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Extramammary Paget’s disease (EMPD) is a rare, malignant cutaneous adenocarcinoma
with a high recurrence rate after surgical resection. Early diagnosis of EMPD is critical as
15%–40% of cases progress into an invasive form and resulting in a dismal prognosis.
However, EMPD can be a diagnostic challenge to pathologists, especially in the
grassroots hospital, because of its low incidence and nonspecific clinical presentation.
Although AI-enabled computer-aided diagnosis solutions have been extensively used in
dermatological pathological image analysis to diagnose common skin cancers such as
melanoma and basal cell carcinoma, these techniques have yet been applied to diagnose
EMPD. Here, we developed and verified a deep learning method with five different deep
convolutional neural networks, named ResNet34, ResNet50, MobileNetV2, GoogLeNet,
and VGG16, in Asian EMPD pathological image screening to distinguish between Paget’s
and normal cells. We further demonstrated that the results of the proposed method are
quantitative, fast, and repeatable by a retrospective single-center study. The ResNet34
model achieved the best performance with an accuracy of 95.522% in pathological
images collected at a magnification of ×40. We envision this method can potentially
empower grassroots pathologists’ efficiency and accuracy as well as to ultimately provide
better patient care.

Keywords: extramammary Paget’s diseases, pathological diagnosis, computer-aided diagnostic solution, artificial
intelligence, deep learning
1 INTRODUCTION

Extramammary Paget’s diseases (EMPD) is a rare cutaneous malignancy characterized
histopathologically by epidermal adenocarcinoma cells (Paget’s cells) (1, 2). EMPD primarily
localizes to the penis, scrotum, vulva, perianal, and axillary regions (3). The incidence of EMPD
ranges from 0.1 to 2.4 patients per million person-years. It mainly occurs in elderly people aged 60
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to 80. The prevalence of EMPD in Asians (10 cases per million) is
higher than Westerners (0.9 cases per million) (3). Typically, the
course of EMPD is indolent. The skin lesions are manifested as
infiltrating erythema, which may be accompanied by erosions.
Repetitive excoriation may modify the appearance of skin lesions
leading to misdiagnoses, such as fungal infection eczema, or
other diseases, resulting in delay of treatment. About 15% to 40%
of all EMPD cases progress into an invasive form, which may
cause poor prognoses (4–6). Therefore, the early diagnosis of
EMPD is very important.

At present, a punch biopsy is necessary to make a definite
diagnosis of EMPD. The morphological characteristics of Paget’s
cells can be confirmed through the use of hematoxylin and eosin
(H&E) staining (7). Traditional assessment of stained histology
slides mainly relies on human visual observation, which not only
leads to inefficient pathology workflow but also causes
misdiagnosis or missed diagnosis due to subjective factors.
EMPD can be a diagnostic challenge to pathologists because of
its low incidence and nonspecific clinical presentation, especially
in the grass-roots hospital. Typical Paget’s cells have abundant
pale cytoplasm and large nuclei with a vesicular, prominent
nucleus with H&E stain when compared to normal cells
(Figure 1A). However, in atypical cases shown in Figure 1B,
there are more challenges for pathologists to identify EMPD
from other diseases. First of all, Paget’s cells usually show atypical
in the early stage. Secondly, Paget’s cells usually distribute
scattered, and the quantity of cells might be very small.
Thirdly, in cases where the lesion is accompanied by severe
infection, Paget’s cells usually mix with a large amount of
inflammatory cells. All these situations may cause the
pathologists to fail to distinguish tumor cells. Even if the slice
is stained by immunohistochemistry, there will still be a risk of
missed diagnosis or misdiagnosis (8). Missed diagnosis or
misdiagnosis may result in expanding the surgical resection
range, and reducing the quality of patients’ life. Based on these
characteristics, the pathological diagnosis of EMPD usually
requires experienced pathologists to make a clear diagnosis. As
the incidence of EMPD is increasing yearly, the workload of
pathologists has significantly increased. Developing an
application in the diagnosis of EMPD to help pathologists
improve work efficiency as well as avoiding missed diagnoses
is urgent.

Nowadays, AI-enabled computer-aided pathological
diagnosis solutions have been used extensively in clinical
practice, which can provide pathologists with stable and
reliable digital workflows. The evolution of these diagnostic
decision support tools can improve the accuracy and efficiency
of pathologists and provide better medical services to patients
(9). Thomas et al. found that some of the most common skin
cancer diagnoses, such as basal cell carcinoma (BCC), squamous
cell carcinoma (SCC), and intraepidermal carcinoma (IEC) are
amenable to deep learning methods (10). Li et al. proposed a
deep learning-based pathology diagnosis system for melanoma
whole slide imaging (WSI) classification and generated a
multicenter WSI database for model training, which could
Frontiers in Oncology | www.frontiersin.org 2
assist the pathological diagnosis of melanoma diseases (11). Xie
et al. collected 2,241 digital whole-slide images from 1,321
patients and constructed a multicenter dataset for training
both ResNet50 and Vgg19 to test performance with the
classification of melanoma and nevi. The study achieved high
accuracy in distinguishing melanoma from nevi with a sensitivity
of 0.92 and a specificity of 0.94 (12). Heckler et al. trained a
ResNet50 network by 595 pathological images to compare the
performance of pathologists in classifying melanoma and nevi.
The diagnostic discordance was 18% for melanoma and 20% for
nevi (13). All these previous studies focused on melanoma, SCC,
or BCC which comprise 98% of all skin cancers.

However, dermatological pathological image analysis
techniques are only applied to diagnose common skin cancers
such as BCC, SCC, and melanoma (13, 14). Other skin cancers,
including cutaneous lymphoma, EMPD, Merkel cell carcinoma,
and Kaposi’s sarcoma are ignored by most algorithms mainly
due to the long period required for pathology image collection
and doubts about the ability of deep learning on more
complicated histopathology. Therefore, this paper was
specifically designed to reveal the recognition ability of EMPD
using convolutional networks and evaluate its ability to produce
explainable and interpretable predictions. The main
contributions of this paper can be summarized as follows: (1)
to the best of our knowledge, we for the first time used the deep
learning method in EMPD pathological image rapid screening to
distinguish between Paget’s cells and normal cells, which is
helpful for assisting doctors in diagnosis; (2) we demonstrated
the classification of skin diseases using ResNet34, ResNet50,
MobileNetV2, GoogLeNet, and VGG16 by transfer learning
strategy, using only pixels and disease labels as inputs.
Extensive experiments simulating the clinical diagnosis process
are conducted to evaluate the effectiveness; (3) we built a single-
center database of 584WSIs including 341 cases from 286 EMPD
patients and 243 normal skin images. This data-driven approach
can overcome the challenge that arises from morphological
diversity in histopathological images.
2 MATERIALS AND METHODS

2.1 Sample Population and Dataset
In this study, we collected 584 H&E-stained whole-slide skin
histopathology images at different magnifications, including 341
abnormal skin images and 243 normal skin images from the
Dermatological Pathology Department of Huashan Hospital,
Fudan University. Patients’ clinical characteristics are shown in
Table 1. These slides were scanned with size of 1,920 × 1,088
pixels at two different magnifications, ×20 (0.5 µm/pixel) and
×40 (0.275 µm/pixel), by a digital slice scanning system
(NanoZoomer 2.0-RS, Hamamatsu Photonics, Hamamatsu,
Japan). The original pathological images were cropped
manually by experienced dermatology pathologists. This study
was approved by the ethics committees of Huashan Institutional
Review Board (HIRB) (Approval Number: 2021-901).
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2.2 Preprocessing
We randomly crop the collected skin pathology images into
different sizes and aspect ratios and scale the cropped image to a
size of 224 × 224 pixels. We then randomly flip images
horizontally with a probability of 0.5, convert images to
tensors, and perform pixel normalization processing on the
Frontiers in Oncology | www.frontiersin.org 3
image. The value of each pixel in the image is divided by 255
to convert it to between [0, 1].

2.3 Experiment Procedure
The methodological pipeline of the EMPD computer-aided
diagnosis system is shown in Figure 2. To train the deep
TABLE 1 | EMPD patients’ clinical characteristics from 2009 to 2021.

EMPD patients clinical characteristics Male Female Total p-value

N = 241 N = 45 N = 286

Age (year) Median 69 67 69 0.070
Range 45–92 34–90 34–92

Site of lesion Vulva (%) 206 (85.48) 32 (71.11) 238 (83.22) 0.046
Trunk (%) 35 (14.53) 13 (28.89) 48 (16.78)

Clinical diagnose accordance rate Y (%) 184 (76.35) 16 (35.56) 200 (69.93) 0.001
N (%) 57 (23.65) 29 (64.44) 86 (30.07)
January
 2022 | Volume 11 | Article
A

B

FIGURE 1 | (A) Paget’s cell histological characteristics: abundant pale cytoplasm and large nuclei with a prominent, vesicular nucleus with H&E stain when
compared with normal cells. (B) Atypical difficultly identified Paget’s cells.
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networkmodel, the collected 584 skin images are randomly divided
into training set, validation set, and test set with the ratio of 6:2:2.
After this division, 375 images are included in the training set, 109
images are included in the validation set, and the rest 100 images
are then regarded as the testing set. As different deep network
models were designed, or optimized for some specific tasks, we
only exploited the widely used and accepted deep neural networks
which are VGG16, GoogLeNet, ResNet34, ResNet50, and
MobileNetV2. To build the EMPD pathological image classifiers,
the 375 skin image samples with corresponding labels are fed to
different deep network models to train the network. In the training
step, all images from the validation set are also involved to avoid
overfitting and tune the network hyperparameters during the
model configuration. Finally, the testing images are then fed to
the built deep networks model to evaluate the classification
performance by giving its class prediction.

2.4 Convolutional Neural Networks
Deep convolutional neural networks (CNN) have made great
progress in various computer vision tasks including image
classification, object detection, and semantic segmentation. The
basic convolutional neural network mainly consists of an input
layer, a convolutional layer, an activation layer, a pooling layer,
and a fully connected layer. The convolutional operation is used
to extract image features. The pooling operation is used to reduce
the dimension and improve the calculation speed. The activation
Frontiers in Oncology | www.frontiersin.org 4
function is used to introduce nonlinear factors to improve the
expressiveness of the model and the fully connected layer can
connect the output features of all layers and send the output
values to the classifier for classification.

2.4.1 VGGNet
In 2014, VGG was proposed by the prestigious Visual Geometry
Group (VGG) at the Oxford University and won the first place in
the Localization Task and second place in the Classification Task
of the ImageNet competition that year. VGGNet (15) is an
improved version of classical AlexNet, and the whole model
uses 3 × 3 convolution kernels instead of 5 × 5 convolution
kernels, and three 3 × 3 convolution kernels instead of 7 × 7
convolution kernels, which reduces the number of parameters
and is easy to be trained. Moreover, the VGGNet has deeper
architectures than the classical convolutional network which
bring better capacity in extracting image features.

In this work, the VGGNet with 16 weight layers named
VGG16 is used, which can be divided into feature extraction
network structure and classification network structure. In
extracting features, it is mainly realized by convolution
operation and maximum pooling operation. All convolutional
layers have the same configuration. In the classification network,
there are three fully connected layers, and the classification result
is obtained through Softmax processing. All hidden layers are
followed by the ReLu nonlinear activation function.
FIGURE 2 | A representative methodological pipeline of the EMPD computer-aided diagnosis system.
January 2022 | Volume 11 | Article 810909
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2.4.2 GoogLeNet
In 2014, the Google team proposed the GoogLeNet model which
performed better than the state of the art methods in the
Classification Task of the ImageNet competition that year. The
Inception structure is introduced in GoogLeNet (16), which can
fuse feature information of different scales. GoogLeNet model
uses 1 × 1 convolution to reduce dimensionality, adds two
auxiliary classifiers to help training, discards the fully
connected layer instead of using the fully connected layer,
Which greatly reduces the model effectively.

2.4.3 ResNet
In 2015, ResNet was presented by Microsoft Labs, which won the
first place in the Classification Task, Target Detection, and Image
Segmentation Task of the ImageNet competition that year.
Generally, deeper network architectures bring better ability in
feature extraction. However, the increase of network depth also
leads to the problem of gradient disappearance and explosion
during the training stage. The ResNet (17) introduces the
residual module and batch normalization to avoid the gradient
disappearance and explosion problem and to accelerate
network training.

This work uses ResNet34 and ResNet50 to classify skin
pathology images. ResNet34 uses basic block, which is mainly
composed of two 3 × 3 convolutions (Figure 2). ResNet50 uses
bottleneck. The bottleneck module uses 1 × 1, 3 × 3, and 1 × 1
convolution, which can reduce the number of network
parameters. The network structure of ResNet34 used in our
work is shown in Figure 3.

2.4.4 MobileNet
MobileNet, proposed by the Google team in 2017, focuses on
lightweight CNN networks in mobile or embedded devices.
Compared with traditional convolutional neural networks, it
greatly reduces model parameters and operations with a small
reduction in accuracy. MobileNet is mainly composed of depth-
wise convolution and point-wise convolution (18), which is a
deep separable convolution. In conventional convolution, the
convolution kernel acts on all input channels, while in depth-
wise convolution, a different convolution kernel is used for each
input channel to perform the convolution operation
Frontiers in Oncology | www.frontiersin.org 5
independently. The point-wise convolution uses 1 × 1
convolution kernel, and combining the obtained features and
using the depth separable convolution can greatly reduce the
amount of calculation and the number of model parameters.

The MobileNetV2 model used in this work was proposed by
the Google team in 2018 and is more accurate and has a smaller
model compared with the MobileNetV1 network. It has inverted
residuals and a linear bottleneck. The inverted residuals block is
composed of 1 × 1 convolution for dimension enhancement, 3 ×
3 depth-wise convolution, and 1 × 1 point-wise convolution for
dimension reduction. Linear bottleneck does not perform ReLu
function processing after the last point-wise convolution and
outputs directly.

2.5 Loss Function
In our work, the cross-entropy loss function (19) is employed for
all deep models. The cross-entropy loss is computed as follows:

loss(y, p) = −
1
No

N

i=1
o
C

c=1
yi,c · log (pi,c)

where yi,c is the one-hot encoding format of ground truth labels,
pi,c is the matrix of predicted values for pixels in each class, where
the indices, c and i, iterate over all classes and pixels, respectively.
Cross-entropy loss is based on minimizing pixel-wise error,
where for class imbalanced cases, it may lead to an over-
representation for dominant class samples in the loss, resulting
in the poor representation or weak contribution for
minority samples.

2.6 Transfer Learning
Generally, to solve a complex task or to build a well-performed
deep network model, a vast amount of samples and labeled data
is required. However, in the cases with insufficient amount of
training data, the trained model may fail to extract good feature
and suffer from the significant loss in performance. The idea of
transfer learning is to utilize the knowledge acquired from
previously learned task to solve related ones effectively and
efficiently. Through transfer learning, the knowledge trained on
the source task can be transferred to the application of the target
task (20). Thus, the transfer learning method can train a well-
performed model easily even with a small amount of dataset.
A B

FIGURE 3 | (A) The structure of ResNet34. (B) The structure of the basic block.
January 2022 | Volume 11 | Article 810909
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In the experiment of this work, the transfer learning strategy
is adopted and the initial weights of deep neural models (except
for fully connected layer) are inherited from its pretrained
models trained by ImageNet. The last fully connected layer of
the network is modified to meet our classification for each
network models.

2.7 Evaluation Index
2.7.1 Confusion Matrix
The confusion matrix can visualize the performance of the
algorithm and gives the insight of what your classification
model is getting right and what types of errors it is making
(21). The calculation of confusion matrix is shown in Table 2. It
is necessary to separately count the number of observations of
the correct category and the number of observations of the
predicted error category in the model.

True positive (TP) is a positive example and the model
prediction is a positive example. True negative (TN) is a
negative example and the model prediction is a negative
example. False positive (FP) is a negative example, but the
model prediction is a positive example. False negative (FN) is a
positive example, but the model prediction is a negative example.

2.7.2 Index Calculation
2.7.2.1 Accuracy
The accuracy rate is the proportion of all the correct judgments
in the model among all the predicted values. The formula is as
follows:

acc =
TP + TN

TP + TN + FP + FN

2.7.2.2 Precision
Precision gives an indication of the ability not to predict negative
samples as positive samples. The precision rate is the proportion
of the predictions that are correct in the result of the model
prediction as a positive example. The formula is as follows:

precision =
TP

TP + FP

2.7.2.3 Recall
The recall rate is the proportion of positive examples correctly
predicted by the model among all the positive examples in the
dataset. The recall rate can reflect the ability of the model to
predict positive samples. The formula is as follows:
Frontiers in Oncology | www.frontiersin.org 6
recall =
TP

TP + FN

2.7.2.4 F1-Score
The F1-score combines the results of precision and recall. The value
of the F1-score ranges from 0 to 1: 1 represents the best output of
the model and 0 represents the worst output of the model. The F1-
score reflects the stability of the model, and the higher the F1-score
is, the more robust the model is. The formula is as follows:

F1 =
2TP

2TP + FP + FN

2.7.2.5 ROC Curve
The ROC curve is the receiver operating characteristic curve, and
there are two main indicators in the ROC curve: false-positive
rate (FPR) and true-positive rate (TPR). The FPR indicates the
degree of response falsely reported by the model, and the TPR
indicates the corresponding degree of coverage predicted by the
model. The higher the TPR and the lower the FPR, the more
effective the model is. The formula is as follows:

2.7.2.6 Sensitivity
Sensitivity measures the percentage of the positive sample that
was predicted to be positive. It reflects the ability of the model to
correctly predict positive samples. The formula is as follows:

2.7.2.7 Specificity
Specificity measures percentage of the negative sample that was
correctly predicted to be negative. It reflects the ability of the
model to correctly predict negative samples. The formula is
as follows:

2.7.2.8 Auc-score
Auc is the area under the ROC curve. The larger the Auc-score
values, the higher the accuracy of the classifier is.
3 RESULTS AND DISCUSSION

For all network models in this work, the cross-entropy loss
function and Adam optimizer are used. The initial learning rate
is 0.0001, and the training iterations is 30 epochs. The training
loss of each network model is shown in Figure 4A. For VGG16,
ResNet34, and ResNet50, the loss fluctuates greatly during the
training process and the convergence is slow, while for
GoogLeNet, the loss decreases rapidly at the beginning and
then changes slowly afterwards. The loss of MobileNetV2
decreases slowly with small fluctuations, and its convergence
state is relatively better. Figure 4B shows the ROC curves under
different network models for comparison. The test set has the
ROC curve closest to the upper left corner on ResNet34, followed
by that on ResNet50.

Table 3 gives the time taken to predict 100 skin images under
different network models. MobileNetV2 takes relatively the least
time to predict due to its lightweight structure, while VGG16
takes relatively the longest time due to its deeper network
structure with more parameters and heavier calculations.
TABLE 2 | The confusion matrix.

Confusion matrix Predicted class

Positive Negative

Actual class
Positive TP FN
Negative FP TN
January 2022 | Volume 11 | Article 810909
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The evaluation indicators use accuracy, precision, recall, F1-score,
Auc-score, sensitivity, and specificity. In total, 100 skin pathological
images were tested. The accuracy and Auc-score under different
network models are shown in Table 4. In the ResNet34 model, the
prediction accuracy and Auc-score are the highest, reaching 0.9500
and 0.9511. Among the 100 testing images, 95 skin pathology images
can be correctly distinguished. In contrast, GoogLeNet has the lowest
prediction accuracy and the lowest Auc-score.
TABLE 3 | The time of testing 100 skin images under different network models.

Model Time(s)

VGG16 24.5982
GoogLeNet 12.3033
ResNet34 13.6707
ResNet50 17.6632
MobileNetV2 11.9645
The shortest time is highlighted in bold.
A

B

FIGURE 4 | (A) Training loss under different networks. (B) ROC curves under different networks.
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Table 5 shows the precision, recall, F1-score, sensitivity, and
specificity predicted on the normal skin image and the deviancy
skin image under different network models. It can be seen that in
each model, the precision of deviancy skin images is higher than
that of normal images.

In the ResNet34 network, when predicting normal skin
images and deviancy skin images, the prediction precision,
recall, F1-score, sensitivity, and specificity are the highest.
Therefore, compared with the other four network structures,
ResNet34 is more suitable for the classification of the giving skin
pathology dataset with high stability and predictive accuracy.

Taking into account the effect of the magnification of the skin
pathology image on the classification results, when the magnification
is larger, the tissue characteristics will be more obvious, which will
have a certain impact on the recognition of the lesion. In the work of
this paper, the testing data are predicted according to different
magnifications. The accuracy and Auc-score of ResNet34 model at
×20 and ×40 magnifications of the skin pathology image are shown
in Table 6. It can be seen the accuracy is slightly higher at ×40 than
that at ×20, but the difference in Auc-score is not significant.

Figure 5 gives a comparison of the classification results for the
skin pathological image at magnifications of ×20 and ×40,
respectively. The ground truth, the predicted result, and the
corresponding prediction confidence for each image are given. In
Figure 5A, there are Paget’s cell images with nested distribution.
ResNet34 can predict the pathology as deviancy with high
probability at different image magnifications. In Figure 5B, there
are Paget’s cell images with diffuse distribution. ResNet34 can predict
the category of the image as deviancy, but the probability of
prediction is relatively low, and the probability of predicting
pathological images as deviancy at a magnification of ×40 is not
significantly different from that at a magnification of ×20. In
Figure 5C, there is a pathological image of Paget’s cells distributed
Frontiers in Oncology | www.frontiersin.org 8
in more inflammatory cells, which is more difficult to distinguish,
and the magnification of the image has less influence on the
probability of predicting probability. For pathological images with
early lesions shown in Figure 5D, ResNet34 can predict its class, but
the prediction probability is relatively low and the prediction
confidence is more easily affected by magnification. For the
normal skin pathological images shown in Figure 5E, ResNet34
can predict the category with high probability.

Figure 6 gives the incorrect prediction results at a magnification
of ×40. Figures 6A–C shows cases where the deviancy skin image is
incorrectly predicted as a normal category. The possible reason that
leads to the incorrect prediction of case A may be due to the
relatively large number of cell types, where the cellular atypia of
tumor cells was not obvious in the early stage of the disease and the
network has more difficulty in identifying the tumor cells within
them. In case B, tumor cells distributed more scattered may result in
the wrong prediction. In case C, a variety of cell types including
vascular endothelial cells, red blood cells, etc. make the network
difficult to identify tumor cells, leading to the incorrect prediction.
Figure 6D is the case where the normal skin image is incorrectly
predicted as deviancy, probably because there are several cell types
concentrated around the blood vessel and with somewhat
heterogeneous nuclei. Therefore, even at high magnification, the
relatively large number of cell types and distribution morphology of
tumor cells in pathological images can lead to the occurrence of
model prediction errors.

We use the class activation map (CAM) (21) to visualize the
regions of interest when the network model is performing a
classification task. CAM is the weighted linear sum of the
presence of visual patterns at different spatial locations. By simply
upsampling the class activation map to the size of the input image,
we can identify the regions most relevant to the particular category.
Three representative examples are shown in Figure 7, where
original skin pathological images are listed in the first column. In
the second column, main lesion areas are outlined by the
pathologist in the skin pathology image. In this column,
boundaries of tumor and normal tissues are outlined by red and
blue lines, respectively. The third column shows the CAMs
superimposed on original images and the fourth column shows
their corresponding heatmaps. The warmer color in the heatmap
indicates that the network pays more attention to the part of the
feature, which has a greater impact on the classification result.
TABLE 4 | Accuracy and Auc-score under different network models.

Model Accuracy Auc-score

VGG16 0.9000 0.9022
GoogLeNet 0.8800 0.8822
ResNet34 0.9500 0.9511
ResNet50 0.9400 0.9415
MobileNetV2 0.9000 0.9014
The highest accuracy is highlighted in bold.
TABLE 5 | The accuracy, recall, and F1-score predicted on the normal skin image and the abnormal skin image under different network models.

Model Skin type Precision Recall F1-score Sensitivity Specificity

VGG16 Deviancy 0.9565 0.8462 0.9000 0.8654 0.9375
Normal 0.8519 0.9375 0.9000 0.9375 0.8654

GoogLeNet Deviancy 0.9348 0.8269 0.8776 0.8269 0.9375
Normal 0.8333 0.9375 0.8824 0.9375 0.8333

ResNet34 Deviancy 0.9796 0.9231 0.9505 0.9231 0.9792
Normal 0.9216 0.9792 0.9495 0.9792 0.9231

ResNet50 Deviancy 0.9792 0.9038 0.9400 0.9038 0.9792
Normal 0.9038 0.9792 0.9400 0.9792 0.9038

MobileNetV2 Deviancy 0.9375 0.8654 0.9000 0.8654 0.9375
Normal 0.8654 0.9375 0.9000 0.9375 0.8654
Janua
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The optimal results are highlighted in bold.
icle 810909

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wu et al. AI-Based EMPD Pathological Diagnosis
When Paget’s cells are nested (Figure 7A), the color distribution of
the heatmap shows that the network does pay more attention to the
lesion area when perform prediction, and therefore this area has a
greater influence on the category determination. When Paget’s cells
Frontiers in Oncology | www.frontiersin.org 9
are diffusely distributed (Figure 7C), the color distribution in the
heatmap does not give a good indication of the area.
4 CONCLUSION

Deep learning solutions have shown great potential in the field of
digital pathological diagnosis. Previous studies mainly focused
on melanoma, BCC, and SCC, which constitute 98% of all skin
cancers. However, there are some rare skin cancers, including
EMPD, that are ignored by most algorithms. Compared with
TABLE 6 | The accuracy and Auc-score of ResNet34 model at different
magnifications.

Magnifications Accuracy Auc-score

×20 0.9355 0.9524
×40 0.9552 0.9524
A

B

D

E

C

FIGURE 5 | Comparison of ResNet34 prediction results at different magnifications. Paget’s cells are nested distribution (A) and diffuse distribution (B) with relatively
clear vision. (C) Paget’s cells are distributed with various types of inflammatory cells. (D) Paget’s cells presented atypical morphology in the early stage of the
disease. (E) Normal skin.
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existing works, we for the first time used the deep learning
method in Asian EMPD pathological image rapid screening to
distinguish between Paget’s cells and normal cells by a
retrospective single-center study. Our study provided a
prediction model with high accuracy (0.93548 at ×20
magnification and 0.95522 at ×40 magnification) and Auc-
score (0.95238 at ×20 magnification and 0.95235 at ×40
magnification), which drew repeatable results of pathological
image analysis within a few milliseconds. It is quantitative, fast,
and repeatable to empower grassroots pathologists’ efficiency
and accuracy as well as to ultimately provide better patient care.

Proportion of skin cancer in overall cancer represents 4%–5%
in Hispanics, 2%–4% in Asians, and 1%–2% in Blacks, as
reported respectively (22). Deep learning networks validated
Frontiers in Oncology | www.frontiersin.org 10
for the diagnosis of skin cancer in fair-skinned people has a
greater risk of misdiagnosing those with darker skin (23). Han
et al. trained a deep learning algorithm by using a dataset
composed of skin lesions from Asians and found that the
diagnostic accuracy was 81%. However, when the same
algorithm was applied to the Caucasian database, the accuracy
fell to 56% significantly, indicating that persons of a different
race, ethnicity, or skin type might influence the diagnostic
accuracy (24). Therefore, AI diagnostic systems need to be
trained with more datasets of different types of skin cancer as
well as different skin types to further improve accuracy among
people of all races and colors. In the future, we will further
expand our sample size by conducting multicenter prospective
research, explore more ways like combining our dataset acquired
FIGURE 6 | Incorrect prediction results at a magnification of ×40. (A) Paget’s cells presented atypical morphology in the early stage of the disease. (B) Paget’s cells
distributed scattered. (C) Paget’s cells are distributed with various types of cells. (D) Normal skin image is incorrectly predicted as deviancy.
A

B

C

FIGURE 7 | Heatmaps of pathological images show regions of interest identified by the deep learning models. Representative cases of Paget’s cells are distributed
with various types of cells (A), arranged in nests (B), or dispersedly (C). For each case, original skin pathological images are listed in the first column. In the second
column, the boundaries of tumor and normal tissues are outlined by red and blue lines, respectively. The third column shows the CAMs superimposed on original
images and the fourth column shows their corresponding heatmaps.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wu et al. AI-Based EMPD Pathological Diagnosis
by other modalities, such as dermoscopic images, and optimize
the training process to simulate the actual clinical diagnosis
process by multimodal learning.
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