreated advanced NSCLC with PD-L1

at least 50% and enrolled 68 (12.1%) patients with treated BM. The

analysis of mPFS (HR 0.45 95% CI 0.22–0.92) and mOS (HR 0.17 95%

CI 0.04–0.76) showed that patients benefited significantly from

cemiplimab, which showed more promising results to some

degree (83).
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The efficacy of atezolizumab in NSCLC with BM had been

evaluated in OAK and FIR trials. OAK was a phase III RCT that

explored the role of atezolizumab in previously treated advanced

NSCLC and further demonstrated the potential benefit. A total of 85

patients were included in the subgroup analysis of BM, with 38 (8.9%)

receiving atezolizumab, who yielded longer OS (20.1 vs. 11.9 months

HR 0.54 95% CI 0.31–0.94) (84). FIR was a phase II trial evaluating

atezolizumab, including 13 (9.4%) NSCLC presented with BM. The

results showed that the objective response rate (ORR) was 23%, mPFS

was 4.3 months, and mOS was 6.8 months in BM patients (85). The

specific information of trials mentioned above and other retrospective

studies (86–89) are presented in Table 1.

All the trials above suggest that although advanced NSCLC benefits

significantly from ICI monotherapy, the improvement of survival benefit

to BM patients from ICI monotherapy is still finite, presented with the

mPFS varying from 1.7 months to 4.9 months, and mOS varying from

20.1 months to 5.8 months. Further RCTs are needed to explore the

efficacy of ICI monotherapy in NSCLC with BM.

2.2.2 ICI combined with chemotherapy
Due to the slow onset of the anti-tumor immune response and the

limited efficacy of ICI monotherapy in NSCLC patients with BM, the

synergy effects between ICIs and chemotherapy aroused the interest
Frontiers in Oncology 05
of scientists. Many trials revealed that chemotherapy helps improve

the efficacy of immunotherapy for NSCLC patients with BMs.

KEYNOTE-189 revealed that advanced non-squamous NSCLC

benefits from adding pembrolizumab to chemotherapy in first-line

treatment, with an mPFS and mOS of 9.0 months and 22 months,

respectively (93). As for the BM subgroup, 73 (67.6%) patients were in

the ICI-based combination group, while 35 (32.4%) were in the

chemotherapy group, and significant prolonged PFS (6.9 vs. 4.7

months HR 0.42 95% CI 0.27–0.67) and OS (19.2 vs. 7.5 months

HR 0.41 95% CI 0.24–0.67) were observed, which suggested the

promising future for the combination of ICIs and chemotherapy

(111). The subgroup analysis of BM patients in KEYNOTE-407 was

not reported, which explored similar treatment regimes in advanced

squamous NSCLC (112). Because of the limited data on the efficacy of

pembrolizumab–chemotherapy for NSCLC with BM, Powell et al.

conducted a pooled analysis based on KEYNOTE-021, KEYNOTE-

189, and KEYNOTE-407. A total of 171 NSCLC patients with BM

were enrolled in this study, and the results were similar to

KEYNOTE-189 , which showed that p la t inum-double t

chemotherapy with the addition of pembrolizumab not only

prolonged the PFS (6.9 vs. 4.1 months, HR 0.44, 95% CI 0.31–0.62)

but also improved the OS (18.8 vs. 7.6 months, HR 0.48, 95% CI 0.32–

0.70) (95).
FIGURE 1

The scenario of TIME in BM. Microglia/BMDMs are the main macrophages in TIME of BM. Depending on the status of microglia/BMDMs, different cytokines
such as IL-1b, TNF-a, and VEGF are secreted to influence the development of tumors. Astrocytes play their role through the paracrine cytokine signaling
loops and direct contacts such as the PCDH7/Cx43 interaction. The tumor could also utilize the synapse between neuron and tumor to promote its
development. Other cells such as lymphocytes, oligodendrocytes, fibroblasts, pericytes, and endothelial cells also function in TIME. TIME, tumor immune
microenvironment; BM, brain metastasis; ITGA4, integrin subunit alpha 4; BMDM, bone marrow-derived macrophage; Siglec-H, sialic acid-binding
immunoglobulin-like lectin H; Tmem 119, transmembrane protein 119; P2RY12, purinergic receptor P2Y, G-protein coupled, 12; BBB, blood–brain barrier; IL-
1b, interleukin 1b; TNF-a, tumor necrosis factor a; iNOS, inducible nitric oxide synthase; ROS, reactive oxygen species; VEGF, vascular endothelial growth
factor; IL-6, interleukin 6; IL-8, interleukin 8; MIF, migration inhibitory factor; PAI-1, plasminogen activator inhibitor-1; MMP-2, matrix metalloproteinase-2;
PCDH7, protocadherin 7; Cx43, connexin 43; IL-23, interleukin 23; AA, amino acid; NMDARs, N-methyl-D-aspartate receptors; AMPARs, AMPA receptors.
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TABLE 1 Summary of ICI trials in NSCLC with BM.

Trial Study
type

Inclusion
criteria

Arms Overall patients NSCLC with BM

No. of
patients

Outcomes No. of
patients

Outcomes

ICI Monotherapy

KEYNOTE-024
(7, 76, 90)
(NCT02142738)

Phase III
RCT

Advanced
NSCLC with
PD-L1≥50%

Pembrolizumab
versus
Chemotherapy

154 versus
151

mPFS:7.7 m versus 5.5 m (HR
0.5, 95% CI 0.39–0.65);
mOS:26.3 m versus 13.4 m (HR
0.62, 95% CI 0.48–0.81)

18 versus
10

mPFS: HR 0.55; 95% CI 0.20–
1.56

Mansfield et al.
(77)

Pooled
analysis

PD-L1 ≥ 1%
advanced
NSCLC

Pembrolizumab
versus
chemotherapy

3,170 NR 293 mOS:13.4 m versus 10.3 m (HR
0.83, 95% CI 0.62–1.10);
mPFS:2.3 m versus 5.2 m (HR
0.96, 95% CI 0.73–1.25)

Goldberg et al.
(78)
(NCT02085070)

Phase II Advanced
NSCLC with
BM

Pembrolizumab NR NR 42 (cohort
1: n = 37
PD-L1 ≥

1%;cohort
2: n = 5
PD-L1 <
1%)

mPFS for cohort 1: 1.9 m (95%
CI 1.8–3.7); mOS for cohort 1:
9.9 m (95% CI 7.5–29.8); 29.7%
(95% CI 15.9–47.0) patients in
cohort 1 had a BM response; 1-
year OS was 40% (95% CI
30%–64%); 2-year OS was 34%
(95% CI 21%–54%).

CheckMate-078
(79)
(NCT02613507)

Phase III
RCT

Treated
advanced
NSCLC in the
Chinese
population

Nivolumab
versus docetaxel

338 versus
166

mOS:12.0 m versus 9.6 m (HR
0.68, 97.7% CI 0.52–0.90); ORR:
17% versus 4%

45 versus
27

mOS: HR 0.82, 95% CI 0.62–
1.10

Goldman et al.
(82)

Pooled
analysis

Checkmate-017
(80);
Checkmate-057
(81);
Checkmate-067
(91)

Nivolumab
versus docetaxel

427 versus
427a

mPFS: 2.5 m versus 3.5 m (HR
0.79, 95% CI 0.68–0.92); mOS:
11.1 m versus 8.1 m (HR 0.68,
95% CI 0.59–0.78); 5-year
pooled OS: 13.4% (95% CI 10.4–
16.9) versus 2.6% (95% CI 1.4–
4.5); 5-year PFS: 8.0% (95% CI
5.4–11.2) versus 0% (92)

46 versus
42

mOS:8.4 m (95% CI 4.99–11.6)
versus 6.2 m (95% CI 4.4–9.23)

EMPOWER-
Lung 1 (83)

Phase III
RCT

Advanced
NSCLC with
PD-L1 ≥ 50%

Cemiplimab
versus
chemotherapy

283 versus
280

mPFS:8.2 m versus 5.7 m (HR
0.54, 95% CI 0.43–0.68); mOS:
NR versus 14.2 m (HR 0.57,
95% CI 0.42–0.77)

34 versus
34

mPFS: HR 0.45, 95% CI 0.22–
0.92; mOS: HR 0.17, 95% CI
0.04–0.76

OAK (84)
(NCT02008227)

Phase III
RCT

Treated
advanced
NSCLC

Atezolizumab
versus docetaxel

425 versus
425

mPFS: 2.8 m versus 4.0 m (HR
0.95, 95% CI 0.82–1.10);
mOS:13.8 m versus 9.6 m (HR
0.73, 95% CI 0.62–0.87)

38 versus
47

mOS:20.1 m versus 11.9 m (HR
0.54, 95% CI 0.31–0.94)

FIR (85)
(NCT01846416)

Phase II Advanced
NSCLC

Atezolizumab 138
(cohort 1
= 31;
cohort 2 =
93; cohort
3 = 13)

ORR: 32% versus 21% versus
23%; mPFS: 5.5 m versus 3.7 m
versus 4.3 m; mOS: 14.4 m
versus 9.3 m versus 6.8 m

13 ORR:23%; mPFS: 4.3 m; mOS:
6.8 m

Dudnik et al.
(86)

Retrospective
study

Advanced
NSCLC

Nivolumab 260 mOS: 5.9 m (95% CI 4.7–7.4) 55 mOS: 7.0 m (95% CI 4.7–10.8)

EAP (87) Retrospective
study

Advanced
treated
squamous
NSCLC

Nivolumab 371 mOS: 7.9 m (95% CI 6.2–9.6);
mPFS: 4.2 m (95% CI 3.4–5.0);
1-year OS 39%; 1-year PFS 27%

37 mOS: 5.8 m (95% CI 1.8–9.8);
mPFS: 4.9 m (95% CI 2.7–7.1);
1-year OS: 35%; 1-year PFS:
31%

EAP (88) Retrospective
study

Advanced
treated non-
squamous
NSCLC

Nivolumab 1,558 mOS: 11.3 m (95% CI 10.2–
12.4); mPFS: 3.0 m (95% CI
2.9–3.1); 1-year OS: 48%; 1-year
PFS: 22%

409 ORR: 17%; DCR: 39%; mOS:
8.6 m (95% CI 6.4–10.8); mPFS:
3.0 m (95% CI 2.3–3.3); 1-year
OS: 43%; 1-year PFS: 20%

Hendriks et al.
(89)

Retrospective
study

Advanced ICI-
treated NSCLC

PD1/PDL1
efficacy for BM
versus non-BM

255 versus
770

ORR: 20.6% versus 22.7% (p =
0.484); mPFS: 1.7 m (95% CI
1.5–2.1) versus 2.1 m (95% CI

255 ORR: 20.6%; mPFS: 1.7 m (95%
CI 1.5–2.1); mOS: 8.6 m (95%
CI 6.8–12.0)

(Continued)
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TABLE 1 Continued

Trial Study
type

Inclusion
criteria

Arms Overall patients NSCLC with BM

No. of
patients

Outcomes No. of
patients

Outcomes

1.9–2.5) (p = 0.009); mOS:
8.6 m (95% CI 6.8–12.0) versus
11.4 m (95% CI 8.6–13.8) (p =
0.035)

ICI combined with chemotherapy

KEYNOTE-189
(8, 93, 94)
(NCT02578680)

Phase III
RCT

Advanced
untreated non-
squamous
NSCLC

Pembrolizumab
+ chemotherapy
versus placebo
+ chemotherapy

410 versus
106

mPFS: 9.0 m versus 4.9 m (HR
0.50, 95% CI 0.41–0.59); mOS:
22 m versus 10.6 m (HR 0.60,
95% CI 0.50–0.72)

73 versus
35

mPFS: 6.9 m versus 4.7 m (HR
0.42, 95% CI 0.27–0.67); mOS:
19.2 m versus 7.5 m (HR 0.41,
95% CI 0.24–0.67)

Powell et al.
(95)

Pooled
analysis

Advanced
untreated
NSCLC

Pembrolizumab
+ chemotherapy
versus placebo
+ chemotherapy

NR NR 105 versus
66

mPFS: 6.9 m versus 4.1 m (HR
0.44, 95% CI 0.31–0.62); mOS:
18.8 m versus 7.6 m (HR 0.48,
95% CI 0.32–0.70)

CameL (96)
(NCT03134872)

Phase III
RCT

Advanced
untreated non-
squamous
NSCLC

Camrelizumab
+ chemotherapy
versus
chemotherapy

205 versus
207

mPFS: 11.3 m versus 8.3 m (HR
0.60, 95% CI 0.45–0.79); mOS:
NRe versus 20.9 m (HR 0.73,
95% CI 0.53–1.02)

11 versus
6

PFS: HR 0.14, 95% CI 0.01–0.88

ORIENT-11
(97, 98)
(NCT03607539)

Phase III
RCT

Advanced
untreated non-
squamous
NSCLC

Sintilimab +
chemotherapy
versus
chemotherapy

266 versus
131

mPFS: 9.2 m versus 5.0 m (HR
0.49, 95% CI 0.38–0.63); mOS:
NR versus 16.8 m (HR 0.60,
95% CI 0.45–0.79)

36 versus
22

PFS: HR 0.49, 95% CI 0.26–
0.92; OS: HR 0.57, 95% CI
0.28–1.16

Jiang et al. (99)
(NCT03924050)

Phase II EGFR-TKI
treated
advanced
NSCLC with
no T790M
mutation

Toripalimab +
chemotherapy

40 mPFS: 7.0 m; mOS: 23.5 m;
ORR: 50.0%; DCR: 87.5%

6 PR: 66.7%

Atezo-Brain
(100)
(NCT03526900)

Phase II Chemotherapy-
naive stage IV
non-squamous
NSCLC with
untreated BM

Atezolizumab +
chemotherapy

NR NR 40 12-week PFS rate: 67.1%; iPFS:
7.1 m (95% CI 4.6–11.2); mPFS:
8.9 m (95% CI 6.7–12.9)

ICI combined with radiotherapy

Wong et al.
(101)
(NCT02978404)

Phase II NSCLC or
RCC with BM

Nivolumab +
SRS

26 NR 22 Median iPFS: 5.0 m; mPFS:
2.9 m; mOS: 14 m

Singh et al.
(102)

Retrospective
study

NSCLC with
BM receiving
SRS

ICIs + SRS
versus
chemotherapy +
SRS

NR NR 39 versus
46

mOS: 10 m versus 11.6 m (p =
0.23)

Minniti et al.
(103)

Retrospective
study

NSCL and
melanoma BM
receiving
postoperative
SRS

SRS + ICIs
versus SRS

63 versus
66

mOS: 24.8 m versus 14.7 m (p =
0.007); 1-year OS rate 78%
versus 58.7%; 2-year OS rate:
50% versus 22.8%; 1-year
extracranial PFS rates: 59%
versus 43%; 2-year extracranial
PFS rates: 39% versus 19%

27 versus
29

2-year OS and DBFb: 44% and
29%

Scoccianti et al.
(104)

Retrospective
study

NSCLC with
BM receiving
SRT

SRT + ICIs
versus SRT

NR NR 100 versus
50

SRT + ICIs: iLPFSc was 89.5%
and 83.9%; iDPFSd was 69.7%
and 55.2%; OS was 79.4% and
64.5% at 6 and 12 months

Enright et al.
(105)

Retrospective
study

NSCLC with
BM receiving
SRT

SRT + ICIs
versus SRT

NR NR 33 versus
44

2-year local control: 97% versus
86% (p = 0.046); 2-year DBF
was 38.6% versus 66.5% (p =
0.016); 1-year OS rate: 68%
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Several domestic regimes such as camrelizumab, sintilimab,

toripalimab, and tislelizumab achieve promising results nowadays.

Seventeen patients with BM were enrolled in CameL, a trial

comparing the efficacy of camrelizumab plus chemotherapy with

chemotherapy alone in previously untreated non-squamous NSCLC,

and the results showed that the ICI combination group benefits more

in PFS (HR 0.14, 95% CI 0.01–0.88) (96). ORIENT-11 obtained

similar results as well; advanced non-squamous NSCLC patients with

BM (58/397) benefited from sintilimab plus pemetrexed-platinum

more with a prolonged PFS (HR 0.49, 95% CI 0.26–0.92) and OS (HR

0.57, 95% CI 0.28–1.16), though the difference of OS was not

significant (97). However, for the squamous NSCLC, the subgroup

analysis of BM patients was not reported in both clinical trials

(CameL-sq and ORIENT-12) (113, 114). As for toripalimab and

tislelizumab, results for the untreated NSCLC with BM were not

reported yet. A phase II study exploring the toripalimab in EGFR-TKI

treated patients is presented in Table 1 (99).

Atezo-Brain was a single-arm phase II study reporting the efficacy

of atezolizumab, an anti-PD-L1 antibody, in untreated non-squamous

NSCLC patients with BM. A total of 40 patients were included, and

the systemic PFS and intracranial PFS (iPFS) were 8.9 months (95%

CI 6.7–12.9) and 7.1 months (95% CI 4.6–11.2), respectively (100).

The detailed information of trials is presented in Table 1.

2.2.3 ICI combined with radiotherapy
As the standard localized therapy for BM patients, radiotherapy

could relieve nervous symptoms quickly; thus, the combination of

radiotherapy and ICI possibly form the best alliance in clinical

practice. A phase II trial enrolling 22 (84.6%) NSCLC with BM

evaluated the efficacy and safety of the combination of nivolumab

and stereotactic brain radiosurgery. The results showed that upfront
Frontiers in Oncology 08
SRS during nivolumab in NSCLC was tolerated, and the median iPFS

and systematic PFS were 5 months and 2.9 months, respectively (101).

Singh et al. conducted a retrospective study assessing the local tumor

response and survival outcomes in advanced NSCLC between the

group of ICIs plus SRS versus chemotherapy plus SRS. Although the

OS and the safety between the two groups showed no significant

difference (10 vs. 11.6 months, p = 0.23), ICIs plus SRS presented with

a more significant lesion shrank (90% vs. 47.8%, p = 0.001) among the

subgroup of patients with brain lesions larger than 500 mm3 (102).

Minniti et al. conducted a similar study on NSCLC and melanoma

patients receiving postoperative SRS with or without ICIs. The

addition of ICIs to SRS significantly prolonged the OS and the PFS.

Except for the outcomes above, this study focused on controlling

leptomeningeal disease (LMD) and found that the combination

decreased the incidence of LMD (103). Compared with SRS,

stereotactic radiotherapy (SRT) showed its advantage in reducing

the occurrence of radiation necrosis. Two similar retrospective

analyses compared SRT plus ICIs versus SRT alone, and the results

showed that the combination group improved the OS and local

control with a safe profile (104, 105). The detailed information of

trials is presented in Table 1.

2.2.4 Others
Except for the therapies mentioned above, others, such as

multiple ICIs combination and anti-angiogenic agent combination,

have also been thought to produce synergistic effects to NSCLC

patients with BM. A post-hoc analysis focusing on the efficacy of

ICI therapy in patients with BM of CheckMate-227 revealed that

double-ICI regimens, nivolumab plus ipilimumab, worked well,

resulting in prolonged OS (18.8 vs. 13.7 months, HR 0.57, 95% CI

0.38-0.85) compared with chemotherapy (106). Another trial
TABLE 1 Continued

Trial Study
type

Inclusion
criteria

Arms Overall patients NSCLC with BM

No. of
patients

Outcomes No. of
patients

Outcomes

versus 64%; 2-year OS rate: 62%
versus 35%

Others

CheckMate-227
(106, 107)
(NCT02477826)

Phase III
RCT

Advanced
untreated
NSCLC

Nivolumab +
ipilimumab
versus
chemotherapy

583 versus
583

mOS: 17.1 m (95% CI 15.2–
19.9) versus 13.9 m (95% CI
12.2–15.1)

69 versus
66

mPFS: 5.4 m versus 5.8 m (HR
0.79, 95% CI 0.52–1.19); mOS:
18.8 m versus 13.7 m (HR 0.57,
95% CI 0.38–0.85)

CheckMate-
9LA (108, 109)
(NCT03215706)

Phase III
RCT

Advanced
untreated
NSCLC

Nivolumab +
ipilimumab +
chemotherapy
versus
chemotherapy

361 versus
358

mOS: 15.6 m versus 10.9 m (HR
0.66, 95% CI 0.55–0.80)

51 versus
50

mPFS: 10.6 m versus 4.1 m (HR
0.40, 95% CI 0.25–0.64); iPFS:
13.5 m versus 4.6 m (HR 0.36,
95% CI 0.22–0.60); mOS:
19.3 m versus 6.8 m (HR 0.43,
95% CI 0.27–0.67)

Chu et al. (110)
(NCT03628521)

Phase Ib Advanced
untreated
NSCLC

Sintilimab +
anlotinib

22 ORR: 72.7% (95% CI 49.8%–

89.3%); DCR: 100% (95% CI
84.6%–100%); mPFS: 15 m (95%
CI 8.3–NR)

4 PR: 3/4; SD: 1/4
aThe patients included in the outcome analysis of overall patients only pooled Checkmate-017 and Checkmate-057.
bDistant brain failure (DBF).
cIntracranial local progression-free survival (iLPFS).
dIntracranial distant progression-free survival (iDPFS).
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exploring the dual-ICI therapy was CheckMate-9LA. Different from

CheckMate-227, CheckMate-9LA compared the efficacy of

nivolumab plus ipilimumab and two-cycle chemotherapy with four-

cycle chemotherapy in advanced NSCLC (108). The results showed

that ICIs–chemotherapy has an advantage over chemotherapy alone

in the BM subgroup, presenting with a longer OS (19.3 vs. 6.8 months,

HR 0.43, 95% CI 0.27–0.67) and PFS (10.6 vs. 4.1 months, HR 0.40,

95% CI 0.25–0.64) (109). As for the combination of anti-angiogenic

regimes and ICIs, Chu et al. conducted a phase Ib study exploring the

efficacy and safety of sintilimab plus anlotinib in advanced NSCLC.

The trial enrolled 4 (18.2%) patients with BM, and 3/4 BM patients

achieved partial response (PR) (110). The promising results above

suggested the underlying value of multimodality ICI-based therapy in

NSCLC with BM. However, it should be noted that there is a long way

to go in this area. The detailed information of these trials is presented

in Table 1.
3 Discussion and prospects

Patients with BM from lung cancer have poor prognoses and few

therapy choices. Immunotherapy has entered a new era, and ICIs

have ushered in a new era of treatment for this subgroup. We will be

better able to comprehend the mechanism underlying the

effectiveness of immunotherapy when we fully mine the TIME

features of BM. The primary elements of the brain immune

microenvironment are microglia and BMDMS, which have both

direct and indirect impacts on the growth of brain metastases

through a variety of cytokines. Microglia/BMDMS perform

cytotoxic action, phagocytosis, and antigen presentation as part of

their immunological function. Future research on this topic will

concentrate on understanding how to switch microglia/BMDMS

from the tumor-promoting M2 phase to the tumor-suppressing M1

phase. Changes in the functional status of astrocytes, which are the

stromal cells of the central nervous system, have varying impacts on

the microenvironment of brain metastases. According to

studies, reactive astrocytes help create a fibrotic tumor brain

microenvironment that is unfavorable to the effects of

immunotherapy (115). Additionally, one of the significant elements

influencing the effectiveness of immunotherapy is the quantity and

activity of lymphocytes in brain metastases, and efficient T cells

contribute to this improvement (116).
Frontiers in Oncology 09
We also outlined the ongoing clinical trials on NSCLC with BM

from the viewpoints of a single medicine, immune combined

radiation, immune combined chemotherapy, and dual immune

combination based on the existing clinical research. The efficacy

and safety of ICIs in patients with BM are similar to those in the

general population, according to an increasing body of study data.

However, it is also important to keep in mind that most studies only

assess patients with BM as a small subgroup; further research in this

area is still required.
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