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Purpose: To propose and evaluate habitat imaging-based 18F-fluorodeoxyglucose
(18F-FDG) positron emission tomography/computed tomography (PET/CT) radiomics
for preoperatively discriminating non-small cell lung cancer (NSCLC) and benign
inflammatory diseases (BIDs).

Methods: Three hundred seventeen 18F-FDG PET/CT scans were acquired from patients
who underwent aspiration biopsy or surgical resection. All volumes of interest (VOIs) were
semiautomatically segmented. Each VOI was separated into variant subregions, namely,
habitat imaging, based on our adapted clustering-based habitat generation method.
Radiomics features were extracted from these subregions. Three feature selection
methods and six classifiers were applied to construct the habitat imaging-based
radiomics models for fivefold cross-validation. The radiomics models whose features
extracted by conventional habitat-based methods and nonhabitat method were also
constructed. For comparison, the performances were evaluated in the validation set in
terms of the area under the receiver operating characteristic curve (AUC). Pairwise t-test
was applied to test the significant improvement between the adapted habitat-based
method and the conventional methods.

Results: A total of 1,858 radiomics features were extracted. After feature selection,
habitat imaging-based 18F-FDG PET/CT radiomics models were constructed. The AUC of
the adapted clustering-based habitat radiomics was 0.7270 ± 0.0147, which showed
significantly improved discrimination performance compared to the conventional methods
(p <.001). Furthermore, the combination of features extracted by our adaptive habitat
imaging-based method and non-habitat method showed the best performance than the
other combinations.
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Conclusion: Habitat imaging-based 18F-FDG PET/CT radiomics shows potential as a
biomarker for discriminating NSCLC and BIDs, which indicates that the
microenvironmental variations in NSCLC and BID can be captured by PET/CT.
Keywords: 18F-FDG PET/CT, habitat imaging, radiomics, inflammation, non-small cell lung cancer
1 INTRODUCTION

Lung cancer is one of the most fatal and widespread diseases,
with a poor 5-year survival rate (1). Non-small cell lung cancer
(NSCLC) accounts for 80–85% of lung cancers (2). The
histopathological subtypes of NSCLC include large cell
carcinoma, adenocarcinoma (ADC), squamous cell carcinoma
(SCC), and adenosquamous carcinoma (ASC). Among these
subtypes, ASC is a relatively rare NSCLC histopathological
subtype whose malignancy contains components of ADC and
SCC. The treatment of early-stage NSCLC is normally surgical
resection. However, since aspiration biopsy cannot provide 100%
sensitivity, several studies have reported that the resection of
benign tissue is prevalent because of the aggressive diagnosis and
treatment of NSCLC (3–5). On the other hand, aspiration biopsy
causes a certain of trauma to patient.

Since malignant tumors mostly present higher glucose
metabolism than normal tissue, which is a known hallmark of
cancer, they can be detected using 18F-fluorodeoxyglucose
(18F-FDG) positron emission tomography/computed tomography
(PET/CT), a metabolic and anatomic imaging system (6, 7).
Regarding CT, a tissue can be anatomically analyzed in terms of
size, textural heterogeneity, and contour irregulation in CT images
(8). From a metabolic perspective, 18F-FDG PET can present high
FDG metabolism in the region that could be a malignant tumor.
Thus, the PET/CT system cannot only provide high sensitivity of
radionuclide uptake but also provide precise anatomical
information (9). Shim et al. evaluated the preoperative staging
accuracy and specificity of 18F-FDG PET/CT and found that the
performance was significantly better than that of CT alone (10).
NSCLC, which presents ground-glass opacity (GGO) in CT, is
accompanied by low FDG uptake in PET, thus leading to a false-
negative result (11). On the other hand, benign inflammation (e.g.,
pneumonia, pyogenic abscesses, aspergillosis, and granulomatous
diseases), which is also related to increased glucose metabolism,
could be a potential false-positive detection in 18F-FDG PET (12).
False-positive findings are mainly represented by BIDs with high
FDG uptake in PET (13, 14). Therefore, a discrimination method is
desired for assisting medical physicists and radiologists in
identifying whether the high SUV uptake lesion is NSCLC or BID.

Radiomics, which translates medical images into high-
throughput quantitative features for analysis, has been applied
in a number of clinical studies (15–17). Tumors reveal genomic
and phenotypic heterogeneity, which can be reflected in medical
images, thus leading to the quantification of the textural and
metabolic variations in tumors through PET and CT.
Furthermore, PET/CT radiomics, which mines not only
textural features but also metabolic features from PET/CT
images, has been applied to various potential clinical
2

applications. Lovinfosse et al. studied the prognostic value of
baseline 18F-FDG PET/CT radiomics, and their results showed a
strong predictive ability for survival in patients with locally
advanced rectal cancer (18). Antunovic et al. developed and
evaluated a PET/CT radiomics model for predicting
pathological complete response to neoadjuvant chemotherapy
in patients who had locally advanced breast cancer (19). Mu
et al. built a PET/CT radiomics signature to predict the
outcomes of NSCLC patients treated with checkpoint blockade
immunotherapy (20). The above studies employed a
conventional radiomics feature extraction method, i.e.,
radiomics features are extracted based on the whole tumor,
which implicitly assumes that the whole tumor shows a
consistent heterogeneous pattern. However, intratumoral
heterogeneity exists and can be further revealed in medical
images (21–23). For example, a whole tumor mass can be
divided into well-, moderately, and poorly differentiated
volumes, wherein poorly differentiated volumes show
significant biological aggressiveness, which makes them
different from other well-differentiated tumor volumes, and
displays different kinds of heterogeneous pattern. Habitat is a
term used to describe these regionally and heterogeneously
distinct volumes, while habitat imaging refers to obtaining
these volumes (23). Recently, some researchers have started to
apply habitat imaging to PET/CT radiomics and have shown
competitive performance in their tasks. Wu et al. proposed a
robust habitat generation method by clustering and validated it
in PET/CT habitat radiomics (24). According to this habitat
generation method, Xu et al. built a habitat-based PET/CT
radiomics method for predicting progression-free survival in
patients with nasopharyngeal carcinoma (25). Wu et al.
developed prognostic models by PET/CT habitat radiomics to
identify whether more aggressive treatment is needed for
patients with locally advanced cervical cancer treated with
chemoradiotherapy (26). Different from the abovementioned
clustering-based habitat generation method, they used Otsu
thresholding (27) to obtain habitats. The thresholding-based
habitat generation method fixes the number of habitats for each
tumor. However, this thresholding-based method is not suitable,
since assuming that the habitat number of NSCLC and BID are
totally the same is unreasonable. In addition, the conventional
clustering-based habitat generation method fixes the number of
supervoxels to be clustered. The supervoxels of a small tumor are
aggregated by fewer voxels than those of a large tumor, which
suffers from the limited resolution of the image. To improve the
issues mentioned above, we refine the clustering-based habitat
generation method by adaptively setting the number of
supervoxels for each tumor. Furthermore, we use the global
signal values instead of the local signal values for normalization. To
October 2021 | Volume 11 | Article 759897
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our knowledge, this is the first study to compare clustering- and
thresholding-based habitat generation methods.

Therefore, in this study, we aim to develop and evaluate
habitat imaging-based 18F-FDG PET/CT radiomics models for
discriminating NSCLC and BID, which helps medical physicists
and radiologists better diagnose NSCLC by PET/CT images.
2 MATERIALS AND METHODS

This study was approved by the institutional review board, and
the requirement for informed consent was waived since the data
were analyzed retrospectively and anonymously. The whole
workflow of our study is depicted in Figure 1.

2.1 Image Data
Between January 1, 2015 and February 28, 2021, patients who
had scanned PET/CT at the PET Center, the First Affiliated
Frontiers in Oncology | www.frontiersin.org 3
Hospital, School of Medicine, Zhejiang University, underwent
aspiration biopsy or surgical resection to obtain histopathological
results. The patients were enrolled based on the following inclusion
criteria: (i) histopathological results of the lesion were available; (ii)
NSCLC was primary and nonmetastatic; and (iii) NSCLC staging
was between I and III. A total of 317 lesions were included in our
study: 12 had ASC, 126 had ADC, 87 had SCC, and 92 had BID.
The demographic information of the enrolled patients is
summarized in Table 1. All image data were acquired on a
Biograph 16 PET/CT system (Siemens Healthineers, Hoffman
Estates, IL, USA). The PET images were reconstructed using the
iterative algorithm with four iterations and eight subsets. A
Gaussian filter with FWHM of 6.0 mm was applied to
postprocessing. The convolutional kernel for CT reconstruction
was B31f. The CT tube voltage was 120 kV, and the CT tube current
was 207.5 ± 57.6 mA. The CT exposure was 105.1 ± 29.2 mAs. All
lesions were semiautomatically segmented by two experienced
radiologists under mutual consensus using ITK-SNAP 3.6.0 (28).
FIGURE 1 | The whole workflow of our study.
October 2021 | Volume 11 | Article 759897
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The pixel spacing and slice thickness of each CT image were 1.00 ±
0.08 and 4.93 ± 0.44 mm/voxel, respectively. The pixel spacing and
slice thickness of each PET image were 4.06 ± 0.00 and 4.93 ± 0.44
mm/voxel, respectively. Bilinear interpolation was applied to PET
and CT images to ensure that they had the same voxel spacing of 1 ×
1 × 1 mm3.

All enrolled PET/CT data were preprocessed before training
and testing. Regarding CT, the windowing method was applied
to images with customized upper and lower gray level boundaries
so that the specific structure could be emphasized. By altering the
window width and window level, the contrast and brightness of
the image were changed accordingly. Referring to lung cancer
diagnosis by CT, radiologists usually use the lung window
(window width, 700 HU; window level, −600 HU) to
accentuate the lung parenchyma for assessment, including
areas of pulmonary vascular structure and consolidation.
Furthermore, radiologists normally employ the mediastinal
window (window width, 300 HU; window level, 40 HU) to
evaluate the mediastinal structures and chest wall, thus leading
to the recognition of structures of the mediastinum from
enlarged lymph nodes or other masses. Therefore, a
customized window (window width, 1,140 HU; window level,
−380 HU), which merges the mediastinal window and lung
window, was used for preprocessing so that the redundant
information could be eliminated and the target region could be
enhanced. Regarding PET, all PET images were converted from
activity to standardized uptake value (SUV) for the purpose
of quantification.

2.2 Habitat Generation
2.2.1 Clustering-Based Method
Our clustering-based habitat generation method was adapted
from the multiparametric intratumor partitioning method
proposed by Wu et al. (24). The main difference between the
conventional and adapted method is the hypervolume
generation. The conventional method fixed the number of
hypervolume for each tumor, while the adapted method fixed
the size of hypervolume so each tumors can have adaptive
numbers of hypervolume.

The first step is to generate a hypervolume whose
dimensionality is feature × depth × height × width. Along the
feature axis, we need to determine the size of the feature vector.
Frontiers in Oncology | www.frontiersin.org 4
In our case, we followed the four-dimensional (4D) feature
vector, which is comprised of PET SUV, CT intensity, PET
local entropy, and CT local entropy (24, 25). In detail, the local
entropy for PET and CT was computed within a small 9 × 9 × 9
neighborhood. For example, if the size of the input volume of
interest (VOI) is 64 × 64 × 64 for both PET and CT, the size of
the resulting hypervolume of the feature should be 4 × 64 × 64 ×
64; thus, the first dimension of this hypervolume is a feature
vector, which consists of PET SUV, CT intensity, PET local
entropy, and CT local entropy. The next step is to individually
cluster the voxel for each VOI, and thus, supervoxels (i.e.,
internal clusters for each VOI) can be obtained. The k-means
clustering algorithm was applied to voxel values (PET SUV, CT
intensity, PET local entropy, and CT local entropy) under the
Euclidean distance measurement. The intensity of the supervoxel
is characterized by averaging feature vectors. With respect to the
conventional clustering-based method, the cluster numbers of
each VOI are set to the same number. The normalization of the
4D feature vector is performed using the maximum and
minimum values among the 9 × 9 × 9 neighborhoods.
Regarding our adapted clustering-based method, we fix the
volume of supervoxels to be 729 mm3 and then calculated how
many supervoxels need to be clustered. In addition, global
minimum and maximum values were used for normalization
of the feature vector, which helps measure the distance better.
The last step is to cluster supervoxels from all VOIs to form
multiple habitats. The k-means clustering algorithm was applied
to aggregate all supervoxels to form habitats. The number of
habitats was tested from 2 to 10 to determine the optimized
number of habitats with the highest evaluation metric, the
Calinski–Harabasz index (29).

2.2.2 Thresholding-Based Method
The Otsu algorithm was used for thresholding-based habitat
generation. This algorithm determines the threshold by
maximizing interclass variance, or equivalently, by minimizing
intraclass variance. Otsu thresholding was applied to PET and
CT images, and thus, two thresholds of PET and CT were
obtained for separating habitats, i.e., PEThigh, PETlow, CThigh,
and CTlow. Therefore, a total of four habitats were generated for
each tumor: PEThigh ∩ CThigh, PEThigh ∩ CTlow, PETlow ∩ CThigh,
and PETlow ∩ CTlow.
TABLE 1 | Demographic information of the enrolled patients.

BID NSCLC

ASC ADC SCC

Tumor Number 92 12 126 87
Age 59.2 ± 10.8 60.5 ± 8.4 62.9 ± 9.2 64.9 ± 7.9
Gender
Female 37 3 71 3
Male 55 9 55 84

Weight (kg) 62.4 ± 13.0 65.7 ± 7.9 60.6 ± 9.3 63.9 ± 10.1
Tumor Diameter (mm) 61.6 ± 55.9 69.7 ± 80.8 45.6 ± 40.9 61.6 ± 33.0
Tumor Stage
I 38 4 62 13
II 15 4 32 26
III 39 4 32 48
O
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2.3 Feature Extraction
Feature extraction was performed on each habitat for each
modality. The PyRadiomics Python package version 3.0.1 (30),
which is based on the Image Biomarker Standardization
Initiative (31, 32), was used to extract 107 basic radiomics
features, including first-order, shape, gray level co-occurrence
matrix (GLCM), gray level size zone matrix, gray level run length
matrix (GLRLM), neighboring gray tone difference matrix
(NGTDM), and gray level dependence matrix (GLDM)
features (30). Note that the bin widths of CT and PET were set
to 25 and 0.25, respectively. Furthermore, co-occurrence of local
anisotropic gradient orientations (CoLIAGe) was employed to
extract 390 features from a gradient perspective (33). A total of
432 wavelet-local binary pattern (LBP) features, which show
competitive performance in capturing cancerous heterogeneity,
were the first-order features extracted from images that were
orderly processed by discrete wavelet transformation and LBP
(34). The details of radiomics features can be found in the
Supplementary Information.

2.4 Feature Selection and Model
Construction
For feature selection, Spearman’s rank correlation coefficient was
calculated to eliminate redundant features whose coefficients
were >0.99, and then, a hypothesis test was employed to select
the features that were significantly associated (p <.05) with the
predictive label, i.e., NSCLC and BID. In detail, the Shapiro–Wilk
test and Levene’s test were used to test whether the features
satisfied a normal distribution and whether the variances in
features were homogeneous. If both of these tests satisfied p <.05,
a t-test was applied to select the significantly associated features;
otherwise, the Mann–Whitney U-test was performed.
Afterwards, three different model-based feature selection
methods were applied to further select the significant features.
Support vector machine recursive feature elimination (SVM-
RFE), random forest, and least absolute shrinkage and selection
operator (LASSO) regression were used as the model-based
feature selection methods. The selected features were used to
develop radiomics models, and the classifiers we used included
SVM, random forest, gradient boosting decision tree (GBDT),
logistic regression, AdaBoost, and bagging. Hence, the resulting
number of combinations for constructing radiomics models
was 18.

Fivefold cross-validation was performed in model
construction, and the evaluation metrics, which included the
area under the receiver operating characteristic (ROC) curve
(AUC), accuracy, sensitivity, and specificity, were obtained by
averaging the values among five folds. Note that the optimized
threshold was determined by the highest F1 score in the training
set. The following kinds of radiomics models were compared:
(i) conventional nonhabitat radiomics; (ii) conventional
thresholding-based habitat radiomics; (iii) conventional
clustering-based habitat radiomics; (iv) adapted clustering-
based habitat radiomics; (v) adapted clustering-based habitat
combined with conventional nonhabitat radiomics;
(vi) conventional thresholding-based habitat combined with
Frontiers in Oncology | www.frontiersin.org 5
conventional nonhabitat radiomics; and (vii) combination of
adapted clustering-based habitat, conventional thresholding-
based habitat, and conventional nonhabitat radiomics. In our
study, we averaged the predictive value of all habitats in a tumor
to obtain the comprehensive predictive value.

2.5 Statistical Analysis
There were three feature selection methods and six classifiers and
thus leading to 18 radiomics models, which can be constructed
for each kind of habitat generation method. In addition, all
evaluation metrics were averaged in terms of five folds. To
evaluate the performance for different habitat-based radiomics,
a pairwise t-test was performed to evaluate whether there was
significant improvement between these methods.
3 RESULTS

3.1 Habitat Characteristics
According to Calinski–Harabasz index, the optimized numbers
of habitats were 5 and 2 for adapted and conventional clustering-
based habitat generations in our study, respectively. Regarding
our adapted clustering-based method, we adaptively set the
number of habitats for each tumor. The distribution of habitat
number for each type of lesion is summarized in Figure 2. From
Figure 2A, we can see that the habitat number proportions of
habitats 1–3 between NSCLC and BID are similar, while habitats
4 and 5 show differences between NSCLC and BID. Furthermore,
NSCLC was split into histopathological subtypes, including
ADC, ASC, and SCC, as shown in Figure 2B. Specifically,
Figure 2B shows that the habitat number distribution of BID
is very close to that of ADC. Figure 3 shows the stacked
histograms of habitat size for each NSCLC histopathological
subtype and BID. The vertical and horizontal axes represent the
occurrence of a specific habitat and the proportion of the habitat
size and the whole tumor size, respectively. The size proportion
represents the ratio of the size of habitat to the size of whole VOI.
From Figure 3, we can see that (a) ADC could appear as a single
habitat as habitats 1–3, while the occurrence of habitat 5, which
merely appears as a small region, is very low; (b) ASC mainly
appears as habitats 2 and 3 in terms of the size proportion and
unlikely appears as habitat 4; (c) SCC tends to appear as multiple
habitats, with the highest frequency of habitat 5 compared to the
others; and (d) the distribution of BID is very similar to that of
ADC, which shows a similar phenomenon as that in Figure 3B.

3.2 Performance Evaluation of Habitat
Imaging-Based Radiomics
Radiomics features were extracted from these five habitats. Since
stratified sampling was applied to fivefold cross-validation, the
training, validation, and testing sets had the same proportions of
ADCs, ASCs, SCCs, and BIDs, which suggests that these subsets
of data have similar lesion distributions. Since we used three
feature selection methods for fivefold cross-validation, feature
selection was applied 15 times to develop habitat radiomics.
Thus, the maximum number of selected times for a feature is 15.
October 2021 | Volume 11 | Article 759897
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We summarized the top 10 selected features for each habitat
radiomics. The selected features of conventional nonhabitat
radiomics, adapted clustering-based habitat radiomics, and
their combination are shown in Figure 4. The top 10 selected
features for the other habitat methods are summarized in
Supplementary Figure 1 of the Supplementary Information.
Regarding conventional nonhabitat radiomics, the top 10
selected features included 4 features from CT and 5 features
from PET. There were three histogram features, one shape
feature, and six second-order features. Regarding adapted
clustering-based habitat radiomics, three and six features were
based on CT and PET, respectively. There was one shape feature,
one first-order feature, and eight second-order features.
Regarding adapted clustering-based habitat radiomics
combined with conventional nonhabitat radiomics, only two
features were from CT and seven features were from PET.
There was one histogram feature, one shape feature, and eight
second-order features. Comparing the features extracted from
conventional nonhabitat radiomics with those extracted from
adapted clustering-based habitat radiomics, we can see that more
PET features were extracted, and the top 2 features were changed
from CT to PET, which implicitly reveals that the adapted
clustering-based habitat can discover more diagnostic potential
in PET with the help of CT.

A total of 6 classifiers and 3 feature selection methods, which
form 18 different radiomics pipelines, were used to develop
radiomics models. The radiomics features extracted from
different habitat generation methods were fed into these
pipelines, and then the mean and standard deviation of the
evaluation metrics were calculated to evaluate the overall
Frontiers in Oncology | www.frontiersin.org 6
predictive performance. A total of seven habitat imaging-based
radiomics methods were compared, as mentioned in Section 2.4.
Their diagnostic performance metrics are summarized in
Table 2. In this table, T1 depicts the pairwise t-test between
the adapted clustering-based combined with nonhabitat method
and the rest of methods, and T2 illustrates the pairwise t-test
between the adapted clustering-based method and the other
habitat generation methods. The performance details for the
specific classifiers are summarized in Supplementary Table 1 of
the Supplementary Information. The metrics of accuracy,
sensitivity, and specificity are based on the optimized threshold
obtained from the F1 score. Since we had a highly imbalanced
dataset and the three metrics are easily affected by the threshold,
the AUC metric, which can comprehensively reflect the
performance of binary classification models, was used for the
performance comparisons (35). According to Table 2, we can see
that the features extracted from the adapted clustering-based
method combined with the non-habitat method can be used to
develop radiomics models that outperform the others, except for
the adapted clustering-based radiomics method, in terms of the
AUC (p <.05), with a mean AUC of 0.7329. For further analyze
the habitat characteristics; four samples were selected in
Figure 5, and their corresponding habitats with predicted
probability are plotted in Figure 6.
4 DISCUSSION

In this study, three kinds of habitat generation methods were
compared. PET and CT radiomics features were extracted from
A

B

FIGURE 2 | The distribution of habitat number for (A) BID and NSCLC and for (B) SCC, BID, ASC, and ADC.
October 2021 | Volume 11 | Article 759897
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these habitats. Radiomics models were then developed to
compare the predictive performance metrics of these habitat
generation methods. Since we had a highly unbalanced dataset,
with 225 NSCLC cases and 92 BID cases, the evaluation metrics
of accuracy, sensitivity, and specificity were highly affected by the
discrimination threshold. Thus, we only compared the AUC to
evaluate the difference in performance. The adapted clustering-
based habitat radiomics model showed a significantly better
AUC of 0.7329 ± 0.0170 in the fivefold testing sets than the
non-habitat radiomics (p <.001), conventional thresholding-
based radiomics (p <.001), and conventional clustering-based
radiomics (p <.001) models. This finding implies that adapted
clustering-based habitat radiomics has the potential to provide
significant values to medical physicists and radiologists and help
customize the therapeutic strategy for patients (36), e.g., with the
help of habitats, medical physicists and radiologists can focus on
Frontiers in Oncology | www.frontiersin.org 7
the most malignant region for radiotherapy. Furthermore, we
can see that habitat radiomics developed by combining adapted
clustering-based features with conventional nonhabitat features
shows the best predictive performance in terms of evaluation
metrics compared with the other combinations.

To further analyze habitat radiomics, we selected four samples of
ADC, SCC, ASC, and BID, and their corresponding PET/CT fusion
images are shown in Figure 5. For these four samples, we plotted
the habitats for each of the habitat generation methods, as shown in
Figure 6. Moreover, the specific predictive values of the models,
which were developed by the adapted clustering-based habitat,
conventional thresholding-based habitat, and conventional
nonhabitat radiomics, are marked accordingly in Figure 6. By
looking at the habitats of the four samples generated by the
adapted clustering-based method (the first row of Figure 6), we
can see that habitat 2 tends to appear as a shell shape, habitat 4 tends
A B

C D

FIGURE 3 | The distribution of habitat size proportion for (A) ADC, (B) ASC, (C) SCC, and (D) BID.
October 2021 | Volume 11 | Article 759897
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to appear in relatively benign tissue, and habitat 5 tends to appear at
the center of the lesion. Habitat 5 only appeared in these three
NSCLC samples, while it did not appear in the BID sample. This
finding was also supported by Figure 2D, which demonstrates that
BID had almost no habitat 5, and if there was any sign of habitat 5,
the volume was very small. Habitat 1 only appeared in ADC and
SCC among the four samples. The four samples in the second row
of Figure 6 were generated based on conventional thresholding-
based method. Note that PETlow ∩ CTlow, PETlow ∩ CThigh, PEThigh

∩ CTlow, and PEThigh ∩ CThigh represent habitats 1–4, respectively.
For these four cases, habitat 4 tends to appear in the tumor core
region, while habitats 1 and 2 appeared as outer and inner shell
shapes, respectively. Habitat 3 was shown in the tumor core as a
small volume. However, all four samples showed a similar habitat
pattern because of the characteristics of thresholding-based method.
Frontiers in Oncology | www.frontiersin.org 8
By looking at the third row of Figure 6, habitats generated by the
conventional clustering-based method only obtained two kinds of
habitats. Habitat 1 is very small and only focus on the rim of tumor,
while habitat 2 almost occupies the whole volume. Note that we
provided an overall predictive value by averaging the predictive
values of all habitats for a lesion. Since the adapted clustering-
based method is significantly better than the other habitat
generation methods, it implicitly shows that the proposed habitat
generation method can significantly improve the performance of
the radiomics model.

The employment of habitat imaging is due to the subregional
heterogeneity and complexity of the tumor microenvironment
because there are complex metabolic contacts that appear in
cancerous tissues. Given the domain knowledge, cancer cells
often have increased glucose metabolism (37). To achieve this,
A

B

C

FIGURE 4 | The top 10 selected features of (A) conventional nonhabitat radiomics, (B) adapted clustering-based habitat radiomics, and (C) their combination.
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glucose transporters are overexpressed in cancer cells to ensure
glucose transportation for oncogenic transformation and
progression. Regarding SCC, the histopathological subtype can be
indicated by high expression of glucose transporter 1 (GLUT1) (38,
39), e.g., premalignant lesions of bronchial epithelium (40), which
can be reflected by a high SUV in PET images. For ADC, the mass
can consist of different levels of cell differentiation to demonstrate
heterogeneity. Moreover, the expression of glucose transporters in
ADC is also heterogeneous, e.g., the poorly differentiated and well-
differentiated regions express GLUT1 and sodium-glucose
cotransporter-2, respectively (41). On the other hand,
inflammation is mainly caused by cells from innate immune
system, while cancer cells have a mechanism of cancer immune
escape (42). This mechanism allows cancer cells to competitively
deprive glucose, an important nutrient, from immune cells (43).
Thus, mining the microenvironmental heterogeneity captured by
PET/CT can help medical physicists and radiologists better
discriminate NSCLCs, and our result demonstrates that habitat
imaging is a potential method for mining the heterogeneity of
tumors and precise resection. Supplementary Figure 2 shows the
density of habitat size proportion for each kind of lesion, and the
Frontiers in Oncology | www.frontiersin.org 9
differences between the distributions of four kinds of lesions are
obvious by visual assessment.

Nevertheless, due to the limitation of sample size and
imbalanced class, we used a different method to develop
radiomics models. Although different kinds of habitats may
have some kinds of difference, we still used habitat as a sample
unit to develop models. Nevertheless, the optimal way is to
develop tailored radiomics models for each habitat, which means
that we should have had five different radiomics models for
predicting corresponding habitats. Moreover, to further exploit
the potential of habitat imaging, a prospective study should be
conducted by jointly utilizing the medical images and the
corresponding aligned whole-mount histology images (44).
With the help of pathologists, the regions of interest for each
NSCLC histopathological subtype can be delineated on histology
images. In this case, the habitat generation method is no longer
based on the predetermined handcrafted feature vector but is
based on the experience of the pathologist. In addition, a
thoughtful well-designed model development method can be
used to jointly utilize the information from both histology images
and PET/CT images and then to cluster the habitats of PET/CT
TABLE 2 | Summary of the diagnostic performances for each method.

Habitat method Training set Testing set P-value

AUC Acc. Sens. Spec. AUC Acc. Sens. Spec. T1 T2

Non-habitat 0.8751 ±
0.0768

0.8519 ±
0.0752

0.9601 ±
0.0199

0.5867 ±
0.2234

0.6938 ±
0.0190

0.7087 ±
0.0232

0.8486 ±
0.0595

0.3674 ±
0.0836

<.001* <.001*

Conventional thresholding-based 0.8350 ±
0.0817

0.8460 ±
0.0685

0.9625 ±
0.0161

0.5607 ±
0.2266

0.7090 ±
0.0165

0.7259 ±
0.0194

0.8889 ±
0.0468

0.3256 ±
0.0692

<.001* <.001*

Conventional clustering-based 0.8259 ±
0.0877

0.8413 ±
0.0702

0.9580 ±
0.0148

0.5381 ±
0.2215

0.6567 ±
0.0223

0.7204 ±
0.0170

0.8826 ±
0.0474

0.3214 ±
0.0826

<.001* <.001*

Adapted clustering-based 0.8554 ±
0.0749

0.8434 ±
0.0717

0.9562 ±
± 0.0181

0.5706 ±
0.2156

0.7270 ±
0.0147

0.7268 ±
0.0220

0.8330 ±
0.0354

0.3475 ±
0.0931

.084 –

Conventional thresholding-based + Non-
habitat

0.8423 ±
0.0761

0.8552 ±
0.0679

0.9647 ±
0.0141

0.5860 ±
0.2174

0.7124 ±
0.0290

0.7281 ±
0.0124

0.8773 ±
0.0372

0.3590 ±
0.0896

.002*

Adapted clustering-based + Non-habitat 0.8653 ±
0.0720

0.8599 ±
0.0698

0.9628 ±
0.0192

0.6091 ±
0.2050

0.7329 ±
0.0170

0.7422 ±
0.0138

0.8974 ±
0.0316

0.3626 ±
0.0743

-

Adapted clustering-based + Non-habitat +
Conventional thresholding-based

0.8408 ±
0.0628

0.8578 ±
0.0556

0.9586 ±
0.0184

0.5965 ±
0.1727

0.7144 ±
0.0164

0.7306 ±
0.0195

0.8807 ±
0.0295

0.3603 ±
0.0951

<.001*
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*Significant result.
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FIGURE 5 | The selected four samples of (A) ADC, (B) SCC, (C) ASC, and (D) BID in PET/CT images.
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A B C D

E F G H

I J K L

M N O P

FIGURE 6 | The habitat generated by (A–D) adapted clustering-based, (E–H) conventional thresholding-based, (I–L) conventional clustering-based, and
(M–P) nonhabitat methods and their corresponding predicted probability. The first, second, third and fourth columns represent ADC, SCC, ASC and BID,
respectively. For the adapted clustering-based method, the habitat 1 to 5 are showed in the colors of blue, aquamarine, yellow, orange and red respectively.
For the conventional thresholding-based method, habitats 1–4 are showed in colors of blue, green, orange and red, respectively. For the conventional
clustering-based method, the habitats 1 and 2 are showed in colors of green and red, respectively.
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images. Thus, a histopathological subtype can be determined by
investigating whether a specific kind of habitat appeared on PET/
CT images.

5 CONCLUSION

Habitat imaging is meaningful for dividing a lesion into multiple
habitats based onmetabolic and anatomic information and further
analysis of the lesion. Habitat imaging-based 18F-FDG PET/CT
radiomics shows potential as a biomarker for discriminating
NSCLC and BIDs, which indicates that the microenvironment
variations in NSCLC and BIDs can be captured by PET/CT.
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