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Accumulating evidence suggests that hypoxia microenvironment and long non-coding
lncRNAs (lncRNAs) exert critical roles in tumor development. Herein, we aim to develop a
hypoxia-related lncRNA (HRL) model to predict the survival outcomes of patient with lower-
grade glioma (LGG). The RNA-sequencing data of 505 LGG samples were acquired from The
Cancer Genome Atlas (TCGA). Using consensus clustering based on the expression of
hypoxia-related mRNAs, these samples were divided into three subsets that exhibit distinct
hypoxia content, clinicopathologic features, and survival status. The differentially expressed
lncRNAs across the subgroups were documented as candidate HRLs. With LASSO
regression analysis, eight informative lncRNAs were selected for constructing the
prognostic HRL model. This signature had a good performance in predicting LGG patients’
overall survival in the TCGA cohort, and similar results could be achieved in two validation
cohorts from the Chinese Glioma Genome Atlas. The HRL model also showed correlations
with important clinicopathologic characteristics such as patients’ age, tumor grade, IDH
mutation, 1p/19q codeletion, MGMT methylation, and tumor progression risk. Functional
enrichment analysis indicated that the HLR signature was mainly involved in regulation of
inflammatory response, complement, hypoxia, Kras signaling, and apical junction. More
importantly, the signature was related to immune cell infiltration, estimated immune score,
tumor mutation burden, neoantigen load, and expressions of immune checkpoints and
immunosuppressive cytokines. Finally, a nomogram was developed by integrating the HRL
signature and clinicopathologic features, with a concordance index of 0.852 to estimate the
survival probability of LGG patients. In conclusion, our study established an effective HRL
model for prognosis assessment of LGG patients, which may provide insights for future
research and facilitate the designing of individualized treatment.

Keywords: lower-grade glioma, hypoxia, long non-coding lncRNA, The Cancer Genome Atlas, prognosis
INTRODUCTION

Lower-grade glioma (LGG), defined as World Health Organization (WHO) grade II/III gliomas, is a
prevalent and aggressive type of primary intracranial tumors in adults (1). Despite the advances in
neurosurgical resection and adjunctive therapy, a majority of LGG patients still undergo tumor
recurrence and progression to glioblastoma (WHO grade IV), resulting in deteriorations in quality
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of life and survival outcomes (2, 3). This prognostic
heterogeneity highlights the importance of molecular
classification in the clinical management of LGG patients.
Some molecular markers have been established for glioma
subclassification, including the isocitrate dehydrogenase
mutation (IDH) and the chromosomal 1p and 19q (1p/19q)
co-deletion (4). In the era of precision medicine, however, these
widely accepted factors are unlikely to provide sufficient insights
for individual risk assessment of patients with LGG. Therefore, it
is necessary to uncover novel biomarkers with excellent
performance in predicting the prognosis and optimizing the
treatment of LGG patients.

Hypoxia is a pivotal feature of malignant tumors that
originated from the imbalance between accelerated tumor
cell growth and insufficient intravascular oxygen supply
(5). Mounting evidence has revealed the profound impacts of
hypoxia on various tumor processes, including cell proliferation
and differentiation, angiogenesis, invasion, metastasis, and
immune infiltration (6–8). Hypoxia adaption, mainly mediated
by the hypoxia-inducible factor (HIF) family, can promote
tumor progression, treatment resistance, and poor prognosis in
multiple malignancies (9). Recently, the implication of long non-
coding RNAs (lncRNAs) in hypoxic signaling has become a new
focus of attention in cancer research. LncRNAs belong to a
subclass of RNA transcripts with longer than 200 nucleotides in
length (10). Despite the lack of protein-coding potential,
lncRNAs can regulate diverse of molecular and biological
processes and contribute to tumorigenesis and tumor
progression (11). To date, the role of lncRNAs in hypoxia-
induced hallmarks has been explored in many cancer types
including gliomas. For instance, lncRNA PDIA3P1 was
reported to promote the hypoxia-induced mesenchymal
transition by serving as a sponge of miR-124-3p in glioma
(12). Also under hypoxic condition, LINC00475 silencing
could inhibit the malignant behaviors of glioma through
down-regulating AGAP2 (13). However, the prognostic utility
of hypoxia-related lncRNAs (HRLs) has been not investigated in
LGG patients.

In this work, we analyzed the transcriptome profiles from
publically accessible databases and screened out HRLs using
clustering and differentially expression analyses. Based on the
gene expression data of candidate HRLs, a prognostic signature
was established and then validated in patients with LGG.
Furthermore, we also examined the associations of HRL
signature with clinicopathologic features, biological functions,
and immune microenvironment. Finally, a predictive nomogram
was constructed to improve the clinical significance of the HRL
model. The technology roadmap of our study was shown in
Supplementary Figure 1.
MATERIALS AND METHODS

Data Source and Processing
The RNA-sequencing transcriptome data and clinical
characteristics of LGG cohorts were acquired from The Cancer
Frontiers in Oncology | www.frontiersin.org 2
Genome Atlas (TCGA, https://cancergenome.nih.gov) and the
Chinese Glioma Genome Atlas (CGGA, http://www.cgga.org.cn)
databases, including TCGA-LGG, CGGA-325, and CGGA-693.
After removing tumor-adjacent samples and samples without
complete survival information, a total of 913 patients with
primary LGG were finally included in our study. The clinical
data of these patients were summarized in Supplementary
Table 1. For subsequent analysis, the transcriptome data were
converted into transcripts per kilobase million (TPM) values
with log2(x+1) transformation. Then, the gene identifications
were annotated according to the GENCODE (https://www.
gencodegenes.org, release 22) database and separated into
mRNAs and lncRNAs. Those genes symbols with zero
expression values in more than 5% of samples in each cohort
were excluded from further analysis.

Identification of Hypoxia Subtypes
Hypoxia-related mRNAs were collected from the gene sets
“hypoxia;M10508” and “Cellular response to hypoxia;M26925”
(14), which are available in the Molecular Signatures Database
(MSigDB, https://www.gsea-msigdb.org/gsea/msigdb). To
evaluate the hypoxia condition, we scored individual samples
against the set of hypoxia-related mRNAs (termed “hypoxia
enrichment score”) using single-sample gene set enrichment
analysis (ssGSEA) with “GSVA” R package (15). Kaplan–Meier
survival analyses were performed to confirm the impact of hypoxia
status on LGG prognosis, using “survminer” R package. To
identify different hypoxia subtypes in the TCGA-LGG cohort,
consensus clustering according to the TPM values of hypoxia-
related genes was performed with “ConsensusClusterPlus” R
package (16). The optimum number of clusters was selected
based on the consensus matrices and the cumulative distribution
function (CDF) curves of consensus index. The clustering
results were then evaluated using t-distributed stochastic
neighbor embedding (t-SNE) algorithm (17). The survival
outcomes, hypoxia enrichment score, and distribution of
clinicopathologic features were compared between different
clusters, including age, gender, tumor grade, IDH mutation, 1p/19q
codeletion, and O6-methyl-guanine-DNA-methyltransferase
(MGMT) methylation.

Construction of HRL Prognostic Signature
The differentially expressed lncRNAs (DElncRNAs) between
each two of the hypoxia clusters were detected using “limma”
R package, with the cutoff criteria of |fold change|>2 and false
discovery rate (FDR)<0.05. Candidate HRLs were defined as the
common lncRNAs collected from Venn analysis of the
differentially expression results. Then, LASSO penalized Cox
regression model was developed to identify the core HRLs
associated with patients’ survivals in the TCGA-LGG cohort
using R “glmnet” package. This algorithm employed a penalty
parameter l.1se to prevent overfitting, which was generated from
10-fold cross validation (18). Finally, risk scores (namely
“HRLscore”) were computed per patient by linear aggregation
of the HRLs expression values weighted by the coefficients from
LASSO algorithm.
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Evaluation of the Signature
To examine the prognostic accuracy of the HRLscore, we
performed time-dependent receiver operating characteristic
(ROC) analysis and calculated the area under the curve (AUC)
using “survivalROC” R package (19). The AUCs of survival
predictors were compared using “timeROC” R package (20).
LGG patients were recruited into high- and low-HRLscore
groups based on the optimal cut-off value of HRLscore derived
from 5-year ROC curve. Kaplan-Meier survival analysis and log-
rank test were conducted to explore the difference of survival
between groups. Multivariate Cox regression analysis was
applied to test the prognostic independence of HRLscore. We
also performed stratified analyses to investigate the prognostic
consistency of HRLscore across subpopulations. The HRLscore
between patients with different clinicopathologic features
were assessed.

Gene Set Enrichment Analysis (GSEA)
GSEA (http://software.broadinstitute.org/gsea/index.jsp) (21)
was performed to reveal the potential biological mechanisms
associated with the HRLscore. In this study, we tested whether
the hallmark gene sets (h.all.v7.4.symbol.gmt) were differentially
expressed between the high- and low-HRLscore subgroups in the
TCGA-LGG cohort. A hallmark gene set with nominal p<0.05
and FDR <0.25 after 1000 permutations was treated as
statistically significant.

Immune Microenvironment Analysis
The immune cell abundances of TCGA-LGG cohort were
estimated using enrichment scores calculated by ssGSEA. The
gene marker sets of 28 immune cells used for ssGSEA were
downloaded from Charoentong’s study (22). We also applied the
ESTIMATE algorithm (23) to quantify the immune score for
each LGG sample. Tumor mutation burdens (TMBs) were
calculated using “maftools” R package (24), and the neoantigen
loads (NALs) were collected from a previous published study
(25). In addition, the gene expression levels of immune
checkpoints and immunosuppressive cytokines were
investigated in different HRLscore groups.

Development of Predictive Nomogram
The nomogram was generated to predict the 3- and 5-year
survival rates by integrating the HRLscore and clinicopathologic
characteristics via “rms” R package (26). We calculated the
concordance index (C-index) to examine the predictive
accuracy of the nomogram. Calibration curves was plotted to
assess the concordance between predicted and actual survivals
after bias control.

Statistical Analysis
All statistical analyses were realized with R 3.6.0 software (The R
Foundation for Statistical Computing, Vienna, Austria).
Quantitative and qualitative data in two groups were compared
usingWilcoxon rank-sum test and Chi-squared test, respectively.
The association between two continuous variables was
determined using Spearman correlation analysis. Student t-test
was used to compare the C-index of the HRLscore and the
Frontiers in Oncology | www.frontiersin.org 3
multigene signatures derived from existing literatures. A p value
of <0.05 was considered statistically significance.
RESULTS

Hypoxia Subtypes in TCGA-LGG Cohort
We documented a total of 151 hypoxia-related mRNAs from the
MSigDB, of which 142 were abundantly expressed in the LGG
cohorts. The hypoxia enrichment score could recognize LGG
patients with different overall survivals (Supplementary
Figure 2), indicating the potential role of hypoxia in LGG
development. Based on the expression profiles of hypoxia-
related mRNAs, a consensus clustering algorithm was applied
to mine different subtypes (cluster number k=2, 3, 4, 5, 6, 7, and 8)
among the 505 LGG samples. At k=3, the CDF curve of
consensus index score showed the flattest slope (Figure 1A),
and the heatmap of consensus matrix had a relatively clear-cut
boundary (Figure 1B). Thus, we recruited the LGG samples into
three hypoxia-related clusters, namely HC1 (n=208), HC2
(n=201), and HC3 (n=96). The distribution patterns from
t-SNE analysis were generally coordinated with the result of
consensus clustering (Figure 1C), indicating that the three
hypoxia subgroups were successfully separated from each other.
Kaplan-Meier survival analysis revealed remarkable prognostic
variations in the TCGA-LGG cohort (log-rank p<0.001,
Figure 1D), with poorer overall survival for HC3 (median: 25.8
months) than HC1 (median: 94.5 months, log-rank p<0.001) and
HC2 (median: 136.1 months, log-rank p<0.001). Accordingly,
HC3 had the highest hypoxia enrichment score when compared
with HC1 (p<0.001) and HC2 (p<0.001, Figure 1D), implying
this cluster may be more hypoxic. In addition, there were
significant differences of clinicopathologic features among the
three clusters, including age, tumor grade, IDH mutation,
chromosomal 1p/19q codeletion, and MGMT methylation (all
p<0.001, Figure 1E). Taken together, based on the gene
expression patterns, we detected three hypoxia-related subtypes
that exhibited distinct survival outcomes and clinicopathologic
characteristics in LGG patients.

Construction of the HRL Prognostic Model
Limma test was implemented to obtain the lncRNAs associated
with the hypoxia patterns. Using the aforementioned significance
threshold, we identified 364 DElncRNAs for the comparison of
HC1 versus HC2, 777 DElncRNAs for the comparison of HC2
versus HC3, and 448 DElncRNAs for the comparison of HC1
versus HC3 (Supplementary Figure 3). Venn analysis of the
differentially expression results resulted in 38 shared lncRNAs
(Supplementary Figure 3), among which 31 were also profiled
in the CGGA datasets. To prevent model overfitting, LASSO
regression analysis was conducted for these genes and
screened out eight HRLs as the key predictors of overall
survival in the TCGA-LGG cohort (l.1se=0.115, Figure 2A).
The detailed information for the prognostic lncRNAs were listed
in Table 1. The HRLscore for each patient was calculated as
follows: HRLscore = (-0.0122 × expression of RP1-293L6.1) +
November 2021 | Volume 11 | Article 771512

http://software.broadinstitute.org/gsea/index.jsp
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Feng et al. Hypoxia-Related lncRNAs in LGG
(-0.0658 × expression of RP11-1C8.7) + (0.1509 × expression of
CRNDE) + (0.0484 × expression of RP11-218E20.3) + (0.0714 ×
expression of RP11-524D16:A.3) + (0.0595 × expression of
HOTAIRM1) + (-0.0610 × expression of LINC00906) +
(-0.0181 × expression of LINC00689).

Time-dependent ROC analyses were performed to determine
the prognostic power of the HRLscore. In the TCGA-LGG cohort,
the AUC of 3- and 5-year ROC curves were 0.853 and 0.761,
respectively, demonstrating a good performance of the HRLscore
in predicting the survival outcomes of LGG patients (Figure 2B).
According to the best cut-off value of HRLscore derived from the
5-year ROC curve, we assigned the samples in the TCGA-LGG
cohort into low-HRLscore (n=349) and high-HRLscore (n=156)
groups. The survival status and lncRNAs expression profiles
between groups were displayed in Figure 2C. Compared with
patients with low HRLscore, those with high HRLscore had
significantly higher hypoxia enrichment scores (median: 2.48
versus 2.37, p<0.001) and shorter overall survivals (median: 27.3
versus 115.7 months, log-rank p<0.001; Figure 2D).

Validation of the HRL Prognostic Model
To investigate the extrapolative accuracy of the HRL signature,
we further verified it in the CGGA-325 and CGGA-693 cohorts.
The HRLscore was produced via the same formula established in
the TCGA-LGG cohort. Time-dependent ROC analysis
indicated that the AUC of 3- and 5-year ROC curves were
Frontiers in Oncology | www.frontiersin.org 4
0.854 and 0.853, respectively, for the CGGA-325 cohort
(Figure 3A) and 0.745 and 0.744, respectively, for the CGGA-
693 cohort (Figure 3B). Patients were then allocated into two
groups using the optimal threshold of HRLscore from the 5-year
ROC curve. The hypoxia enrichment scores were significantly
higher in the high- versus low-HRLscore groups in both of the
CGGA cohorts, indicating patients with high HRLscore may be
more hypoxic. Similarly, compared with patients with low
HRLscore, those with high HRLscore had obviously poorer
overall survivals in both CGGA-325 (log-rank p<0.001;
Figure 3C) and CGGA-693 (log-rank p<0.001; Figure 3D)
cohorts. These findings demonstrated the prognostic
robustness of the HRL model in patients with LGG.

Clinical and Functional Implication of
HRLscore
To assess the independence of HRLscore in survival prediction of
LGG patients, we carried out multivariate Cox regression by
introducing age, gender, tumor grade, IDH mutation, 1p/19q
codeletion, MGMT methylation, and HRLscore as explanatory
variables. It was found that the HRLscore was an independent
predictor of overall survival in all of the three cohorts (HR=1.157,
3.379, and 4.017, respectively; Table 2). By performing stratified
analyses in the TCGA-LGG cohort, we observed a consistent
prognostic ability of HRLscore among patients with different
clinicopathologic features (Supplementary Figure 4). To further
A B

D E

C

FIGURE 1 | Identification of hypoxia-related subtypes in the TCGA-LGG cohort. (A) Cumulative distribution function (CDF) curves for k=2 to k=8. (B) Heatmap of
consensus clustering matrix at k=3. (C) The classification into three subtypes validated by t-SNE analysis in the TCGA-LGG cohort. (D) Survival curves and hypoxia
enrichment scores for the three hypoxia subtypes. (E) Heatmap of hypoxia-related mRNAs and clinicopathologic information across the three hypoxia subtypes.
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clarify the clinical implication of the HRL signature, we tested the
relationship between HRLscore and clinicopathologic variables in
the TCGA-LGG cohort. The HRLscore was significantly different
between subgroups of age (p<0.001), tumor grade (p<0.001), IDH
mutation (p<0.001), 1p/19q codeletion (p<0.001), and MGMT
methylation (p<0.001; Figure 4A). Moreover, the progression-free
survivals were shorter in patients with high versus low HRLscore
(median: 15.9 versus 62.9 months, log-rank p<0.001; Figure 4B).
Finally, GSEA was employed to uncover the biological
Frontiers in Oncology | www.frontiersin.org 5
functions linked to the HRLscore. The results showed that this
signature were mainly enriched in regulation of inflammatory
response, complement, hypoxia, Kras signaling, and apical
junction (Figure 4C).

Prognostic Performance of HRLscore
Versus Other Predictors
As shown above, some clinicopathologic features may also serve
as predictors of LGG outcomes. Herein, we explored whether the
TABLE 1 | The significant lncRNAs associated with overall survival in LASSO penalized regression.

Ensemble ID Gene symbol Genomic coordinate HR 95% CI LASSO Coefficient

ENSG00000234688 RP1-293L6.1 Chr 22: 36,703,918-36,721,472 (+) 0.799 0.753–0.848 -0.0122
ENSG00000271830 RP11-1C8.7 Chr 8: 103,481,266-103,481,619 (–) 0.776 0.729–0.826 -0.0658
ENSG00000245694 CRNDE Chr 16: 54,918,863- 54,929,189 (–) 1.549 1.404–1.708 0.1509
ENSG00000258711 RP11-218E20.3 Chr 14: 50,956,259- 50,962,002 (–) 1.656 1.467–1.868 0.0484
ENSG00000261295 RP11-524D16:A.3 Chr X: 100,673,330-100,673,981 (+) 1.404 1.287–1.531 0.0714
ENSG00000233429 HOTAIRM1 Chr 7: 27,095,647- 27,100,265 (+) 1.390 1.287–1.502 0.0595
ENSG00000267339 LINC00906 Chr 19: 28,965,131- 28,970,874 (+) 0.820 0.756–0.890 -0.0610
ENSG00000231419 LINC00689 Chr 7: 159,006,522- 159,030,195 (+) 0.877 0.821–0.938 -0.0181
No
vember 2021 | Volume
CI, confidence interval; HR, hazard ratio; LASSO, Least Absolute Shrinkage and Selection Operator.
A B

DC

FIGURE 2 | Derivation of the HRL signature in the TCGA-LGG cohort. (A) LASSO regression analysis with 10 cross-fold validation. (B) Time-dependent ROC curves
for evaluating the prognostic performance. (C) Distribution of overall survival and expression of the eight informative HRLs between high- and low-HRLscore groups.
(D) Survival curves for patients with different HRLscore.
11 | Article 771512
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A B

DC

FIGURE 3 | Validation of the HRL signature in the CGGA database. (A) Time-dependent ROC curves for patients in the CGGA-325 cohort. (B) Time-dependent
ROC curves for patients in the CGGA-693 cohort. (C) Survival curves for patients in the CGGA-325 cohort. (D) Survival curves for patients in the CGGA-693 cohort.
TABLE 2 | Multivariate Cox regression analysis for overall survival in lower-grade glioma patients.

TCGA (n = 505) CGGA-325 (n = 137) CGGA-693 (n = 271)

Variables HR 95% CI P-value HR 95% CI P-value HR 95% CI P-value

Age* 1.048 1.031–1.066 <0.001 1.026 0.999–1.054 0.058 1.012 0.991–1.034 0.278
Gender
Female 1.000 (reference) 1.000 (reference) 1.000 (reference)
Male 1.327 0.912–1.931 0.140 0.757 0.439–1.303 0.315 2.188 1.214–3.946 0.009
Grade
G2 1.000 (reference) 1.000 (reference) 1.000 (reference)
G3 1.915 1.248–2.938 0.003 2.527 1.378–4.636 0.003 3.108 1.736–5.564 <0.001
IDH
Wide-type 1.000 (reference) 1.000 (reference) 1.000 (reference)
Mutant 0.681 0.349–1.329 0.260 1.511 0.707–3.230 0.287 0.589 0.274–1.266 0.175
1p/19q
Non-codel 1.000 (reference) 1.000 (reference) 1.000 (reference)
Codel 0.534 0.315–0.907 0.020 0.234 0.105–0.523 <0.001 0.425 0.176–1.025 0.057
MGMT
Unmethylated 1.000 (reference) 1.000 (reference) 1.000 (reference)
Methylated 1.085 0.643–1.831 0.759 0.857 0.482–1.526 0.601 0.613 0.363–1.034 0.067
HRLscore* 1.157 1.091–1.228 <0.001 3.379 1.576–7.243 0.002 4.017 1.705–9.460 0.001
Frontiers in Oncology
 | www.frontiersin.org
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CI, confidence interval; HR, hazard ratio; HRLscore, hypoxia-related lncRNA score.
*Analyzed as continuous variables.
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HRLscore was superior to other parameters in terms of
prognostic capacity. The AUC of HRLscore in survival prediction
was generally higher than that of each clinicopathologic feature,
and addition of the HRLscore to these variables could improve
the prognostic performance (Supplementary Table 2).
Furthermore, we compared the predictive accuracy of HRLscore
versus several multigene signatures in existing publications by
Zhang ret al. (27), Wang et al. (28), and Zhao et al. (29). The
result demonstrated that the HRLscore was not inferior to
other three prognostic models in the TCGA-LGG cohort
(Supplementary Figure 5). In the CGGA cohorts, however, the
HRLscore outperformed other signatures in predicting patients’
overall survival (Supplementary Figure 5).

HRLscore and Immune Microenvironment
The fractions of 28 immune cell types in the TCGA-LGG cohort
were estimated using ssGSEA algorithm. As a result, we observed
that most of the immune cells infiltrated highly in the high-
HRLscore group (Figure 5A and Supplementary Figure 6).
There was a strong positive association between HRLscore
and the immune score generated from ESTIMATE method
(Spearman correlation coefficient=0.598, p<0.001; Figure 5B).
We next evaluated the immunogenicity indices that
were potentially linked to immunotherapy response. The
high-HRLscore group exhibited increased TMBs (p<0.001;
Figure 5C) and NALs (p<0.001; Figure 5D) when compared
with the low-HRLscore group. Additionally, the expression
Frontiers in Oncology | www.frontiersin.org 7
levels of important immune checkpoints (PDCD1, CD274,
PDCD1LG2, CTLA4, LAG3, HAVCR2, and IDO1) and
immunosuppressive cytokines (TGFB1 and IL10) were
significantly higher in patients with high than with low HRLscore
(all p<0.001; Figure 5E).

Establishment of the Predictive
Nomogram
A predictive nomogram was developed to infer the 3- and 5-year
likelihood of survival, which integrated our HRL signature and
other clinical parameters. With this nomogram, each patient in
the TCGA-LGG cohort was assigned a score and a predicted
death rate (Figure 6A). Both the 3- and 5-year calibration charts
showed a good concordance to the observed survival status
(Figures 6B, C). Meanwhile, the C-index of the nomogram
achieved 0.852 (95% confidence interval: 0.819–0.885),
reflecting a high accuracy to predict the prognosis of
LGG patients.
DISCUSSION

Hypoxia is an intrinsic hallmark of solid tumors and has been
associated with tumor progression and poor prognosis in
patients with glioma (30). In this study, the LGG samples
could be clustered into three hypoxia subtypes according to the
transcriptome profiles of hypoxia-related gene markers.
A

B C

FIGURE 4 | Clinical and functional implication of the HRL signature. (A) Comparison of the HRLscore between patients with different clinicopathologic features.
(B) Progression-free survival curves for patients in the TCGA-LGG cohort. (C) Enrichment plots from GSEA for the comparison between patients with high and low
HRLscore.
November 2021 | Volume 11 | Article 771512
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These subtypes showed distinct hypoxia status, clinicopathologic
features, and survival outcomes, indicating the importance of
hypoxia in the molecular pathology of LGG. Since the hypoxia-
lncRNA interactions have attracted much attention in cancer
research (31), we further illustrated whether a HRLs-based
model could effectively predict the prognosis of LGG patients.
A total of eight lncRNAs (RP1-293L6.1, RP11-1C8.7, CRNDE,
RP11-218E20.3, RP11-524D16:A.3, HOTAIRM1, LINC00906,
and LINC00689) were selected to construct the HRL signature,
Frontiers in Oncology | www.frontiersin.org 8
which exhibited high accuracy and robustness in predicting
patients’ survivals.

Although LGG is less aggressive than glioblastoma, increasing
studies have demonstrated that it has a propensity towards
progressing to higher grades, resulting in adverse outcomes (32).
In our study, the HRLscore was higher in patients with advanced
tumor grade and also served as a predictor of LGG progression in
survival analysis. These findings reflect the potentially functional
role of HRLs in the malignant transformation of LGG. In addition,
A B

C

FIGURE 6 | Construction and evaluation of the nomogram in the TCGA-LGG cohort. (A) Nomogram based on the HRLscore and clinicopathologic variables.
(B) The 3-year calibration plot for the nomogram. (C) The 5-year calibration plot for the nomogram.
A B D

E

C

FIGURE 5 | Immune characteristics for patients in the TCGA-LGG cohort. (A) Infiltration of 28 immune cell types between high- and low-HRLscore groups. (B)
Correlation of HRLscore and ESTIMATE immune score. (C) Tumor mutation burdens (TMBs) between patients with high and low HRLscore. (D) Neoantigen loads
(NALs) between patients with high and low HRLscore. (E) Expression of immune checkpoints and immunosuppressive cytokines between different HRLscore groups.
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we observed that unfavorable molecular features in glioma such as
IDH wild-type, 1p/19q non-codeletion, and MGMT promoter
unmethylation (33) were all associated with a higher HRLscore.
Multivariate Cox regression suggested that the predictive value of
HRLscore was independent of traditional clinical variables and
molecular biomarkers. More importantly, the prognostic capacity
of HRLscore was consistent across subpopulations with different
clinicopathologic features. The above results indicated that our
lncRNA signature is a reliable prognostic predictor for LGG
patients. To further improve the clinical practicality of our
signature, a nomogram was developed by integrating the
HRLscore and clinicopathologic features, which had an excellent
performance in the prognostic assessment of LGG.

The development of transcriptomics and bioinformatics has
facilitated the discovery of novel biomarkers for cancer patients.
Also for LGG, increasing studies have focused on establishing
prognostic gene models based on mRNA, lncRNA, or proteomic
approaches. For example, Zhao et al. (29) recently constructed a
metabolism-related lncRNA-mRNA that could predict the
clinical outcomes of LGG patients. In our study, we have
compared the prognostic accuracy of HRLscore and other
multigene models from previous publications (27–29). We
found the HRLscore showed the highest C-index in CGGA
cohorts, suggesting that our HRL signature may have a
relatively high accuracy in the prognostic assessment of LGG.
As lncRNAs function importantly in diverse of biological process
(34), a multi-omic approach based on hypoxia hallmarks appears
to have great prognostic potential for LGG patients.

Although thousands of lncRNA transcripts have been
documented in genomic databases, the molecular functions for
most of them remain under-investigated. To uncover the
biological meanings behind our lncRNA signature, we
performed GSEA between the different HRLscore groups. The
result showed that in addition to hypoxia signaling, the
HRLscore was also linked to inflammatory response,
complement, Kras signaling, and apical junction. A growing
body of studies suggests that inflammation is a critical
contributor to the initiation and development of gliomas (35),
and lncRNA CRNDE may trigger inflammation in glioma cell
lines via toll-like receptor pathway (36). In gliomas, complement
system has been shown to widely impact the malignant behaviors
of tumor cells and regulate several microenvironmental
components (37). Kras, a member of Ras oncogene family, is
implicated in the pathogenesis of brain tumors such as
glioblastoma (38) and pilocytic astrocytoma (39). Targeting
Kras may inhibit the glioma cell proliferation and invasion via
the downstream ERK signaling (40). In short, this evidence
demonstrates that the HRL signature had significant influences
on glioma development.

Since hypoxia is a major driver of tumor immune escape (41),
we finally classified the immune microenvironment features
associated with the HRLscore in LGG patients. Patients with
high HRLscore tended to have more infiltrations of most
immune cell types and increased ESTIMATE immune score,
suggesting an immune heterogeneity within LGG tissues. Further
analysis showed that the HRLscore was positively related to the
Frontiers in Oncology | www.frontiersin.org 9
gene levels of immune checkpoints and immunosuppressive
cytokines. Based on these findings, we inferred that the
immune activities in LGG microenvironment were suppressed
by critical immune modulators (e.g., PD-1/PD-L1, CTLA-4,
LAG3, TGF-b1, and IL10) (42–44), albeit with high invasion of
immune cells. If indeed it is, LGG patients in the high-HRLscore
group may benefit more from immunotherapy. Likewise, Chen
et al. found that solid tumors with increased expression of PD-L1
and high infiltration of CD8+ T cells was more likely to benefit
from blocking of immune checkpoints (45). Moreover, we
observed that the high-HRLscore group exhibited increased
TMBs and NALs, both of which have been proposed as
predictors of immunotherapy response (46, 47).

Some limitations should not be ignored. First of all, this study
is retrospective without details such as clinical therapy and
surgery information, which may introduce some potential bias
to our results. Secondly, although the HRL prognostic model was
validated in CGGA database, its stability still needs more LGG
samples for depth investigation. Thirdly, the molecular
mechanisms associated with the eight HRLs in LGG should be
uncovered in in vivo and in vitro experiments. Finally, the
hypoxia-related mRNAs in MSigDB may not necessarily be
accurate for LGG since they were derived from other
tumor types.

Taken together, we developed and validated a HRL-based
signature that could effectively predict the survival outcomes of
patients with LGG. This prognostic model was correlated with
important clinical pathologic features and showed a good capacity
to characterize the immune microenvironment of LGG. These
findings may provide useful targets for investigating the pathology
and designing the individualized treatment of LGG.
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