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Chemotherapy is one of the important means of tumor therapy. However, most of the anti-
tumor drugs that currently used in clinic are hydrophobic non-specific drugs, which
seriously affect the efficacy of drugs. With the development of nanotechnology, drug
efficacy can be improved by selecting appropriate biodegradable nanocarriers for
achieving the controlled release, targeting and higher bioavailability of drugs. This paper
reviewed the research progress of anti-tumor drug nanoparticle carriers, which mainly
summarized the materials used for anti-tumor drug nanoparticle carriers and their effects
in anti-tumor drugs, as well as the targeted drug delivery methods of anti-tumor drugs
based on nanocarriers.
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INTRODUCTION

Tumor is still one of the main fatal diseases of human beings, and chemotherapy is one of the main
methods to treat tumor in clinic (1). However, most anti-tumor drugs have poor water solubility and
low bioavailability (2), which leads to the limited therapeutic effect of drugs on tumor tissues (3). In
addition, chemotherapy will have serious toxic and side effects on other normal tissues and cells (4),
which not only damages patients’ body function, but also causes patients to develop drug
resistance (4), which seriously affects the curative effect. In 1978, Marty first used nanoparticles as
drug carriers (5). Nanocarriers are nano-sized carriers based on the concept of targeted drug delivery
system (TDDS) (4). At present, it has become a research hotspot due to its advantages of controlled
release, targeting, high efficiency, low toxicity and high stability (6). With the development of
nanotechnology, the anti-tumor drug with nanoparticles as carriers can achieve controlled release
and targeted drug delivery through using special materials and surface modification (4). It can also
improve the stability and bioavailability of anti-tumor drugs, overcome the limitations of traditional
anti-tumor drugs, which has been widely used. In this review, we introduced main types of nano-
drug carrier materials and their effects and discussed the targeted transport modes of nano-
drug carriers.
NANO CARRIERS FOR ANTI-TUMOR DRUG

The nanoparticles used as anti-tumor drug loading system have a size of 1–100 nm (4) and mainly
include nano-liposomes, nano-polymers, nano-gene carriers, nano-inorganic materials and other
drug carriers. Figure 1 showed the development of nano-sized anti-tumor drug carriers. Table 1
presented the materials used as anti-tumor drugs delivery carriers.
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FIGURE 1 | Development of nano-carriers for anti-tumor drug.
TABLE 1 | Different materials as anti-tumor drugs delivery carrier.

Nanomaterial Modification Anti-cancer drug Results Reference

Liposomes No Luteolin Improve solubility and bioavailability
of Luteolin and obtain better
anticancer effect

(7)

Anti-GD2 antibodies Doxorubicin Improve the targeting of drugs to Human
Neuroblastoma

(8)

NGR peptides Bortezomib Reduce side effects and improve
anti-tumor effect

(9)

hyaluronic Chitosan Paclitaxel Improve the targeting and stability
of drug

(10)

PLA No Tamoxifen Reduce side effects and improve anti-
tumor effect

(11)

methoxy poly (ethylene glycol) verapamil and doxorubicin Reduce drug resistance and improve
anti-cancer effect

(12)

PEG Anastrozole Effectively deliver Anastrozole to
target cells

(13)

PLGA Chitosan and PEG curcumin Improve the targeting of drug (14)
PEG Fe3O4 doxorubicin Improve the therapeutic effect (15)
Poly(anhydride) Cyclodextrins Camptothecin Improve bioavailability of Camptothecin (16)
Chitosan No Chlorambucil Reduce the abnormal toxicity and

enhance the uptake of tumor cells
(17)

carbon nanotubes Folate (covalent) Doxorubicin and cell impermeant
propidium iodide

Improve the drug loading and stability (18)

Fluorescent probe labeled single
strand DNA (non-covalent)

No Improve the targeting response ability (19)

Silica Nanoparticles Econazole Fluconazole Enhance targeting and permeability and
reduce side effects

(20)

Au nanorods 5’ thiol end Doxorubicin and platinum Improve the targeting and response activity (21)
ZnO nanoparticle PEG Doxorubicin Increase blood concentration and anti-

tumor efficiency
(22)

No Ibuprofen Reduce dissolution rate and improve anti-
tumor ability

(23)

Quantum dots Boron nitride Doxorubicin Improve drug activity and
anti-tumor ability

(24)
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Nano-Liposomes
Liposomes are structures, similar to biofilms, composed of
hydrophilic head and lipophilic tail, which can encapsulate drugs
in aqueous solution to form monolayer or multilayer vesicles (25).
Liposomes are considered as promising drug carriers due to their
low toxicity, high safety, high biocompatibility, strong drug loading
capacity and more flexible regulation of drug release (25–27).
Luteolin (LUT) is a kind of natural flavonoids widely distributed
in a variety of plants and has anti-tumor activity. Due to the poor
water solubility and low bioavailability of luteolin, so Wu et al. (7)
prepared liposome LUTwith encapsulation efficiency of up to 90%.
Invitro studies showthatLUTencapsulatedby liposomecan inhibit
tumor growthby inducing apoptosis of tumor cells andhas superior
anti-tumor effect on mouse colon cancer cell CT26 compared with
LUT without liposome.

Nano-Polymers
Nano-polymer carriers have good biocompatibility and
biodegradability (28), and have been widely studied in the
medical field. Currently, nano-polymer carriers used for anti-
tumor drugs mainly divided into natural and synthetic nano-
polymer carriers. Natural nano-polymer carriers mainly include
hyaluronic acid-based polymers, agarose, collagen and chitosan
while synthetic nano-polymer carriers include poly anhydrides,
poly (ϵ-caprolactone) (PCL), polylactic acid (PLA), polyethylene
glycol (PEG), polyglutamic acid(PGA),and poly D,L-lactide-co-
glocolide(PLGA),etc. Among them, PEG with low toxicity have
been the focus of research in recent years. PEG is a polymermaterial
obtained by ring-opening polymerization of ethylene oxide. Its
main characteristics are controllable polymerization degree, stable
structure (29), and can avoid the recognition of human immune
system,whichhas the property of “stealth” in vivo. Genexol-PM® in
Korea and Paclical® in Russia are polymer nanodrugs that have
been approved clinically, and both of them are polymer
nanomedicine formulations of paclitaxel. Furthermore, there are
many polymer nano-drugs that have entered preclinical research
(30), such as Opaxio and Xyotax.

Nano-Gene Carriers
Gene therapy played an important role in cancer treatment (31). The
carrier of gene therapywas the key to the success of gene therapy (32).
At present, the commonly used gene vectors mainly include viral
vectors and non-viral vectors. The difficulty and high cost in
preparing viral vectors and the potential carcinogenicity limit their
application in gene therapy (33). As a potential substitute for viral
vectors, non-viral vectors are simple to prepare, high in portability
and low in toxicity, and most of them are nano-vectors including
peptides, liposome, polymers and so on (34–36). Wang et al. (37)
prepared a multifunctional tumor therapeutic carrier transport
plasmid Cas9-sgPlk-1 by electrostatic interaction with lipid
encapsulated gold nanoparticles, which provides a multifunctional
method for efficient targeted gene editing and makes nano-gene
carriers more widely used in vivo and in vitro experiments.

Inorganic Nanoparticles
In recent years, inorganic nanoparticles have been widely used in
tumor imaging and treatment (38) mainly including metals
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(e.g., gold, zinc, silver and iron nanoparticles), metal oxides
(iron and titanium oxide nanoparticles), carbon dots, carbon
nanotubes and semiconductors etc. (39, 40). Due to the unique
physical and chemical properties and good stability of inorganic
nanoparticles, especially optical, magnetic and other physical
properties, inorganic nanoparticles may be more suitable for
cancer treatment than traditional organic nanocarriers (38). Chen
et al. (41) modify Fe3O4 nanoparticles onto carbon nanotubes to
provide a double-targeted drug delivery system with about 110%
excellent drug-loading capacity for tumor-targeted optical imaging
and magnetic-targeted drug delivery. However, the toxicity of
inorganic nanoparticles greatly limits its clinical application (42).
TARGETED DELIVERY OF
NANO-DRUG CARRIERS

Although traditional chemotherapy drugs can kill tumor cells with
high efficiency, they also have toxic and side effects on normal
tissuesdue to their lackof specificitywhilenanotechnologyprovides
a newopportunity for tumor targeted therapy (43).At present, anti-
tumor drugs based on nanoparticles can be targeted to transport
drugs through three ways: passive transport, active transport and
physical and chemical transport, which can identify cancerous
tissues more accurately in complex organisms and release them at
cancerous tissues to reduce toxic and side effects on normal cells.

Passive Targeted Transport
Passive targeting, mainly through permeation and retention
effect(EPR), enables the drug to be swallowed by macrophages
as a foreign body immediately after entering the human body, so
as to reduce non-specific binding with non-target sites and reach
the targeted sites for selective binding (44). Drug carriers, such as
liposomes, mainly transported drugs through passive targeting
(45). Mitra et al. (46) embedded adriamycin glucan complex in
long-circulating nanoparticles, and enriched the drug targeting
to the tumor site of mice by EPR effect, so as to achieve the
purpose of slow targeting, high efficiency and low toxicity of
drugs. At present, many passive targeting nanoparticles have
shown promising therapeutic effects in clinical trials, such as
Marqibo, Myocet and lysosomes (47).

Active Targeted Transport
The limitation of passive targeting is that it has lower specificity
to tumor site, while active targeting has higher targeting. It is
found that some antigens or receptors are over-expressed on the
surface of tumor cells, while normal cells express them normally
(48), such as folate receptor (49), prostate-specific membrane
antigen (50), biotin receptors (51), transferrin receptor (52),
peptide (53) and the carbonic anhydrase IX (54). Active
targeting is based on the specific recognition between receptor
and ligand or the covalent modification of targeting groups on
the surface. Mackiewicz et al. (55) designed multifunctional poly
(ethylene glycol)-block-poly(lactic acid)) nanoparticles modified
by folic acid and fluorescent probes, which can achieve the
purposes of cell imaging and targeted delivery of anti-tumor
drugs at the same time.
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Physical and Chemical Targeted Transport
The microenvironment of tumor cells is different from that of
normal cells. Based on the unique physical and chemical
environment of tumor site, researchers have developed a series of
nano-drug carriers with stimulus response, which can achieve
targeted release by controlling exogenous stimulus (change of
temperature, magnetic field, light or electric pulse) or endogenous
stimulus (change of PH value or redox), thereby improving drug
efficacy and reducing side effects (56–59).

Magnetic-Responsive Nanocarriers
Since Widder et al. (60) proposed the targeted therapy of magnetic
drugs in the 1970s, the research on magnetic targeted drug delivery
system (MTDS) has become an important part of the current
research on tumor diagnosis and treatment. Magnetic nanoparticles
were fixed by external magnetic field, and then heated by alternating
magnetic field to kill tumor cells (61). MTDS usually used core-shell
nanoparticles (62), magnetic liposomes (63) and nanoporous metal
capsules (64) as magnetic responsive nanocarriers. Among them,
superparamagnetic iron oxide nano drug-loaded particles have
become the current research focus due to their low cytotoxicity,
chemical and magnetic stability. Shalaby et al. (65) combined
magnetic nanoparticles with adenovirus to transfect them into
human fibroma cells under the action of external magnetic field.
The results showed that magnetic transfection could significantly
inhibit cell proliferation and induce apoptosis.

PH-Responsive Nanocarriers
pH value in tumor cells is generally lower than that in normal
tissues. The pH value of normal tissue is about 7.4, while the pH
value of tumor extracellular microenvironment is about 6.5~7.2
(66). Researchers have developed pH-responsive drug carrier
systems by introducing alkaline polymers containing multiple
amino groups into polymers, or acetals, orthoesters, hydrazine
bonds that can be broken in acidic environments (67–69). This
carrier systems were often used to control drug release in specific
organs (such as the gastrointestinal tract or vagina) or organelles
(such as nucleosomes or lysosomes) and trigger drug release when
microenvironment changes are associated with pathological
conditions (70). Deng et al. (71) found that the amino
protonation caused by chitosan swelling would lead to the release
of tumor necrosis factor-a (TNF-a) encapsulated in chitosan in
tumor tissues in local acidic environment.

Temperature-Responsive Nanocarriers
Temperature-responsive nanocarriers maintain structural integrity
in normal tissues (37°C), and the drug is well encapsulated in
nanomaterials, but the tumor tissue temperature of the patients
treated by hyperthermia therapy is as high as 39.5°C, therefore,
when the nano-carrier reaches the tumor site, at least one component
of the nano-material responds to the nonlinear rapid change of
temperature, the structure of the system is destroyed and the drug is
released, thus realizing targeted drug delivery at the tumor site (72).
Temperature-responsive nanocarriers usually included liposomes
and polymer micelles (n-isopropylacrylamide). Shah et al. (73)
wrapped photosensitizer tetrakis(hydroxymethyl)phosphonium
chloride and anticancer drug doxorubicin in hydrophobic lipid
Frontiers in Oncology | www.frontiersin.org 4
bilayer membrane, and wrapped magnetic nanoparticles in
hydrophilic inner capsule, realizing simultaneous magnetocaloric
therapy, photodynamic therapy and chemotherapy. Experimental
results show that combined therapy can almost eliminate completely
cancer cells, and the therapeutic effect is remarkable.

Photo-Responsive Nano-Carrier
The photo-responsive nano-carrier can respond to specific
wavelength light to achieve targeted drug delivery (74). The
photosensitive azobenzene group and its derivatives can be
optically isomerized from trans to cis under the irradiation of 300-
380 nm, and can also be optically isomerized from cis to trans in the
visible region,whichmakes itpossible tooptically controldrugrelease
(75). Because soft tissue has strong scattering in the ultraviolet visible
region less than 700 nm, the penetration depth of light-responsive
nanocarriers is low (~ 10 mm), which is only suitable for body parts
that canbedirectly irradiated (suchas eyes and skin, etc.) (74).Today,
near infrared lasers (NIR)withwavelengths ranging from700 to1000
nm have wide clinical applications due to their low scattering, deep
tissue penetration, and micro-tissue damage (76). YOU et al. (77)
designed and synthesized multifunctional doxorubicin hollow gold
nanoparticles, which accelerated the release of drugs under the
irradiation of near infrared light. Compared with traditional
chemotherapy methods, the anti-cancer activity was increased, and
the systemic toxicity was reduced, proving that the NIR technology
has a broad prospect.

Redox-Responsive Nanocarriers
ConcentrationofGlutathione (GSH) in tumor cellswas about several
hundred times higher than that in extracellular cells. In general,
redox-responsive nanocarriers can intelligently target drug release in
tumorcells by introducingdisulfideordiselenidebonds (78),which is
of great significance to many drug molecules (e. g. camptothecin,
doxorubicin, etc.) that exert their effects in the organelles of tumor
cells. Disulfide bonds are very stable under normal physiological
condition but will be reduced and broken in the presence of high
concentrationGSHin tumorcells (79). Basedon thisprinciple,Wang
et al. (80) developed Camptothecin (CPT) conjugated core cross-
linked micelles that can break down disulfide bonds by oxidation-
reduction, thus, destroying the micelle structure and releasing CPT
rapidly. In vitro cytotoxicity study showed that the anti-cancer
activity of redox-responsive core cross-linked micelles was
significantly higher than that of nonresponsive micelles.
CONCLUSION AND PROSPECT

Great progress has been made in the research of nano anti-tumor
drug carrier, which effectively overcomes the limitations of poor
solubility, low bioavailability and non-specificity of traditional
chemotherapy drugs, and obviously improves the curative effect
of drugs. At present, nano-carriers for anti-tumor drugs mainly
include nano-liposomes, nano-polymers and nano-gene carriers,
which belong to nano-organic materials and nano-inorganic
materials. The application of anti-tumor drug nanocarriers can
truly achieve targeted drug delivery at the focus, and its targeted
transportationmodesmainly include passive transportation, active
September 2021 | Volume 11 | Article 758143
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transportation and physical and chemical transportation
(according to the changes of temperature, magnetic field, light or
electric pulse, PH and redox). However, most of the research on
nano anti-tumor drug carrier focuses on the basic theory, and few
drugs can be used clinically, which limits the wide application of
nano anti-tumor drug carriers (81–83). In the future, researchers
need to continuously explore and design nanoporous carriers of
anti-tumor drugs with high drug loading, high efficiency, low
toxicity, low cost and clinical application value. The modification
ofnanoparticles is combinedwith single surfacegroupmodification
and combined physicochemical modification so as to establish a
new route of administration, which is conducive to the
interdisciplinary comprehensive research and maximize its
scientific value and market value.
Frontiers in Oncology | www.frontiersin.org 5
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