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Background: Previous reports have shown that short/branched chain acyl-CoA
dehydrogenase (ACADSB) plays an important role in glioma, but its role in clear cell
renal carcinoma (ccRCC) has not been reported.

Methods: The TIMER and UALCAN databases were used for pan-cancer analysis. RNA
sequencing and microarray data of patients with ccRCC were downloaded from the
Cancer Genome Atlas and Gene Expression Omnibus database. The differential expression
of ACADSB in ccRCC and normal kidney tissues was tested. Correlations between
ACADSB expression and clinicopathological parameters were assessed using the
Wilcoxon test. The influences of ACADSB expression and clinicopathological parameters
on overall survival were assessed using Cox proportional hazards models. Gene set
enrichment analysis (GSEA) was performed to explore the associated gene sets enriched in
different ACADSB expression phenotypes. Gene ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analyses were performed on genes with
similar expression patterns to ACADSB. Correlations between ACADSB and ferroptosis-
related genes were assessed using Spearman’s correlation analysis.

Results: Pan-cancer analysis revealed that ACADSB is down-regulated in multiple
cancers, and decreased expression of ACADSB correlates with poor prognosis in
certain types of cancer. Differential expression analyses revealed that ACADSB was
down-regulated in ccRCC, indicating that ACADSB expression could be a single
significant parameter to discriminate between normal and tumor tissues. Clinical
association analysis indicated that decreased ACADSB expression was associated with
high tumor stage and grade. The Cox regression model indicated that low ACADSB
expression was an independent risk factor for the overall survival of patients with ccRCC.
GSEA showed that 10 gene sets, including fatty acid (FA) metabolism, were differentially
enriched in the ACADSB high expression phenotype. GO and KEGG pathway enrichment
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analysis revealed that ACADSB-related genes were significantly enriched in categories
related to FA metabolism, branched-chain amino acid (BCAA) metabolism, and iron
regulation. Spearman’s correlation analysis suggested that the expression of ACADSB
was positively correlated with the expression of ferroptosis driver genes.

Conclusions: ACADSB showed good diagnostic and prognostic abilities for ccRCC. The
downregulation of ACADSB might promote tumorigenesis and tumor progression by
inhibiting FA catabolism, BCAA catabolism, and ferroptosis in ccRCC.
Keywords: renal cancer, ACADSB, prognosis, biomarker, TCGA
INTRODUCTION

Short/branched chain acyl-CoA dehydrogenase (ACADSB) is a
member of the acyl-CoA dehydrogenase family of enzymes,
which is involved in the metabolism of fatty acids (FAs) and
branch-chained amino acids (BCAAs) (1). Previous studies have
revealed that ACADSB plays an important role in glioma,
colorectal cancer (CRC), and hepatocellular carcinoma (HCC)
(2–5). However, the role of ACADSB in clear cell renal cell
carcinoma (ccRCC) has not yet been reported.

CcRCC is the most common and aggressive type of renal cell
carcinoma (RCC), which accounts for approximately 3% of all
cancers and is the third most common malignancy of the urinary
system (6, 7). Worldwide, there were an estimated 403,000 new
cases of RCC and 175,000 deaths due to kidney cancer in 2020
(8). Among solid tumors, ccRCC is one of the most resistant to
conventional chemotherapy and radiotherapy. Targeted therapy
and immune checkpoint inhibitor-based immunotherapy have
substantially improved the outcomes of patients with advanced
ccRCC over the past decade. However, the identification of novel
diagnostic markers and therapeutic targets remains a high
priority. The aim of this study was to explore the potential
diagnostic and prognostic roles of ACADSB in ccRCC.
MATERIALS AND METHODS

Pan-Cancer Analysis
The tumor immune estimation resource database (TIMER;
https://cistrome.shinyapps.io/timer/) (9) and the UALCAN
database (http://ualcan.path.uab.edu/index.html) (10) were
used for the differential expression analysis of ACADSB
between tumor tissues and corresponding normal tissues.
TIMER was also applied to explore the association between
ACADSB expression and overall survival (OS) in different
types of cancers.

Collection of ccRCC Datasets
The RNA sequencing (RNA-seq) data and clinical information
of patients with ccRCC (TCGA-KIRC) were downloaded from
The Cancer Genome Atlas (TCGA) using the “TCGAbiolinks” R
package (11). Only patients with both RNA-seq data and valid
clinical information were included in this study, and duplicated
2

samples were excluded. The expression profiling microarray data
of GSE36895 (with 29 ccRCC samples and 23 adjacent normal
samples) and GSE53757 (with 72 paired ccRCC and adjacent
normal samples) were downloaded from Gene Expression
Omnibus (GEO) using the “GEOquery” R package (12).

Immunohistochemistry (IHC)
A tissue chip with 90 pairs of ccRCC and corresponding
normal tissues was purchased from Outdo Biotech Co., Ltd.
(HKidE180Su03, Shanghai, China). The experiment received
ethical approval for sample use from Shanghai Outdo Biotech
Co., Ltd. (Barcode: YB M‐05‐02). IHC was performed on
tissues fixed with formaldehyde and embedded in paraffin
wax. After deparaffinization and rehydration, the endogenous
peroxidase activity was blocked and antigen retrieval was
performed. The ACADSB antibody (13122‐1‐AP, 1:12000;
Proteintech, CA) was incubated overnight at 4°C. After careful
washing and incubation with the specified horseradish
peroxidase (HRP)‐conjugated secondary antibody, ACADSB
expression was detected using 3,3N‐ diaminobenzidine
tetrahydrochloride (DAB).

The intensity and extent of ACADSB staining were evaluated
by two experienced pathologists. The method for calculating
the score of ACADSB staining was as follows: the extent of
staining in an ×200 field was scored as 0, 0%; 1, 1–25%; 2, 26–
50%; and 3, 51–100%. The intensity of staining was scored as 0, no
signal; 1, light brown; 2, brown; and 3, dark brown. The final score
of each field was the average obtained from the two pathologists by
multiplying the extent score by the intent score. The scores of
ACADSB staining were categorized as follows: low expression
(−/+) for scores 0–1 (−) and 2–3 (+) and high expression (++/++
+) for scores 4–6 (++) and 7–9 (+++). All evaluations were
performed using a Leica DM4000 M microscope.

Gene Set Enrichment Analysis
Gene-set enrichment analysis (GSEA) (13) was performed with
the GSEA software (version 4.0.3). Samples from TCGA were
divided into two groups based on the expression of ACADSB.
The Broad Molecular Signatures Database (MSigDB v6.0) (14)
set H (hallmark gene sets, 50 gene sets) were used, which
summarize and represent specific well-defined biological states
and pathway processes. Enrichment analysis was performed by
default weighted enrichment statistics, with the random
combinatorial count set as 1,000. Gene sets were judged as
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significantly enriched by P<0.05 as well as false discovery rates
(FDR) < 0.25.

Correlation, GO and KEGG Pathway
Analysis
The genes which had greater than 0.4 Spearman correlation
coefficient with ACADSB in expression level were defined as
ACADSB-related genes. To explore the functional annotation
and involved pathways of ACADSB-related genes, the gene
ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses were executed
via the “clusterprofiler” package (15).

Statistical Analysis
All statistical analyses were performed in R version 4.1.0. For
RNA-seq data, raw counts data were used for differential
expression analysis via the “DESeq2” package (16). Fragments
per kilobase million (FPKM) values were converted to
Transcripts per million (TPM) and log2 transformed for
further analysis. For microarray data, differential expression
analysis was performed using the “limma” package (17). Genes
with an adjusted p value of less than 0.05 and fold change (FC)
greater than 2 were regarded as differentially expressed genes
(DEGs). The receiver operating characteristic (ROC) curves were
plotted and areas under the curve (AUC) were calculated to
investigate the diagnostic performance of ACADSB. Patients
were stratified into low or high groups based on ACADSB
expression, using the median expression as the cut-off value.
The relationships between clinical pathologic characteristics and
ACADSB expression were analyzed with Chi-squared test or
Wilcoxon test. Univariate and multivariate Cox proportional
hazards models were used to compare the influence of ACADSB
expression on OS along with other clinicopathological
parameters. P< 0.05 was considered to indicate a statistically
significant difference.
RESULTS

ACADSB Is Down-Regulated in Multiple
Cancers and Decreased Expression of
ACADSB Correlates With Poor Prognosis
in Certain Types of Cancers
Differential expression analysis using TIMER showed that
ACADSB is down-regulated in multiple types of cancer,
including bladder cancer (BLCA), breast cancer (BRCA),
cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD),
esophageal carcinoma (ESCA), head and neck squamous cell
carcinoma (HNSC), kidney chromophobe (KICH), kidney renal
clear cell carcinoma (KIRC), kidney renal papillary cell
carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), lung
adenocarcinoma (LUAD), lung squamous cell carcinoma
(LUSC), rectum adenocarcinoma (READ), stomach
adenocarcinoma (STAD), thyroid carcinoma (THCA), and
uterine corpus endometrial carcinoma (UCEC; Figure 1A).
Proteome data derived from the UALCAN database also
Frontiers in Oncology | www.frontiersin.org 3
suggest that ACADSB is down-regulated in breast cancer,
colon cancer, ccRCC, and UCEC (Figure 1B). In addition,
Kaplan–Meier analysis indicated that low expression of
ACADSB is associated with poor prognosis in BRCA luminal
subtype, COAD, KIRC, brain lower grade glioma (LGG), and
mesothelioma (MESO) (Figures 1C–E and Supplementary
Figures 1A, B).

ACADSB Is Down-Regulated in Different
ccRCC Datasets
Transcript differential expression analysis using DESeq2 revealed
that ACADSB was significantly down-regulated in ccRCC tissues
compared with normal kidney tissues in TCGA-KIRC (log2FC =
-2.0, FDR < 0.001; Figure 2A), GSE36895 (log2FC = -1.7, FDR <
0.001; Figure 2B), and GSE53757 (log2FC = -2.2, FDR < 0.001;
Figure 2C). Further, ROC analyses showed that ACADSB
expression could be a single significant parameter for
discriminating between normal and tumor tissues in TCGA-
KIRC (AUC = 0.952, 95% CI = 0.926–0.977, Figure 2D),
GSE36895 (AUC = 0.931, 95% CI = 0.862–1.0, Figure 2E), and
GSE53757 (AUC = 0.966, 95% CI = 0.935–0.998, Figure 2F). A
total of 84 paired tumor–normal samples were included in the
IHC analysis, with six pairs of samples excluded due to slices
escaping from the glass slide. For normal kidney tissues, most
samples (75/84, 89.3%) showed high ACADSB expression, while
all ccRCC samples (84/84, 100%) showed low ACADSB
expression (Figure 2G). Typical pictures of staining in paired
tumor and normal samples are shown in Figures 2H, I.

Clinical Characteristics of Patients With
ccRCC in the TCGA-KIRC Cohort
In the TCGA-KIRC cohort, there’re 530 cases with both RNA-seq
data and clinical information. Four duplicated cases and 4 cases
whose overall survival time was 0 days were excluded. Therefore, a
total of 522 patients with both RNA-seq data and valid survival
information were included in this study. The detailed clinical
characteristics are listed in Table 1. Patients were divided into a
high expression group and a low expression group based on
ACADSB expression. Among the 522 participants, 341 (65.3%)
were men and 181 (34.7%) were women, with a median age of 61
years at the time of initial diagnosis; 315 (60.7%) patients had stage
I or stage II disease pathology, and 204 (39.3%) patients had stage
III or stage IV disease pathology. Regarding histological grade, 236
(45.9%) patients were categorized into grade 1 or grade 2, and 278
(54.1%) patients were categorized into grade 3 or grade 4. Follow-
up duration was 40 months on average (range, 0.1–151.2 months).
At the time of the last follow-up, 344 (68.9%) patients were tumor-
free, while 155 (31.1%) patients still had tumors.
Association Between ACADSB Expression
and Clinicopathological Characteristics
The relat ionship between ACADSB express ion and
clinicopathological characteristics is shown in Figure 3. ACADSB
expression was significantly associated with pathological T stage
(T1-2 vs. T3-4, P< 0.001; Figure 3A), pathological N stage (N0 vs.
N1, P< 0.01;Figure3B), pathologicalM stage (M0vs.M1, P<0.001;
January 2022 | Volume 11 | Article 762629
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Figure 3C), pathological stage (stage I-II vs. stage III-IV, P< 0.001;
Figure 3D), tumor grade (grades 1–2 vs. grades 3–4,
P< 0.001; Figure 3E), tumor status (tumor free vs. with tumor,
P< 0.001; Figure 3F), and sex (P< 0.01; Figure 3G). The differences
between groups stratified by age (<65 years vs. ≥65 years;
Figure 3H) and race (white vs. black or African American vs.
Asian; Figure 3I) did not attain statistical significance.

Survival Outcomes and Cox
Regression Analysis
Kaplan–Meier survival analysis showed that lower ACADSB
expression was associated with a worse prognosis (P< 0.001;
Figure 1E). The univariate Cox regression model revealed
that age at diagnosis (HR = 1.03, 95% CI = 1.017–1.044, P<
0.001), pathological stage (HR = 3.927, 95% CI = 2.847–5.417,
P< 0.001), histological grade (HR = 2.679, 95%CI = 1.895–3.787, P<
0.001), and ACADSB expression (HR = 0.421, 95% CI = 0.331–
Frontiers in Oncology | www.frontiersin.org 4
0.535, P< 0.001) were associated with the OS of patients with
ccRCC. Multivariate Cox regression after adjustment indicated that
age at diagnosis (HR = 1.027, 95% CI = 1.013–1.042, P< 0.001),
pathological stage (HR = 2.695, 95% CI = 1.877–3.765, P< 0.001),
histological grade (HR = 1.639, 95% CI = 1.137–2.364, P< 0.01), and
ACADSB expression (HR = 0.577, 95% CI = 0.446–0.746, P< 0.001)
were independent prognostic factors for OS in patients with ccRCC
(Figure 4 and Supplementary Table 1).

Gene Sets Enriched in the ACADSB High
Expression Phenotype
In the hallmark dataset, 10 gene sets were significantly enriched
in the ACADSB high expression phenotype, including TGF-b
signaling, androgen response, UV response down, heme
metabolism, bile acid metabolism, protein secretion,
adipogenesis, FA metabolism, PI3K-AKT-mTOR signaling, and
mitotic spindle (Figure 5 and Supplementary Figure 1C).
A

B

D EC

FIGURE 1 | Pan-cancer analysis of ACADSB. (A) Differential expressions of ACADSB in TCGA. (B) Differential expressions of ACADSB in UALCAN. Overall survivals
comparison between high and low ACADSB groups in (C) BRCA-luminal subtype, (D) COAD, and (E) KIRC *p< 0.05; **p<0.01; ***p<0.001.
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GO and KEGG Analysis of ACADSB-
Related Genes
In TCGA-KIRC, GSE36895, and GSE53757, 3093, 2111, and 594
respective genes had ACADSB expression with a Spearman
correlation coefficient of >0.4. Two hundred and fourteen
genes representing the intersection between all three datasets
were defined as ACADSB-related genes (Figure 6A). At a false
discovery rate (FDR) of 0.05, 47 GO biological processes, 13 GO
cellular components, 14 GO molecular functions, and 15 KEGG
pathways were significantly enriched for these genes (Figure 6B
and Supplementary Table 2).

ACADSB Expression Was Associated
With the Expression of Ferroptosis-
Related Genes
Ferroptosis-related genes were derived from the FerrDb database
(18). A total of 108 genes were identified as ferroptosis driver
genes. Correlation analysis revealed that the expression of
Frontiers in Oncology | www.frontiersin.org 5
ACADSB was significantly positively correlated with the
expression of 62 ferroptosis diver genes in the TCGA-KIRC
dataset (Figure 6C). Similar results were found in GSE36895 and
GSE53757 (Supplementary Figure 1D, E).
DISCUSSION

ACADSB is a member of the acyl-CoA dehydrogenase family of
enzymes that catalyze the dehydrogenation of acyl-CoA
derivatives in the metabolism of FAs and BCAAs (1).
ACADSB is widely known to be associated with ACADSB
deficiency (SBCADD), an autosomal recessive disorder
characterized by seizures and psychomotor delay due to a
defect in the catabolism of L-isoleucine (19, 20).

Recent studies have found that ACADSB plays an important
role in the development and progression of malignant diseases,
such as glioma (2), colorectal cancer (3), and hepatocellular
carcinoma (HCC) (4, 5). Yu et al. (2) reported that ACADSB is
A B

D E F

G IH

C

FIGURE 2 | Differential expressions of ACADSB in ccRCC datasets. Volcano plots showing the results of differential analyses in (A) TCGA-KIRC, (B) GSE36895,
and (C) GSE53757. ROC curves showing the ability of ACADSB expression to discriminate between normal and tumor tissues in (D) TCGA-KIRC, (E) GSE36895,
and (F) GSE53757. (G) The IHC result of ccRCC tissue microarray. Typical pictures of paired (H) tumor and (I) normal tissue.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. ACADSB Affects ccRCC Patients’ Prognoses
lowly expressed in high-grade gliomas, and the lower expression of
ACADSB may lead to the accumulation of short-chain
acylcarnitines, which further facilitates the growth and
progression of gliomas. Di et al. (3) reported that ACADSB is
down-regulated in CRC, and its expression is positively correlated
with the OS of patients with CRC. Their study also indicated that
overexpression of ACADSB inhibits CRC cell proliferation,
migration, and invasion, while knockdown of ACADSB has the
opposite effect. Similar results were also found in HCC, in which
the restoration of ACADSB expression caused mTORC1 activity
and cell proliferation to significantly decrease (4). In this study, we
first explored the expression levels of ACADSB in different types of
cancer using independent datasets from TCGA andUALCAN. The
downregulation of ACADSB was observed in almost all types of
common cancer. Moreover, low expression levels of ACADSB also
correlate with a poorer prognosis in many types of cancers, such as
COAD, LGG, and ccRCC. Previous studies have reported the
important role of ACADSB in COAD and LGG; however, it has
not been reported in ccRCC. Thus, we focused on the role of
ACADSB in ccRCC.

The differential expression analyses were performed in three
independent datasets, and consistent results were obtained,
indicating that ACADSB is down-regulated in ccRCC, and that
ACADSB expression can be a single significant parameter to
discriminate between normal and tumor tissues. The IHC results
further validated the downregulation of ACADSB in ccRCC. We
next investigated the correlation between ACADSB expression
and the clinicopathological characteristics of patients with
ccRCC using TCGA-KIRC data. Results showed that the level
of ACADSB expression was negatively correlated with tumor
stage and tumor grade; results also showed that ACADSB
expression was an independent prognostic factor for OS
Frontiers in Oncology | www.frontiersin.org 6
independent of conventional prognostic factors, such as age at
diagnosis, tumor stage, and tumor grade. These findings indicate
an integral role of ACADSB in the underlying biological
mechanisms of tumor development and progression of ccRCC.

To further investigate the potential functions of ACADSB in
ccRCC, we conducted GSEA, GO, and KEGG analyses.
The results of GSEA showed that 10 gene sets in the hallmark
dataset, including FA metabolism, bile acid metabolism,
heme metabolism, and adipogenesis, were differentially
enriched in the ACADSB high expression phenotype. GO and
KEGG enrichment analysis indicated that ACADSB-related
genes were enriched in the regulation of FA degeneration
and BCAA degeneration. Lip metabolism plays a critical
role in the development and progression of renal cancer, and
ccRCC is histologically defined by its lipid-and glycogen-rich
cytoplasmic deposits (21). The tumorigenic role of lipid
accumulation has been observed in many types of cancer
(22, 23). ACADSB is known to regulate FA catabolism by
catalyzing the dehydrogenation of acyl-CoA derivatives (1).
Thus, the downregulation of ACADSB may contribute to
tumor development by suppressing FA catabolism, resulting in
lipid accumulation in ccRCC.

In addition to regulating FA catabolism, ACADSB also
catalyzes the dehydrogenation of acyl-CoA derivatives in the
metabolism of BCAAs. BCAA metabolism can influence
multiple cancer phenotypes and serve as a marker of disease
pathology (24). Previous studies have demonstrated that BCAA
catabolism is reduced in many types of cancers, such as HCC (4),
ccRCC (22), and breast cancer (25). Ericksen et al. (4) found that
suppression of BCAA catabolic enzyme expression led to BCAA
accumulation in liver tumors and that progressive loss of BCAA
catabolism promoted tumor development and growth. Qu et al.
TABLE 1 | Clinical characteristics of patients with ccRCC in TCGA.

Characteristic Low expression High expression p

N 261 261
Sex, n (%) 0.066
Female 80 (15.3%) 101 (19.3%)
Male 181 (34.7%) 160 (30.7%)

Pathological T stage, n (%) < 0.001
T1-2 138 (26.4%) 195 (37.4%)
T3-4 123 (23.6%) 66 (12.6%)

Pathological N stage, n (%) 0.057
N0 112 (44.1%) 126 (49.6%)
N1 12 (4.7%) 4 (1.6%)

Pathological M stage, n (%) < 0.001
M0 188 (38.2%) 226 (45.9%)
M1 53 (10.8%) 25 (5.1%)

Pathological stage, n (%) < 0.001
Stage I-II 125 (24.1%) 190 (36.6%)
Stage III-IV 133 (25.6%) 71 (13.7%)

Histological grade, n (%) < 0.001
G1-2 91 (17.7%) 145 (28.2%)
G3-4 169 (32.9%) 109 (21.2%)

Tumor status, n (%) < 0.001
Tumor free 138 (27.7%) 206 (41.3%)
With tumor 112 (22.4%) 43 (8.6%)

Age, median (IQR) 61 (53, 70) 60 (51, 69) 0.423
January 2022 | Volume 11 | Article
ccRCC, clear cell renal cell carcinoma; TCGA, The Cancer Genome Atlas; IQR, interquartile range.
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A B

D E F
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FIGURE 3 | The correlation between ACADSB expression and clinicopathological characteristics. (A) Pathological T stage. (B) Pathological N stage. (C) Pathological
M stage. (D) Pathological stage. (E) Tumor grade. (F) Tumor status. (G) Sex. (H) Age. (I) Race *p< 0.05; **p<0.01; ***p<0.001.
A

B

FIGURE 4 | Forest plot of hazard ratios derived from Cox model. (A) Univariate analysis. (B) Multivariate analysis.
Frontiers in Oncology | www.frontiersin.org January 2022 | Volume 11 | Article 7626297

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. ACADSB Affects ccRCC Patients’ Prognoses
(22) reported that BCAA accumulation in ccRCC induced the
activation of mTORC1 and de novo FA synthesis and promoted
cell proliferation. Therefore, the downregulation of ACADSB
may also promote tumor development and growth by inhibiting
BCAA catabolism.

Lipid metabolism is important for ferroptosis, an iron-
dependent form of regulated cell death (RCD) that is driven
by the lethal accumulation of lipid peroxidation (26, 27)
and plays a key role in tumor suppression (28). In contrast,
the glutathione peroxidase 4 (GPX4)/glutathione (GSH)
antioxidation system acts as an endogenous antioxidant
pathway to suppress ferroptosis (29, 30). Reduced FA
metabolism due to inhibition of b-oxidation renders renal
cancer cells highly dependent on the GPX4/GSH pathway to
prevent lipid peroxidation and ferroptosis (31). Lu et al. (3)
found that overexpression of ACADSB enhanced the
concentrations of Fe+ and lipid peroxidation but reduced the
concentration of GSH and the expression of GPX4 in CRC cell
lines, suggesting a potential regulatory effect of ACADSB on
Frontiers in Oncology | www.frontiersin.org 8
CRC cell ferroptosis. In this study, GSEA indicated that FA
metabolism and heme metabolism were enriched in the high-
ACADSB phenotype, GO analysis revealed that ACADSB-
related genes are enriched in the molecular function of metal
cluster binding and iron-sulfur cluster binding, and KEGG
analysis revealed that ACADSB-related genes are enriched in
the peroxisome pathway. Taken together, these findings indicate
the potential regulatory effect of ACADSB on ferroptosis
in ccRCC.

Ferroptosis-related genes can be classified as either ferroptosis
driver genes that promote ferroptosis or ferroptosis suppressor
genes that prevent ferroptosis (18). Correlation analysis revealed
that the expression of ACADSB was significantly positively
correlated with the expression of ferroptosis driver genes,
including PRKAA1, PRKAA2, and NCOA4. Song et al. (32)
demonstrated that the inhibition of PRKAA1/AMPKa1 or
PRKAA2/AMPKa2 by siRNA diminished erastin-induced
BECN1 phosphorylation at S93/96, BECN1-SLC7A11 complex
formation, and subsequent ferroptosis. Hou et al. (33) revealed that
A B

D E F

G IH

C

FIGURE 5 | Enrichment plots from gene set enrichment analysis. Gene sets enriched in ACADSB high phenotype: (A) TGF-b signaling. (B) Androgen response.
(C) UV response down. (D) Heme metabolism. (E) Bile acid metabolism. (F) Protein secretion. (G) Adipogenesis. (H) Fatty acid metabolism. (I) PI3K-AKT-
mTOR signaling.
January 2022 | Volume 11 | Article 762629
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the genetic inhibition of NCOA4 inhibited ferritin degradation and
suppressed ferroptosis. Taken together, ACADSB might also be a
potential ferroptosis driver gene, and the downregulation of
ACADSB in ccRCC may promote tumor progression by
suppressing ferroptosis.

In conclusion, ACADSB is down-regulated in multiple types
of cancers and shows good diagnostic and prognostic abilities in
ccRCC. Bioinformatic analyses revealed that ACADSB might
affect the development and progression of ccRCC by regulating
FA catabolism, BCAA catabolism, and ferroptosis. These
findings may offer new therapeutic approaches for the clinical
treatment and prognostic assessment of ccRCC. However, there
were some limitations to this study. This study was mainly
conducted using data from the public databases, and the
potential regulations between ACADSB and ferroptosis in
Frontiers in Oncology | www.frontiersin.org 9
ccRCC were analyzed by correlation analysis, which needs to
be further elucidated by molecular experiments.
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