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Intrahepatic cholangiocarcinoma (ICC) is one of the most commonly diagnosed
malignancies worldwide, and the second most common primary liver tumor. The lack
of effective diagnostic and treatment methods results in poor patient prognosis and high
mortality rate. Atypical protein kinase C-i (aPKC-i) is highly expressed in primary and
metastatic ICC tissues, and regulates epithelial mesenchymal transition (EMT) through the
aPKC-i/P-Sp1/Snail signaling pathway. Recent studies have correlated aberrant glucose
metabolism with EMT. Given the vital role of FBP1 in regulating glucose metabolism in
cancer cells, we hypothesized that aPKC-i downregulates FBP1 in ICC cells through the
Snai1 pathway, and enhances glycolysis and metastasis. We confirmed the ability of
aPKC-i promotes glycolysis, invasion and metastasis of cancer cells, and further
demonstrated that FBP1 inhibits the malignant properties of ICC cells by antagonizing
aPKC-i. Our findings provide novel insights into the molecular mechanisms of ICC
progression and metastasis, as well as a theoretical basis for exploring new
treatment strategies.

Keywords: aPKC-i, intrahepatic cholangiocarcinoma, FBP1, Snai1, EMT, invasion, metastasis
INTRODUCTION

Intrahepatic cholangiocarcinoma (ICC) is a highly malignant tumor that originates from the
epithelial cells of the intrahepatic secondary bile duct and its branches. It is the second most
common primary liver tumor, and has poor prognosis (1) due to frequent metastasis and
recalcitrance to radiotherapy and chemotherapy (2, 3). Although notable improvements have
been made with different preclinical available cholangiocarcinoma models (4–6), such as the
fibroblast growth factor receptor 2 inhibitor pemigatinib, the first approval of a molecularly targeted
treatment in patients with advanced cholangiocarcinoma by US Food and Drug Administration, the
prognosis of this disease remains unsatisfactory (7). Therefore, further studies on the molecular
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mechanism of invasion and metastasis and exploring a novel and
effective therapeutic target of ICC are urgently needed (8).

Atypical protein kinase C-i (aPKC-i) is a promising target for
multiple tumor types, such as non-small cell lung cancer, pancreatic
ductal adenocarcinoma and hepatocellular carcinoma (9–11). A
recent study showed that targeted silencing of aPKC-i reversed
TGF-b-induced epithelial mesenchymal transition (EMT) of non-
small cell lung cancer cells, implying that aPKC-i may function to
promote EMT (12). In addition, it is also involved in tumor cell
transformation, adhesion, movement, invasion and metastasis (13).

Fructose-1,6-bisphosphatase (FBP1) is one of the rate-
limiting enzymes of gluconeogenesis (14), and its epigenetic
regulation is critical to the glucose metabolism in cancer cells
(15, 16). Loss of FBP1 in basal-like breast cancer cells
significantly increased glucose uptake, lactate secretion and
glycolysis rate, which was conducive to EMT and the
maintenance of the basal-like phenotype (17, 18). It is also
reported that decreased FBP1 expression regulating by miR-
18a-5p promotes liver cancer cells migration and invasion (19).
Glucose metabolism is a determinant of cancer cell invasion and
metastasis. Cancer cells preferentially use glycolysis to produce
energy in the hypoxic tumor mass, a phenomenon known as the
“Warburg effect” (20–23). Glucose uptake is significantly
enhanced in the cancer cells during EMT, which coincides
with increased glycolysis (24, 25) and lactate secretion that
promote tumor invasion and distant metastasis (26, 27). It is
also reported that the reprogramming of tumor cell metabolism
is a macroscopic change, and the change of ICC from oxidative
phosphorylation to glycolysis provides favorable conditions for
the proliferation of tumor cells (5–7).

The Snail family of transcriptional repressors, including
Snai1, Snai2 (Slug) and Snai3 (Smuc), have been implicated in
EMT during embryonic development as well as carcinogenesis.
Snai1-mediated inhibition of the tumor suppressor microRNA
let-7 is associated with poor prognosis in several cancers (28). In
our previous studies, we found that high levels aPKC-i in ICC
cells correlated to increased glycolysis and lactate production
(29). Given that FBP1 deletion promotes tumorigenesis in some
cancers (30), our aim of this study was to elucidate the
mechanistic relationship between PKC-i, FBP1 and Snai1 in
the regulation of glycolysis and metastasis of ICC cells.
MATERIALS AND METHODS

Tissue Samples and Cell Culture
40 paired of ICC and para-cancerous tissue specimens were
collected at the Zhongnan Hospital of Wuhan University (Hubei
Province, China) after obtaining written consent from the
patients. HCCC-9810 and RBE cell lines were obtained from
the cell bank of the Chinese Academy of Sciences (Shanghai,
China), and were cultured in RPMI-1640 medium supplemented
with 10% fetal bovine serum (GIBCO, US) at 37°C under 5%
CO2. Cells in the logarithmic growth phase were selected for the
experiments. The study was conducted according to the
guidelines of the “Declaration of Helsinki” and approved by
the Hospital Committee for the Protection of Human Subjects.
Frontiers in Oncology | www.frontiersin.org 2
RNA Isolation and qRT-PCR
Total RNA was isolated form the cells and tissues using TRIzol
reagent (Thermo Fisher Scientific, MA, USA) according to the
manufacturer’s instructions. A reverse transcription kit Vazyme,
Hubei, China) was used to synthesize cDNA, and RT-PCR was
performed using the SYBR Green PCR Kit (Vazyme,
Hubei, China).

Histology and Immunohistochemistry (IHC)
The tumor tissue samples were fixed in 10% formalin, embedded
in paraffin, and cut into 4mm-thick sections. After clearing with
xylene and rehydrating with ethanol, the sections were incubated
with 0.3% hydrogen peroxide to inactivate the endogenous
peroxidases. The tissue sections were then incubated with the
primary antibody, washed with PBS, and probed with the HRP-
conjugated secondary antibody and streptavidin (Santa Cruz).
Diaminobenzidine substrate was used for color development,
followed by counterstaining with hematoxylin. The tissue
microarray chips were probed with specific antibodies and
digitally scanned.

Western Blotting
Western blotting was performed as previously described (31).
The proteins extracted from the cells were quantified using the
BCA protein assay method (Biyuntian, Wuhan, China), and
equal amounts of protein per sample were separated via 6–
15% SDS-PAGE and transferred to polyvinylidene fluoride
membranes (Millipore, USA). After blocking with 5% skimmed
milk, the membranes were incubated overnight with the primary
antibodies at 4°C, washed thrice with TBST (10 minutes each),
and probed with the secondary antibody at room temperature.
The membranes were washed thrice with TBST and developed
with ECL.

Glucose Uptake and Lactate
Secretion Assay
The cells were seeded in a 6-well plate at the density of 5 × 105

cells per well, and cultured in the presence of EGF or 2-DG 48h.
The glucose uptake was measured using a glucose uptake cell-
based assay kit (Cayman Chemical) according to the
manufacturer’s instructions. The cells were analyzed by flow
cytometry. The conditioned media were centrifuged at 13000 g
for 10 minutes at 4°C, and the lactate concentration in the
clarified supernatants was measured using the L-lactate detection
kit (Eton Biosciences) according to the manufacturer’s
instructions. The absolute lactate level was calculated from the
corresponding standard curve and normalized to the number
of cells.

Seahorse XFp Metabolic Flux Analysis
The day before the experiment, ICC cells were planted on the
Seahorse XF cell culture plate at 1×106 cells/well. Add the test
solution prepared by Seahorse XF Base Medium to the plate, then
use NaOH to adjust the pH to 7.4. 2 hours later, change the
medium and place it in a carbon dioxide-free incubator for one
hour. After adding mitochondrial inhibitors oligomycin, FCCP,
and antimycin (AA) plus rotenone (AR), the baseline was
December 2021 | Volume 11 | Article 756419
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measured four times in sequence. Then use the XFp extracellular
analyzer (Agilent Technologies, USA) to analyze the oxygen
consumption rate (OCR). Similarly, after adding Gluoose,
Oligomycin, 2-DG, we can calculate the extracellular
acidification rate (ECAR).

Chromatin Immunoprecipitation (ChIP)
EZ ChIP™ Chromatin Immunoprecipitation Kit (Millipore,
Billerica, MA) was used for ChIP assay. The treated cells were
cross-linked in 1% formaldehyde at 37°C for 10 minutes, and
sonicated to obtain chromatin fragments of 200-1000 bp. The
lysates were incubated overnight with 3mg anti-Snai1 or anti-IgG
antibody (Millipore) at 4°C, followed by magnetic beads for 2h.
The protein/DNA complex was eluted and cross-linked, and the
immunoprecipitated DNA was analyzed by qRT-PCR.

Dual Luciferase Assay
Cells were co-transfected with FBP1-3’UTR-WT or -MUT reporter
plasmid and Renilla luciferase vector using Lipofectamine 3000
reagent (Invitrogen). Luciferase activity was measured 48h later
using the dual luciferase reporter gene detection system (Promega),
and the data was normalized to Renilla luciferase activity.

Establishment of Subcutaneous Tumor
and Lung Metastasis Model
The animal experiments were approved by the Institutional
Animal Ethics Committee of Wuhan University. 10
of four-week-old female BALB/c nude mice were injected
subcutaneously with 1×106 HCCC-9810 cells to induce
subcutaneous tumors. The mice were sacrificed 4 weeks later
for further analysis. The lung metastasis model was established in
four-week-old female BALB/c nude mice by intravenous
injection of 3×106 HCCC-9810 cells (n=5 for each group), and
the lungs were harvested 4 weeks later for IHC (32).

Statistical Analysis
All data are expressed as the mean ± SD of at least three
independent experiments. Two groups were compared by
Student’s t test (SPSS statistical software package, version 12;
SPSS Inc.). Overall survival rates were analyzed by the Kaplan-
Meier method and Cox proportional hazards regression model.
P <0.05 was considered statistically significant.
RESULTS

FBP1 Expression Is Inversely Correlated
With aPKC-i in Intrahepatic
Cholangiocarcinoma
Quantitative real-time PCR was employed to determine the
expression levels of aPKC-i and FBP1 in 40 paired ICC and
adjacent nontumor tissues (Figure 1A). The results were
confirmed by WB and IHC (Figures 1C, D). We found that
aPKC-i and FBP1 were both localized to the cytoplasm of cancer
cells in IHC experiments. In addition, the expression level of
aPKC-i was significantly higher in tumor tissues compared to
that in paired para-matched non-tumor specimens, while FBP1
Frontiers in Oncology | www.frontiersin.org 3
expression was markedly lower. We next investigated whether
the expression of aPKC-i and FBP1 was associated with
clinicopathological characteristics and prognosis. The clinical
data of all ICC patients, including age, gender, tumor/non-
tumor tissues, nodal invasion, tumor staging and tumor
differentiation degree, are summarized in Table 1.

Overexpression of aPKC-i was related to tumor–node–
metastasis (TNM) stage III-IV (c2 = 10.417, P=0.004), and
medium/poor differentiation (c2 = 10.157, P=0.005) in ICC
patients. And, as expected, low expression of FBP1 was related to
tumor–node–metastasis (TNM) stage III-IV (c2 = 10.417,
P=0.004), and medium/poor differentiation (c2 = 6.144, P=0.034).
We further investigated whether there was an correlation between
aPKC-i and FBP1 expression in ICC samples. As shown in
Figure 1B, aPKC-i level is significantly negatively associated with
FBP1 (R=-0.605, p<0.01). Meanwhile, a Kaplan-Meier analysis
indicated that patients with high expression of aPKC-i displayed
a shorter OS compared to those with low expression, while those
with low FBP1 expression exhibited a shorter OS (Figure 1E).
Multivariate Cox regression analyses also showed that aPKC-i and
FBP1 were independent prognostic factors for OS in ICC (Table 2).
These above results suggested that aPKC-i may interact with FBP1
and promote invasion and metastasis of ICC.

Silencing aPKC-i Attenuates Aerobic
Glycolysis and Retards EMT-Like Changes
in ICC Cells
Previous studies reported that aPKC-i may induce EMT-like
changes and promote metastasis in cancer cells (33). In this study,
we first established two stable human ICC cell lines, HCCC-9810
and RBE, with down-regulated aPKC-i expression levels in vitro by
transfection with human aPKC-i siRNA (Figure 2A). Along with
aPKC-i down-regulation, the EMT-like protein expression profiles
in both HCCC-9810 and RBE cell lines were reversed compared
with negative controls (Figure 2B), including up-regulation of the
epithelial markers E-cadherin and down-regulation of
mesenchymal marker Vimentin. These indicated that aPKC-i
promoted early invasion and metastasis of ICC cells by
accelerating EMT. Consistent with above findings, ICC cells with
down-regulated aPKC-i also reversed EMT-like cellular
characteristics, including decreased cell proliferation, migration
and invasion as compared to negative controls (Figures 2C–E).
To further assess the effects of aPKC-i in ICC, metabolism-related
indices were determined by glucose uptake and lactate secretion
assay. We found that knocking down aPKC-i deceased the rate of
glucose uptake and lactate production in the ICC cells (Figures 2F,
G), which was according with its role in the aberrant glucose
metabolism of cancer cells. Thus, we speculated that aPKC-i
promoted EMT and aerobic glycolysis of ICC cells, which could
provide a competitive environment for ICC cells invasion
and migration.

FBP1 Is Crucial for aPKC-i Induced EMT-
Like Changes and Glycolysis in Human
ICC Cells
To investigate the causal relationship between aPKC-i and FBP1,
we first suppressed aPKC-i expression in two ICC cell lines.
December 2021 | Volume 11 | Article 756419
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FBP1 mRNA and protein levels were up-regulated in aPKC-i-
deficient HCCC-9810 and RBE cells (Figures 2A, B), which was
suggestive of an inhibitory effect of aPKC-i on FBP1 mRNA and
protein. We further determined whether FBP1 was regulated by
aPKC-i. The mRNA and protein levels of FBP1 were down-
regulated in aPKC-i-overexpressing ICC cells by transfecting
with aPKC-i-cDNA (Figures 3A, B). Therefore, FBP1
expressions were markedly increased both in mRNA and
protein levels by transfecting aPKC-i-cDNA ICC cells with
FBP1-cDNA, while aPKC-i levels were no significant changes
as compared with negative control.

Following the up-regulation of FBP1 expression in aPKC-i-
overexpressing ICC cells, EMT-like changes were almost
reversed compared with negative control groups, including the
expression levels of EMT markers (Figure 3B) and cell
proliferation, invasion, and migration (Figures 3C–E). In
addition, along with the up-regulation of FBP1 expression,
FBP1-cDNA transfection significantly decreased the relative
glucose uptake rate and lactate production (Figures 3F, G).
Frontiers in Oncology | www.frontiersin.org 4
Those suggested that FBP1 could reverse the aPKC-i induced
EMT-like changes and normalize glucose metabolism in
ICC cells.

aPKC-i and FBP1 Play the Roles of
Accelerator and Speed Limiter in the
Process of Glycolysis
Along with koncking down aPKC-i, four key glycolytic enzymes
(HK2, ENO1, PKM, LDHA) were decreased at the protein level
(Figure 4A), which additionally supported that aPKC-i could
enhance the glycolysis level of ICC. The cellular oxygen
consumption rate (OCR) and extracellular acidification rate
(ECAR) were further measured in ICC cells (Figure 4B).
According to ECAR and OCR curve chart (Figures 4C, D), the
glycolysis level, glycolysis capacity and glycolysis capacity reserve
were significantly increased in aPKC-i-overexpressing ICC cells
compared to negative control, while OCR was decreased as
compared with negative control. Following increased FBP1
expression in aPKC-i-overexpressing ICC cells, those glycolysis
A B

C

E

D

FIGURE 1 | FBP1 expression is inversely correlated with aPKC-i in ICC. (A) mRNA expression levels of aPKC-i and FBP1 in 40 paired ICC and adjacent nontumor
tissues (B). Pearson correlation analysis of aPKC-i and FBP1 expression (R=-0.605,p<0.01). (C) Expression of aPKC-i and FBP1 in 6 matched ICC samples.
(D) IHC score and representative images showing in situ expression of aPKC-i and FBP1 in ICC and normal bile duct tissues. (E) Overall survival rate in patient with
aPKC-i, FBP1 and SNAI1 expression.
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markers were markedly down-regulated, whereas the OCR was
obviously up-regulated. The results reinforced that aPKC-i/FBP1
pathway palys a important role in glucose metabolism of ICC,
which was consistent with our previous conclusions.

FBP1 Antagonizes aPKC-i and Inhibits
Tumor Growth and Metastasis In Vivo
To further evaluate the role of FBP1 in ICC, a xenograft tumor
model and a pulmonary metastasis tumor model were established.
We subcutaneously injected aPKC-i-overexpressing HCCC-9810
cells transfected with FBP1-cDNA or vector into nude mice. The
volumes of tumors from aPKC-i-overexpressing cells transfected
with FBP1-cDNA were dramatically smaller compared with
negative control groups (Figure 5A). Furthermore, the in situ
expression of FBP1 and E-cadherin detected by IHC were
significantly higher in FBP1-cDNA treatment groups, while
Vimentin expression was lower (Figure 5B). The in situ
expression of HK2,ENO1,PKM,LDHA detected by IHC was
higher in FBP1-cDNA treatment groups (Figure 5C). Moreover,
fewer metastatic nodules were determined in the treatment groups
than in the untreated groups, suggesting that FBP1 could
significantly inhibit lung metastases of ICC cells induced by
aPKC-i (Figure 5D). In conclusion, the assay confirmed that
Frontiers in Oncology | www.frontiersin.org 5
FBP1 played an important role in aPKC-i-mediated ICC
progression and metastasis in vivo.

FBP1 Is a Direct Target of Snail in aPKC-i
Mediated EMT and “Warburg Effect”
To explore the underlying molecular mechanisms of decreased
FBP1 by aPKC-i, we first performed coimmunoprecipitation
(CO-IP) experiments to assess whether aPKC-i directly
interacts with FBP1. Expression of aPKC-i and FBP1 was not
detected in the precipitated protein complex, suggesting that
aPKC-i indirectly regulated Snail through other ways. Snail, a
very well-known transcription factor, was reported to be critical
for epidermal growth factor–induced EMT of cancer cells (34).
We noticed that nine consensus Snail-binding E-boxes domains
(CAGGTG) were identified in the FBP1 promoter (17).
Moreover, our previous studies had demonstrated that snail
was also crucial for aPKC-i-induced EMT-like changes in
cholangiocarcinoma (29). Hence, we hypothesized that Snail
may bind to the FBP1 promoter and is responsible for FBP1
repression in aPKC-i-overexpressing ICC cells.

The expression of Snail was first examined by qRT-PCR in 40
pair-matched tumor specimens and non-tumor tissues. In
agreement with existing results, higher Snail expression was in
TABLE 1 | Clinicopathological parameters of ICC patients.

Characteristics Numberof case aPKC-i P value FBP1 P value

Low High Low High

Age (years) 0.744 0.102
≤60 25 12 13 10 15
>60 15 6 8 10 5
Gender 0.507 0.185
Male 26 14 12 11 15
Female 14 6 8 9 5
Tumor/nontumor tissues 0.025 <0.001
Tumor 40 15 25 28 12
Nontumor 40 25 15 12 28
Nodal invasion 0.084 0.084
Yes 12 3 9 9 3
No 28 17 11 11 17
TNM staging 0.004 0.004
I‐II 16 13 3 3 13
III‐IV 24 7 17 17 7
Differentiation 0.005 0.034
Well 11 10 1 2 9
Medium/poor 29 10 19 18 11
D
ecember 2021 | Volume 11 | Article
The boldfaced part indicates a statistically significant value.
TABLE 2 | Multivariate cox regression analyses.

Variable P HR 95% CI

aPKC-i 0.00514 2.220e+01 [2.530355-194.7296]
FBP1 0.00192 6.626e-02 [0.011930-0.3680]
SNAI 0.00193 1.883e+01 [2.943553-120.4158]
SEX (Male vs Female) 0.21720 4.224e-01 [0.107480-1.6602]
AGE (<50 vs > = 50) 0.88377 1.187e+00 [0.118751-11.8722]
Differentiation degree (Low&Middle vs High) 0.01170 2.489e-02 [0.001409-0.4395]
Lymphatic metastasis 0.01610 5.681e+00 [1.380381-23.3765]
756419
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tumor samples (Figure 6A). Pearson correlation analysis showed
a significant positive correlation between aPKC-i and Snail
expression (R=-0.643, p<0.001), whereas high Snail was related
to low FBP1 (R=-0.484, p<0.01) (Figure 6B). In addition, ectopic
expression of Snail in the HCCC-9810 and RBE cells markedly
Frontiers in Oncology | www.frontiersin.org 6
decreased FBP1 protein levels, suggesting that Snail is required
for loss of FBP1 by aPKC-i-mediated inhibition (Figure 6E).

To investigate whether Snail binds the promoter regions of
FBP1, we constructed wild-type FBP1 (FBP1-WT) and mutant
FBP1 (FBP1-MUT) eukaryotic expression vectors and generated
A B

C

E

D

GF

FIGURE 2 | Down-regulated aPKC-i reversed EMT-like changes and metabolic advantages in cancer cells. (A) FBP1 mRNA level in aPKC-i knockdown HCCC-
9810 and RBE cell lines. (B–E) Expression levels of EMT-related proteins including the epithelial markers E-cadherin and mesenchymal marker Vimentin, viability, and
in vitro migration and invasion of control and aPKC-i knockdown ICC cells. (F, G) Glucose uptake rate and lactate production after knocking down aPKC-i in
HCCC-9810 and RBE cell lines. * means P < 0.05, ** means P < 0.01, *** means P < 0.001.
December 2021 | Volume 11 | Article 756419
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ICC cells that stably expressed these two constructs. In dual
luciferase assay, Snail significantly repressed the FBP1 promoter
activity, indicated that Snail inhibited FBP1 transcription
(Figure 6C). Therefore, chromatin immunoprecipitation (ChIP)
Frontiers in Oncology | www.frontiersin.org 7
was performed in the RBE cells by using three sets of FBP1
primers and confirmed a direct physical interaction between FBP1
promoter and Snail (Figure 6D). Taken together, these results
implied that FBP1 is a direct target of Snail in ICC cells.
A B

C

D

E

F G

FIGURE 3 | FBP1 antagonizes aPKC-i and inhibits tumor progression. (A, B) The mRNA and protein levels of FBP1 were down-regulated in aPKC-i-overexpressing ICC
cells by transfecting with aPKC-i-cDNA. (C–E) EMT-like changes were reversed compared with negative control groups, including cell proliferation, invasion, and migration.
(F, G) Glucose uptake rate and lactate production in aPKC-i/aPKC-i + FBP1 groups. * means P < 0.05, ** means P < 0.01, *** means P < 0.001. ns, no statistical difference.
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DISCUSSION

As aPKC-i, a polarization regulatory protein, regarded as human
oncogene and potential therapeutic target in various epithelial
cancers (35), we then found that aPKC-i knockdown in ICC cells
led to increase of E-cadherin, decreases of Vimentin expression
and the abilities of migratory and invasive. These were in line
Frontiers in Oncology | www.frontiersin.org 8
with our previous studies indicating that aPKC-i/Snail signaling
pathway has a critical role in the regulation of EMT in
cholangiocarcinoma in vitro and in vivo (29). The EMT
constitutes a pivotal step in variety epithelial cancer cells
invasion and metastasis, defined by loss of epithelial cell
polarity and reorganization of the cytoskeleton (34). Therefore,
a better understanding of EMT process regulating by aPKC-i
A B

C

D

FIGURE 4 | aPKC-i and FBP1 play the roles of accelerator and speed limiter in the process of glycolysis. (A) The protein levels of HK2,ENO1,PKM,LDHA were
down-regulated in aPKC-i knockdown ICC cells. (B) Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of ICC cells which were transfected
with aPKC-i/aPKC-i+FBP1 cDNA. (C, D) Glycolysis level, glycolysis capacity,glycolysis capacity,reserve basal respiration, ATP-linked respiration, maximum
respiration, and spare respiration of ICC cells transfected with aPKC-i/aPKC-i+FBP1 cDNA.
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may hold a great promise for the development of novel
therapeutic approaches to eradicate ICC that are currently
resistant to conventional therapies.

Despite a high genetic diversity, cancer cells still exhibit a
common set of characteristics. Aberrantmetabolic reprogramming
constitutes one of its important features during the tumor
progression, which could enhance glucose uptake and lactate
production of cancer cells through aerobic glycolysis to meet the
rapid energy requirements for catabolism and anabolism (36).
Recent studies indicated that extracellular matrix (ECM) of cancer
cells is remodeled by aerobic glycolysis, which could also increase
the expression of EMT-inducing transcription factor and decrease
the pH value of tumor microenvironment (37). It had shown that
an increased glycolytic metabolism can facilitate cancer cells EMT
Frontiers in Oncology | www.frontiersin.org 9
and promote tumor progression. In our current study, the content
of secreted lactate, the end product of glycolysis, were significantly
increased in the ICC cells and correlated positively with aPKC-i
expression. These results first demonstrated that aPKC-i could
facilitate aerobic glycolysis and contributed to EMT process in
ICC. However, the underlying mechanisms that aPKC-i affect the
biological behavior of ICC cells, are still unclear.

Intracellular glucose homeostasis is regulated by catabolic
glycolysis, aerobic oxidation of sugars, and anabolic
gluconeogenesis. Until now, metabolites that accumulated via
aerobic glycolysis were considered as a building blocks or fuel
source for cancer cells proliferation (38). Several studies reported
that metabolic intermediates of gluconeogenesis regulate aerobic
breakdown of glucose in cancer cells (22, 39, 40). FBP1 catalyzes
A

B

C

D

FIGURE 5 | FBP1 antagonizes aPKC-i and inhibits tumor growth and metastasis in vivo. (A) Tumor volume changes in nude mice over a 30-day period after
injection of HCCC-9810 cells transfected with aPKC-i/aPKC-i + FBP1. (B) In situ expression of aPKC-i, FBP1, E-cadherin and vimentin in the tumor tissues of the
indicated groups. (C) In situ expression of HK2,ENO1,PKM,LDHA in the tumor tissues of the indicated groups (D) Representative images of HE-stained lung
metastatic nodules from the indicated groups. ** means P < 0.01.
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the decomposition of fructose-1,6-bisphosphate into 6-
phosphate fructose and inorganic phosphate, and its epigenetic
regulation in cancer cells is an underlying factor of aberrant
glucose metabolism (14). Interestingly, the loss of FBP1 was
recently determined to be a critical oncogenic event in breast
cancer and renal cell carcinoma progression (17). Consistent
with previous findings, we found that FBP1 expression is
negatively correlated with aPKC-i and the malignant
progression in ICC. Moreover, upregulating FBP1 expression
in aPKC-i-overexpressing ICC cells reversed EMT-like changes
and aberrant metabolic reprogramming. These results further
support the critical role of FBP1 for aPKC-i induced EMT-like
changes and glycolysis in ICC.

To elucidate the specific mechanism by which aPKC-i
regulates FBP1 in ICC, co-IP experiment was performed and
showed that aPKC-i indirectly regulated FBP1 through other
molecules. Snail, a transcriptional repressor, could induce EMT,
Frontiers in Oncology | www.frontiersin.org 10
allowing cancer cells with invasive properties (41). It also could
regulate many genes involved in glucose metabolism, such as
glucose phosphate isomerase and aldolase, suggesting that Snail
participates in complex metabolic reprogramming in cancer (42).
Furthermore, some studies have confirmed that the Snail
transcriptional factor Snai1 represses FBP1 to accelerate EMT
of various tumor cells (43). Since we had previously observed
that Snail is a major downstream target of aPKC-i in triggering
EMT (29), we hypothesized that aPKC-i promotes EMT and
provides metabolic advantages of ICC cells by repressing FBP1
via Snail. As expected, we identified that Snail inhibited the
transcription of FBP1 by directly binding to its promoter by dual
luciferase assay and ChIP experiment. In addition, the expression
level of Snail correlated positively with that of aPKC-i, whereas
correlated negatively with FBP1.

Oxidative metabolism is impaired in cancer cells due to the
increase in glycolysis and oxygen consumption. TheWarburg effect,
A B

C

D

E

FIGURE 6 | FBP1 is a direct target of Snail in aPKC-i mediated EMT and “Warburg effect”. (A) Snai1 expression levels in 40 paired ICC and adjacent nontumor
tissues. (B) Pearson correlation analysis showed a significant positive correlation between aPKC-i and FBP1 expression (R=-0.643, p<0.001), whereas high Snail
was related to low FBP1 (R=-0.484, p<0.01). (C, D) Snail significantly repressed the FBP1 promoter activity in dual luciferase assay and ChIP was performed in the
RBE cells by using three sets of FBP1 primers and confirmed a direct physical interaction between FBP1 promoter and Snail. (E) Snai1 and FBP1 protein expression
in HCCC-9810 and RBE cells transfected with Snai1.
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wherein the tumor cells preferentially use glycolysis to produce
energy under hypoxic conditions (44), protects the cells against
metabolic stress, and promotes their invasion, migration and EMT
(45). In the glycolytic pathway, lactate dehydrogenase A (LDHA)
irreversibly catalyzes the conversion of pyruvate to lactate via the
oxidative dehydrogenation of nicotinamide adenine dinucleotide
(NADH) to NAD+ (46). As an important carcinogen, lactate is
closely related to tumor growth, immune escape, angiogenesis and
EMT (47). Existed data had shown that LDHA is highly expressed
in various cancers and its expression is positively associated with
tumor progression (48). Based on our findings therefore, we
speculated that aPKC-i/Snail-mediated repression of FBP1
increases glycolysis and lactate production in the ICC cells, which
in turn upregulates aPKC-i to form a positive feedback loop,
eventually enhancing EMT, invasion and migration. Further
mechanism studies are needed to investigate.

In conclusion, we found that aPKC-i, Snail and loss of FBP1
are significantly correlated with poor prognosis in ICC patients.
FBP1 played a crucial role in aPKC-i induced EMT and glycolysis
in ICC cells. We illustrated aPKC-i was confirmed to inhibit FBP1
expression by increasing Snail binding to the FBP1 promoter,
which is conducive to EMT and metastasis. Our results strongly
suggest that aPKC-i induces EMT and promotes glycolysis in
human ICC cells through an aPKC-i/Snail/FBP1 pathway. It is
known that cells always take the most economical way to carry out
physiological activities, which is well verified in our study. The
polarization regulatory protein, aPKC-i, simultaneously regulated
EMT and metabolic reprogramming via the same signal pathway,
which eventually led to more effective metastasis of ICC cells. The
above results provide a new perspective to illustrate the
mechanism of tumor progression.

Our and recent observations implied that glucose metabolism is
not simply a consequence but rather affects polarized states of
cancer cells. Nevertheless, the specific interaction of enzymes
associated with glucose metabolism regulating EMT-like
characteristics is still unknown. One emerging idea on how
changes in glucose metabolism induce EMT-like phenotype is
that mitochondrial derived reactive oxygen species could serve as
signaling molecules (49). It will be of interest how interaction
between EMT process and glucose metabolism. Targeting this
pathway may abolish cancer metastasis and metabolic advantages.
This strategy will generate an entirely effective approach for
treating ICC.

Radical surgical resection remains to be the only potential
curative treatment option for ICC in the near future. Limitations
of current clinical trials include small sample size, combined
Frontiers in Oncology | www.frontiersin.org 11
analysis of cholangiocarcinoma and gallbladder cancer, and lack
of randomization (50). Precision medicine will be advocated to
improve outcomes for patients with ICC, which is highly
genetically heterogeneous tumor. More recently, a variety of
genetic mutations implicated in causing ICC have been
identified, and future studies will continue to focus on
targeting genetic aberrations. In addition, the efficacy and
safety of immunotherapies have also been widely reported in
ICC. Although immunotherapy has been disappointing now, it
could become an important part of the treatment landscape in
the future. The road is rough, but the beauty lies ahead.
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