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Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death
globally. Currently there is a lack of tumor-selective and efficacious therapies for
hepatocellular carcinoma. b-Lapachone (ARQ761 in clinical form) selectively kill
NADPH: quinone oxidoreductase 1 (NQO1)-overexpressing cancer cells. However, the
effect of b-Lapachone on HCC is virtually unknown. In this study, we found that relatively
high NQO1 and low catalase levels were observed in both clinical specimens collected
from HCC patients and HCC tumors from the TCGA database. b-Lapachone treatment
induced NQO1-selective killing of HCC cells and caused ROS formation and PARP1
hyperactivation, resulting in a significant decrease in NAD+ and ATP levels and a dramatic
increase in double-strand break (DSB) lesions over time in vitro. Administration of b-
Lapachone significantly inhibited tumor growth and prolonged survival in a mouse
xenograft model in vivo. Our data suggest that NQO1 is an ideal potential biomarker,
and relatively high NQO1:CAT ratios in HCC tumors but low ratios in normal tissues offer
an optimal therapeutic window to use b-Lapachone. This study provides novel preclinical
evidence for b-Lapachone as a new promising chemotherapeutic agent for use in NQO1-
positive HCC patients.

Keywords: beta-lapachone, NQO1, hepatocellular carcinoma, DNA damage/reactive oxygen species,
NAD+/ATP depletion
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INTRODUCTION

As the most common primary liver cancer and the second
leading cause of cancer-related deaths worldwide (1),
hepatocellular carcinoma (HCC) patients are usually diagnosed
with advanced disease, resulting in only 15% of HCC patients
being eligible for surgical resection or liver transplantation and
the median survival time for HCC patients in intermediate to
advanced stages being only 1-2 years (2). Moreover,
chemotherapy against HCC has limited benefits because of the
high resistance to currently available chemotherapeutic agents.
Sorafenib, the first-line drug used for patients with advanced
HCC, has been used for over 10 years, but the overall outcomes
are unsatisfactory (3). These have led to more extensive research
focusing on personalized medicine with increased selectivity
and efficacy.

A growing body of data demonstrates that NADPH:quinone
oxidoreductase 1 (NQO1), a phase II two-electron reductase that
can bioactivate certain quinone molecules and shows a protective
effect against natural and exogenous quinones, is abnormally
upregulated in many solid cancers, such as lung, pancreatic,
breast, prostate, and colon cancers (4–11). In liver cancer, it has
been reported that NQO1 was increased 18-fold in HCC versus
normal livers (12). Recently, NQO1 overexpression was reported
to be a potent independent biomarker for prognostic evaluation
of HCC (13) and enhanced apoptosis inhibition of liver cancer
cells via the SIRT6/AKT/XIAP signaling pathway (14, 15).
NQO1 overexpression in tumors has the advantage of
preferentially killing cancer cells and sparing normal cells
when anticancer drugs that are bioreductively activated by
NQO1, such as b-Lapachone (b-lap), are used (5).

b-lap has gained increasing attention for its tumor-selective
and antitumor effects in many cancers, including lung cancer,
breast cancer, prostate cancer, pancreatic cancer, and leukemia
(4–7, 9–11, 16, 17). Its toxicity is closely correlated with NQO1
expression and activity. Our studies suggest that NQO1
metabolizes b-lap through a futile redox cycle in which b-lap is
converted into a highly unstable hydroquinone form and then
spontaneously reacts with oxygen to revert back to the parent
compound, causing rapid NAD(P)H oxidation. This process
generates high levels of reactive oxygen species (ROS) (e.g.,
H2O2), resulting in genomic instability and DNA damage (6,
11). In addition, catalase (CAT) can bypass b-lap toxicity by
neutralizing hydrogen peroxide produced by b-lap (18). We have
previously reported that b-lap alone or combined with other
inhibitors had profound toxicity in pancreatic cancer and non-
small-cell lung cancer (NSCLC) (11, 19–21). However, the effect
of b-lap on HCC is virtually unknown.

Here, we demonstrate that HCC patient samples have
significantly elevated levels of NQO1 but concomitantly low
catalase levels compared with associated normal tissues. HCC
Abbreviations: HCC, hepatocellular carcinoma; b-lap, b-Lapachone; NQO1,
NADPH:quinone oxidoreductase 1; CAT, catalase; TCGA, The Cancer Genome
Atlas; DSB, double-strand break; ROS, reactive oxygen species; NSCLC, non-
small-cell lung cancer; H2O2, Hydrogen peroxide; DIC, dicoumarol; PAR, poly
(ADP-ribosyl)ated protein; NOD/SCID, nonobese diabetic/severe combined
immunodeficiency; LIHC, liver hepatocellular carcinoma.
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cells were efficiently killed by b-lap, along with increases in ROS
production and PARP1 hyperactivation, severe NAD+/ATP
depletion and DNA damage. NQO1-dependent HCC killing
was confirmed in HCC cells with stable NQO1 overexpression
and knockout. Furthermore, a human HCC subcutaneous
xenograft mouse model exhibited efficient b-lap-induced
control of tumor growth and prolonged mouse survival.
MATERIALS AND METHODS

Human HCC Cell Lines and
Clinical Samples
Human HCC cell lines (SNU-182, PLC/PRF/5, Huh7, Hep3B,
HepG2, and Li7) were purchased from Guangzhou Cellcook
Biotechnology Co., Ltd. (Guangzhou, China), and PLC/PRF/5
and SK-HEP1 cells were purchased from ATCC. The
authentication of these cell lines was performed via
comparisons with the STR database. Cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% fetal bovine serum (FBS; HyClone), 100 U/ml
penicillin, and 100 U/ml streptomycin at 37°C and 5% CO2.

Reagents and Chemicals
b-lap, synthesized by Dr. Bill Bornmann (M.D. Anderson,
Houston, TX) was dissolved in DMSO for in vitro experiments
or 20% HPbCD for in vivo experiments, and the concentrations
were verified by spectrophotometry. Hydrogen peroxide (H2O2)
and dicoumarol (DIC) were purchased from Sigma-Aldrich.
HPbCD (>98% purity) was purchased from Cydodextrin
Technologies Development, Inc. The ROS-Glo™ H2O2 assay
kit, NAD/NADH-Glo kit, and CellTiter-Glo® 2.0 kit for the ATP
assay were obtained from Promega Corporation. An alkaline
comet assay kit was purchased from Trevigen, Inc.

NQO1 Knockout/Knockin Cells
CRISP/Cas9 NOQ1 knockout PLC/PRF/5 cells and NQO1-
overexpressing SK-HEP1 cells were generated by our lab.
Vectors of guide RNA sensing human NQO1 or nontarget
control (LV04) and Cas9 expression (CAS9NEO) were provided
by Sigma-Aldrich, and the guide RNA targeting sequences were
AGGATACTGAAAGTTCGCAGGG and CACAATATCTGG
GCTCAGATGG. Vectors with NQO1 or empty control
(EX-Z0563-Lv205, EX-NEG-Lv205) were purchased from
Sigma-Aldrich, and transfection of SK-HEP1 with these vectors
was performed with Lipofectamine 3000 reagent (Thermo Fisher)
according to the manufacturer’s protocol.

Cell Survival Assay
A total of 10,000 cells/well were seeded on 48-well plates 24 h
prior to treatment. Varying doses of b-lap dissolved in DMSO ±
DIC were added and incubated for 2 h at 37°C and 5% CO2. After
treatment, the media were replaced with fresh complete media
and allowed to grow for 7 days. After 7 days, the cells were
washed with 1x PBS, 200 ml of H2O was added, and the cells were
frozen at -80°C for at least 2 h. After thawing, 200 ml/well TNE
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buffer (50 mM Tris–HCl (pH 7.4), 100 mM NaCl, 0.1 mM
EDTA) with 1 mg/ml Hoechst 33258 was added and incubated
for 1 h at room temperature in the dark. Cell growth was
determined by absorbance at 560 nM with a multilabel plate
reader (PerkinElmer). Percentage of cell growth = (100× (cell
experimental – blank)): (cell control).

Antibodies
Antibodies used for immunofluorescence and western blotting
included NQO1 (A180, Santa Cruz, La Jolla, CA), PARP1 (F-2,
Santa Cruz), b-actin (C4, Santa Cruz), a-tubulin (B-7, Santa
Cruz), PAR (Trevigen, Gaithersburg, MD), gH2AX (JBW301,
Millipore, Temecula, CA), H2AX (938CT5.1.1, Cell Signaling,
Danvers, MA), and catalase (12980S, Cell Signaling, MA).

Western Blotting Analysis
Cells were seeded on plates at approximately 70% confluence 24
h in advance and then treated with/without b-lap for 2 h. Next,
the cells were lysed in lysis buffer. Approximately 40 mg of
protein was resolved by SDS-PAGE, transferred onto PVDF
membranes, and probed with antibodies. The protein-antibody
complexes were detected by using Super Signal West Femto
Substrate (Thermo Fisher, Waltham, MA) and exposure to film.

Real-Time PCR
Assays were performed as previously described (22). The primer
sequences were as follows: GAPDH-sense: 5’-CTGCTGATG
CCCCCATGTTC-3’; GAPDH- antisense: 5’-CATCCACAGTC
TTCTGGGTGG-3’; NQO1-sense: 5’-GCCATGTATGAC
AAAGGA CCC-3’; NQO1-antisense: 5’-ACTTGGAAGCC
ACAGAAATGC-3 ’ ; CAT-sense: 5 ’-CTTCGACCCAAG
CAACATGC-3’ ; CAT-antisense: 5’-GCGGTGAGTGTC
AGGATA GG-3’. 2-DDCt was used to calculate the fold change
of mRNA expression.

NQO1 and Catalase Activity Assays
Extracts were obtained from different HCC cell lines. Then NQO1
and catalase enzyme activities were assayed by NQO1 Activity
Assay (Abcam) and CheKine™ catalase Activity Assay Kit
(Abbkine), respectively, according to the manufacturer’s manual.

ATP, NAD+ and Hydrogen Peroxide
(H2O2) Assays
Cells were cultured (1 × 104 cells/well) 24 h in advance in 96-well
white-walled clear-bottom tissue culture plates (Sigma) and
treated with b-lap with or without DIC for 2 h. Then, ATP
(CellTiter-Glo), hydrogen peroxide (H2O2) (ROS-Glo), and
NAD/NADH (NAD/NADH-Glo) were assayed at the indicated
time points after treatments using specific assays (Promega).

Comet Assay
Total DNA damage was measured by the alkaline comet assay
(Trevigen) according to the manufacturer’s manual. Slides were
stained with SYBR green, and images were acquired with a Leica
DM5500 fluorescence microscope. Comet tail lengths were
quantified by NIH ImageJ.
Frontiers in Oncology | www.frontiersin.org 3
Immunofluorescence Staining of gH2AX
The treated cells were fixed with 4% paraformaldehyde for 30
min, permeabilized with 0.2% Triton-X 100 for 10 min at 4°C,
blocked with 3% bovine serum albumin for 30 min at room
temperature, and incubated overnight at 4°C with gH2AX
antibody (diluted at 1:1000). Cells were washed 3 times for 5
min in PBS and then incubated for 2 h with AlexaFluor
secondary antibody (diluted 1:1000 in blocking buffer). DAPI
was used to stain nuclei. gH2AX foci were visualized with a laser
scanning confocal microscope (LSM 510 Meta), and the number
of H2AX foci per nucleus was quantified.

In Vivo Antitumor Study
All animal procedures were approved by the IU IACUC
committee. For the in vivo xenograft model, PLC/PRF/5 cells
(5×106) were subcutaneously inoculated into the right flank of
nonobese diabetic/severe combined immunodeficiency (NOD/
SCID) male mice (6~8 weeks old). Tumor volumes were
measured with a caliper and calculated by the formula
0.5×length×width2. When tumor volumes reached ~150 mm3,
mice were randomly divided into vehicle (n=7) and treatment
(n=8) groups with no significant differences in tumor sizes. Then,
the mice were treated with HPbCD or HPbCD-b-lap (12.5 mg/
kg) by intratumor injection every other day for a total of five
injections. When the tumor volume reached ~1200 mm3, the
mice were sacrificed, and a survival curve was plotted.

Bioinformatic Analysis
The liver hepatocellular carcinoma (LIHC) dataset was
downloaded from the Broad Institute TCGA Genome Data
Analysis Center, https://doi.org/10.7908/C11G0KM9. Only
samples with both tumor and matched normal samples were
selected for further analysis of NQO1 and CAT levels. The
differences in gene expression levels for individual genes or
fold changes of two genes between normal and tumor tissues
were identified by paired t test.

Statistical Analysis
All the experimental results were analyzed using two-tailed
Student’s t tests for independent measures with Holm-Sidak
correction for multiple comparisons if >1 comparison was
performed. The minimum replicate size for experiment was
n=3. Statistical analysis were performed in GraphPad Prism 8
(GraphPad Software, Inc. CA, USA). Images are representative of
the results of experiments or staining repeated 3 times. Data are
presented as the mean ± SD. The survival rate was analyzed by
Kaplan-Meier survival curves. A p value of < 0.05 was considered
statistically significant between the compared groups. *p < 0.05;
**p < 0.01 and ***p < 0.001.
RESULTS

High Expression of NQO1 in
Hepatocellular Carcinoma Patients
Our previous studies and other reports have shown that NQO1
enzyme levels were elevated, whereas catalase (gene: CAT) levels
October 2021 | Volume 11 | Article 747282
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were lower in NSCLC and pancreatic cancers than in associated
normal tissues, suggesting that the NQO1/CAT ratios in tumor
tissue versus associated normal tissue are an important and
highly exploitable therapeutic window (8, 11, 23). To
investigate whether the NQO1:CAT ratios are a potential
therapeutic window in liver cancer, we analyzed NQO1 and
CAT expression in liver hepatocellular carcinoma (LIHC) from
The Cancer Genome Atlas (TCGA). Our analysis revealed that
the mRNA levels of NQO1 were significantly elevated
(Figure 1A, p = 1.5×10-7), while CAT levels were notably lower
(Figure 1B, p = 7.8×10-8) in tumor tissues than in matched
normal tissues. Consistently, markedly higher NQO1:CAT ratios
were observed in these tumor samples than in normal samples
(Figure 1C, p = 1.5×10-9). Moreover, we also found that patients
with high NQO1 expression had a significantly lower overall
survival rate than those with low NQO1 expression (Figure 1D,
p = 0.0075). Together, these results indicate that the NQO1:CAT
ratio is an ideal therapeutic window in liver cancer for NQO1
bioactivatable drugs.
Elevation of NQO1 Expression and Enzyme
Activity in Hepatocellular Carcinoma
Patients and Cell Lines
To further confirm the above observations, we collected 62 pairs
of clinical HCC patient samples and associated normal tissues to
detect the mRNA levels of NQO1 and CAT. Indeed, 69.4% (43/
62) of HCC patient samples showed relatively higher NQO1
mRNA levels than associated normal tissues (p = 0.0005,
Figure 2A). In contrast, notably lower CAT mRNA levels (54/
62 = 87.0%, p < 0.0001, Figure 2B) were observed in tumor
Frontiers in Oncology | www.frontiersin.org 4
tissues than in associated normal tissues. Concomitant high
NQO1 and low CAT mRNA levels (high NQO1:CAT ratios
(Figure 2C, p < 0.0001) in HCC tumor tissue offer an ideal
target for NQO1 bioactivatable drugs. Consistently, our western
blotting analysis revealed that NQO1 protein levels were
obviously elevated in 43.8% (28/64) of HCC tumor tissues,
while catalase levels were repressed significantly in most HCC
tumor tissues (Figure 2D and Supplementary Figures S1A, B).
These results confirm our above observations that the relatively
high NQO1:CAT ratios in HCC patients might be an exploitable
therapeutic target in liver cancer. On the other hand, similar to
the analysis in HCC patient samples, we observed that the liver
cancer cell lines HepG2, Huh7 and Li7 showed high NQO1
levels; PLC/PRF/5 cells exhibited moderate NQO1 expression;
and Hep3B, SNU-182, and SK-HEP1 cells expressed low or
undetectable NQO1 (Figure 2E). Consistently, the NQO1
enzyme activity assay exhibited similar NQO1 activity in these
cell lines (Figure 2F). Meanwhile, relatively high catalase protein
levels accompanied by relative high catalase enzyme activities
were observed in HepG2, Huh7 and Hep3B liver cancer cells
(Figures 2E, G).
Selective and Effective Killing of
Hepatocellular Carcinoma Cells by
b-Lapachone
It has been reported that NQO1 is a promising therapeutic target
in multiple solid tumors, and the anticancer efficacy of b-lap is
mainly mediated and promoted by NQO1 (7, 11, 17). Based on
our above findings, we hypothesized that b-lap could effectively
control cell growth in NQO1+ HCC cells. To this end, we treated
A

B

D

C

FIGURE 1 | NQO1 and CAT expression profile in matched hepatocellular carcinoma patient samples (n = 50) in the TCGA cohort. (A) Left panel: NQO1 mRNA
levels (FPKM, in log2 scale) in paired HCC tumor and normal liver tissues. The samples were sorted by NQO1 expression levels in tumors. Right panel: Distributions
of FPKMs of NQO1 in liver tumor and normal tissues. (B) CAT gene expression in tumor and normal tissues (left panel) and FPKM distributions (right panel).
(C) Left panel: The gene expression difference between two genes, NQO1 and CAT (fold change, FC, in log2 scale), for tumor and normal tissues, respectively. Right
panel: Distributions of FCs in tumor and normal tissues. The orders of samples in (B, C) were exactly matched with that in (A). (A–C) patient samples are 50 total.
(D) Kaplan-Meier survival analysis of all HCC patients (low NQO1, N=273; high NQO1, n=91) according to NQO1 mRNA expression in the TCGA database. Days to
death: the number of days from the date of the initial pathological diagnosis to the date of death for the case in the investigation.
October 2021 | Volume 11 | Article 747282

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhao et al. NQO1-Dependent Lethality of Hepatocellular Carcinoma
HCC cells with b-lap or b-lap + dicoumarol (DIC, an NQO1-
specific inhibitor). As expected, HepG2, Huh7, Li7 and PLC/
PRF/5 cells, which endogenously express different levels of
NQO1 (Figure 2D), showed significant sensitivity to b-lap
(Figures 3A–D), while SK-HEP1, SNU-182 and Hep3B cells,
which have undetectable or very low NQO1 expression, were
resistant to b-lap exposure (Figures 3E–G). Next, we established
stable NQO1-expressing SK-HEP1 cells and NOQ1 knockout
PLC/PRF/5 cells to examine the lethality of b-lap. Consistently,
SK-HEP1 cells were rendered hypersensitive to b-lap treatment
after NQO1 expression, and DIC spared lethality (Figure 3H).
Stable NQO1 knockout PLC/PRF/5 cells were much more
resistant to b-lap than parental PLC/PRF/5 cells (Figure 3I).
NQO1 expression in SK-HEP1 or knockout PLC/PRF/5 cells was
confirmed by western blotting analysis (inset, Figures 3H, I).
Together, these results demonstrate that b-lap efficiently kills
HCC cells in an NQO1-mediated manner.
b-Lapachone Induces NQO1-Dependent
PARP1 Hyperactivation, ROS Formation
and NAD+/ATP loss
Accumulating evidence suggests that exposure tob-lap causesDNA
lesions in NQO1+ NSCLC, breast cancer, and pancreatic cancer
cells, resulting in PARP hyperactivation in terms of the
accumulation of poly(ADP-ribose)-PARP (PAR-PARP)
posttranslational protein modification (11, 18, 24). To investigate
whether PARP1 is involved in b-lap-induced cell death in HCC
cells, we examined the effect of b-lap on poly(ADP-ribosyl)ated
Frontiers in Oncology | www.frontiersin.org 5
protein (PAR) accumulation, which is an indicator of PARP1
hyperactivation. First, b-lap-treated PLC/PRF/5 and Huh7 cells
were analyzed for PAR formation using western blotting analysis.
As shown, a lethal dose of b-lap (10 µM for PLC/PRF/5, 4 µM for
Huh7 cells) significantly induced PARP1 hyperactivation, as
indicated by a rapid rise in PAR formation and then an increase
in DNA damage, as indicated by gH2AX expression over time
(Figure 4A and Supplementary Figure S2A). To confirm that the
b-lap-induced hyperactivation of PARP1 is NQO1-dependent, we
next examinedPAR formation inNQO1knockout PLC/PRF/5 and
NQO1-expressing SK-HEP1cells. As expected, PAR formationwas
significantly inhibited by b-lap after NQO1was stably knocked out
in PLC/PRF/5 cells, accompanied by no detectable gH2AX
expression (Figure 4B). A rapid increase and continuous level of
PARwas detected after NQO1 re-expression in b-lap-resistant SK-
HEP1 cells (Figure 4C). Consistently, DNA damage was observed
in these SK-HEP1cells. Inaddition,nosignificant changeof catalase
levelswerenoted in theseb-lap-treated cells (Figures 4A–C).Taken
together, these data indicate that b-lap induces PARP1
hyperactivation and DNA damage in NQO1+ HCC cells.

IntracellularROSproduction is crucial for cancer cell death (25),
and our previous studies show that NQO1 metabolizes b-lap in a
futile redox cyclemanner to generateROS inother solid cancer cells
(6, 26). Therefore, we investigated whether ROS are involved in b-
lap-induced HCC cell death. We examined the levels of hydrogen
peroxide (H2O2) as an indicator of intracellular ROS. After 2 h of
exposure to a sublethal dose (4 or 8 µM) of b-lap, PLC/PRF/5 cells
exhibited a significantly higher level of H2O2 (p < 0.001) than the
untreated group (Figure 4D), while NQO1 KO cells showed no
A

B

D E

F
G

C

FIGURE 2 | NQO1 and catalase expression in hepatocellular carcinoma patients and cell lines. (A–C) mRNA expression of NQO1 (A), CAT (B), and NQO1/CAT Ratio
(C) in 62 pairs of HCC patient tumor samples and associated normal tissues. (D) Representative western blotting analysis of NQO1 and catalase protein expression in
HCC patient tumor samples and adjacent normal tissues. N, Normal; T, Tumor; RI, Relative Intensity. Data were measured as relative intensity (RI) of NQO1/Actin, and
catalase/Actin. The protein expression in normal tissues was defined as 1. (E) NQO1 and catalase protein expression in HCC cell lines. Data were measured as RI of
NQO1/Actin, and catalase/Actin. The protein expression in PLC/PRF/5 (last lane) was defined as 1. (F, G) Relative NQO1 and catalase enzyme activities in various
HCC cell lines were detected by the NQO1 and catalase activity assay kit respectively, all error bars are means ± SDs. ***p < 0.001, **p < 0.01, *p < 0.05 (t tests).
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FIGURE 4 | b-Lapachone induces NQO1-dependent PARP1 hyperactivation, ROS formation and NAD+/ATP loss. (A–C) PLC/PRF/5 (A), NQO1 knockout PLC/PRF/5,
(B) and NQO1-overexpressing SK-HEP1, (SK-HEP1 NQO1+) (C) cells were exposed to 10 µM b-lap for the indicated times. Cells were then harvested, and western
blotting analysis was performed to detect the levels of PAR (PARP1 hyperactivation), PARP1, NQO1, catalase and gH2AX. The protein levels of PAR and gH2AX were
quantified by Image J and normalized to a-tubulin, which was used as a loading control. (D–F) PLC/PRF/5 cells were treated with or without b-lap (4 or 8 µM) ± DIC (50
µM) for 2 h. Then, cells were subjected to measurement of H2O2 levels (D), NAD

+ levels (E) and ATP levels (F). Data represent at least three independent sets of
experiments. Error bars are means ± SDs. ***p < 0.001, **p < 0.01 (t tests). T/C, the mean of Treated/Control in (D) %T/C: the mean of %Treated/Control in (E, F). NS,
Not Statistically Significant
A B

D E F

G IH

C

FIGURE 3 | The cytotoxicity of b-Lapachone in hepatocellular carcinoma cells is NQO1-dependent. (A–F) HCC cells (HepG2 (A), Huh7 (B), Li7 (C), PLC/PRF/5 (D),
SK-HEP1 (E), SNU-182 (F), and Hep3B (G), were exposed to b-lap (0-10 µM), ± dicoumarol (DIC, 50 µM) for 2 h, and then relative survival was assessed. (H, I)
NQO1-overexpressing SK-HEP1 cells (H) and stable NQO1 knockout PLC/PRF/5 cells (I) were treated as in (A), and then cell viability was assessed. All error bars
are means ± SDs. ***p < 0.001 (t tests). No addition, DMSO alone; DIC, dicoumarol; b-lap, b-Lapachone. Inset, NQO1 expression in NQO1-overexpressing SK-
HEP1 and NQO1 knockout PLC/PRF/5 cells was confirmed by western blotting. %T/C, the mean of %Treated/Control.
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changes in H2O2 levels. Moreover, no obviously increase of H2O2

levels was observed in SK-HEP1 cells that have undetected NQO1
expression, while a significant increase of H2O2 levels was noted
after reconstitution with NQO1 (Supplementary Figure S2B).
Similarly, a significant increase in H2O2 levels in the b-lap-treated
group was observed in NQO1+ Huh7 cells, and DIC blocked this
increase (Supplementary Figure S2C). As reported previously by
us and others (11, 27), b-lap-induced PAR-PARP1 formation
consumes NAD+ and ATP, and together with our above results
that PAR is induced rapidly and then decreases over time.
Therefore, we examined NAD+ and ATP levels in b-lap-treated
HCC cells. As shown in Figures 4E, F and Supplementary Figures
S2D, E, dramatic NAD+ and ATP depletion was observed after
NQO1+ cellswere exposed tob-lap for 2h.All these depletionswere
blocked in theNQO1KOcells orDIC-treated group.WhenNQO1
expression was restored in SK-HEP1 cells, markedly increase of
NAD+ and ATP levels were observed after treatment with b-lap
(Supplementary Figures S2F, G). Together, these results
demonstrate that b-lap induces cell stress in HCC cells by
generating ROS, and disrupts essential metabolic nucleotides.
b-Lapachone Causes Dramatic NQO1-
dependent Total DNA Damage and
Double-Strand Breaks in Hepatocellular
Carcinoma Cells
According to previous reports, ROS release can mediate and
promote DNA damage (28, 29), and our above results show that
Frontiers in Oncology | www.frontiersin.org 7
b-lap generates ROS in HCC cells. Therefore, we investigated
total DNA damage under b-lap treatment via an alkaline comet
assay in PLC/PRF/5 cells. In NQO1-expressing PLC/PRF/5 wild-
type cells, a sublethal dose of b-lap (4 mM) caused total DNA
damage, as indicated by the comet tail, as early as 30 min, and a
lethal dose of b-lap (10 mM) markedly increased DNA damage
(Figure 5A). In contrast, when NQO1 was knocked out, no
obvious DNA tails were observed even at a lethal dose of b-lap
(10 mM) (Figure 5A). Consistently, quantification of the comet
tail length confirmed these observations. On the other hand, our
previous study suggested that when PARP hyperactivity is
exhausted, cells attempt to replicate despite the damage to AP
sites or the presence of SSBs, and the damage becomes
hypersensitive to the oxidative stress caused by b-lap and then
induces DSBs (21). In fact, we observed gH2AX expression after
b-lap treatment in NQO1+ HCC cells, especially when PAR
levels were exhausted (Figure 4). To further confirm whether
b-lap induces DSBs in HCC cells, we examined gH2AX
expression via immunofluorescence staining. As shown in
Figure 5B, dramatic increases in DNA DSB formation were
noted in the PLC/PRF/5 cells that were treated with a sublethal or
lethal dose of b-lap compared to the untreated cells as early as 30
min. Even at a lethal dose of b-lap (10 µM), NQO1 knockout
cells showed no obvious increase in gH2AX foci. The
observations were confirmed by the quantification of gH2AX
foci formation (Figure 5B). Taken together, these data suggest
that exposure of NQO1+ HCC cells to b-lap results in cell death
due to significant DNA DSBs.
A B

FIGURE 5 | b-Lapachone induces NQO1-dependent DSB formation in hepatocellular carcinoma cells. Wild-type or NQO1 knockout PLC/PRF/5 cells were treated
with a sublethal (4 µM) or lethal (10 µM) dose of b-lap for the indicated time (min), and then total DNA lesions were assessed using the alkaline comet assay.
(A) Comet tail lengths were imaged under an immunofluorescence microscope. (B) DSBs were quantified by gH2AX foci/nuclei. Data represent the means ± SDs.
Student’s t tests were performed. Scale bar = 10 µm, ***p < 0.001, *p < 0.05.
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b-Lapachone Significantly Suppresses
Tumor Growth and Prolongs Survival in
HCC Mouse Models
Relatively high NQO1 and low catalase expression in various HCC
patients and cell lines indicates a potent therapeutic window in
liver carcinoma for b-lap, and our above data confirmed that b-lap
efficiently represses tumor cell growth in vitro. To address the
antitumor efficacy of b-lap in vivo, we established xenograft liver
cancer models. First, 5×106 PLC/PRF/5 cells/mouse were
implanted subcutaneously into NOD/SCID mice. When the
tumor size reached 150 mm3, the mice were grouped and
treated with vehicle (HPbCD, intratumor (i.t.)) or HPbCD-b-
lap (hereafter referred to as b-lap, at 12.5 mg/kg, i.t.) every other
day for a total of five injections. Tumor volume and survival were
scored to monitor tumor growth and response (Figures 6A–C).
Exposure to b-lap resulted in a dramatic decrease in tumor growth
compared with vehicle group mice, confirmed by the
quantification of tumor volume (Figures 6A, B). Moreover,
overall survival also showed significant antitumor efficacy of
b-lap (Figure 6C). This model suggests that b-lap is a good
candidate agent to kill NQO1+ HCC in vivo.
DISCUSSION

Here, we show a potential antitumor effect of b-lap in HCC and
reveal that b-lap efficiently killed NQO1-overexpressing HCC
Frontiers in Oncology | www.frontiersin.org 8
cells without affecting NQO1-low-expressing cells or tissues. As
the most common type of primary liver cancer, HCC often
occurs in people with long-term liver diseases and is generally
diagnosed with advanced disease, leading to systemic therapy
(30, 31). At present, there are only a few efficacious drugs for
HCC treatment or the drugs cause severe side effects (32, 33).
Thus, exploiting new drugs and identifying differences between
carcinomas and healthy tissue are critical for HCC treatment.
Previous reports suggest that b-lap is a competent tumor-
selective agent against many NQO1+ solid cancers, such as
NSCLC, pancreatic and breast cancers (6, 11, 34–36), while the
antitumor effect of this drug in liver cancer is still unknown.
Except the expression and activity of NQO1, the cytotoxicity of
b-lap is also driven by ROS-metabolizing enzymes catalase and
SOD1 expression and activity. catalase is an important resistance
factor in b-lap-induced cytotoxicity and this resistance could be
enhanced by superoxide dismutase (SOD) (37). The NQO1:CAT
ratios are suggested to be a therapeutic window in NSCLC,
pancreatic and breast cancers (11, 18). In our study, analysis
of 64 clinical patient samples of HCC revealed that 43.8% of
patients exhibited NQO1 overexpression, and the majority of
patients showed low CAT levels in tumors compared with
adjacent normal tissues. Moreover, LIHC data from TCGA
demonstrated that patient overall survival significantly
correlated with NQO1 expression. These results suggest that
relatively high NQO1:CAT ratios in tumor tissues could
provide a therapeutic window for using NQO1 bioactivatable
A

B C

FIGURE 6 | Antitumor efficacy of b-Lapachone in a mouse xenograft model. The subcutaneous xenograft tumor model was established by injection of 5×106 PLC/
PRF/5 cells into male NOD/SCID mice. After 8 days, mice were treated with vehicle (HPbCD) or HPbCD-b-Lap (12.5 mg/kg) by intratumor injections every other day
for five injections. (A) Representative tumors at day 21 post-treatment. (B) Tumor volume at the indicated time (days). (C) Kaplan-Meier survival curves.
***p < 0.001, **p < 0.01, *p < 0.05.
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drugs such as b-lap to kill HCC. In fact, cell viability showed that
b-lap efficiently killed PLC/PRF/5, Huh7, and Li7 cells, which
have high NQO1 expression, but did not affect NOQ1- cell
growth (Figure 2).

b-lap was reported to induce cancer cell death via an NQO1-
dependent programmed necrotic pathway, which caused robust
ROS elevation and PARP1 hyperactivation (6, 38). In HCC cells,
we observed b-lap-induced NQO1-selective elevated H2O2 and a
rapid and transient increase in PAR formation, followed by DNA
damage over time. On the other hand, PARP1 uses NAD+ as a
substrate to perform PAR posttranslational modification of
proteins, resulting in NAD+ and ATP losses (27, 39). Our
b-lap-treated HCC cells indeed exhibited NQO1-dependent
NAD+ and ATP depletion. Collectively, our investigation of
clinical patient samples of HCC and in vitro results offer a
therapeutic window and potential use of b-lap in HCC.

b-lap has an apparently broader NQO1-dependent
therapeutic window in HCC. NQO1 is overexpressed in
numerous human cancers, and our previous studies together
with others demonstrate that b-lap has efficacy in tumor-
selective cell growth control and produced promising
preclinical results (6, 11, 19, 34, 36). Our preclinical model
exhibited an efficient antitumor effect of b-lap in HCC in
which b-lap-treated mice had dramatically decreased tumor
growth and prolonged survival compared to control mice.
Together with our in vitro results, we anticipate that b-lap
would be an extremely efficacious tumor-selective therapy
against HCC and other kinds of liver cancer. Furthermore, the
data presented in this study reveal that NQO1 and the NQO1:
CAT ratio could be used as biomarkers to examine the efficacy of
NQO1 bioactivatable drugs in HCC or other kinds of liver
cancers. In addition, our in vitro and in vivo data could
translate our findings regarding b-lap in HCC to the clinic.
Moreover, because b-lap alone induces tumor programmed
necrotic cell death that could induce many cytokines or other
side effects in vivo, our recent report revealed that low-dose b-lap
combined with a PARP inhibitor switched the pathway to
apoptosis (11), which implies that combination therapy
between b-lap and other clinical drugs would be worth
exploring. Finally, immunotherapy with immune checkpoint
inhibitors such as PD-1 inhibitors has shown promise in HCC
(40). Clinical data showed that only approximately 15-20% of
HCC patients exhibited a response, and a fraction of HCC
patients could benefit from this therapy (41, 42). We recently
revealed that b-lap not only directly kills tumor cells but also
increases tumor immunogenicity by triggering immunogenic cell
death and overcoming immunotherapy resistance (43). Thus, we
propose that b-lap could exert a synergistic effect with immune
checkpoint inhibitors and enhance the antitumor immune
response in HCC.

Taken together, our study demonstrated that b-lap, a novel
NQO1 bioactivatable drug, selectively kills HCC cells expressing
NQO1 through inducing ROS and PAR formation, NAD+ and
ATP depletion and lethal DNA damage. High NQO1:CAT ratios
in HCC tumors but low ratios in normal tissues offer an optimal
therapeutic window and an ideal therapeutic target for b-lap.
Frontiers in Oncology | www.frontiersin.org 9
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Supplementary Figure S2 | b-Lapachone induces NQO1-dependent PARP1
hyperactivation, ROS formation and NAD+/ATP loss in Huh7 cells. (A) Huh7 cells
were exposed to 4 µM b-lap at the indicated time, then cells were harvested and
western blotting analysis was to detect the levels of PAR (PARP1 hyperactivation)
and gH2AX. (B–G) SK-HEP1, SK-HEP1 NQO1+, and Huh7 cells were treated with
or without b-lap ± DIC (50 µM) for 2 h. Then cells were measured for H2O2 levels
(B, C), NAD+ levels (D, F), and ATP levels (E, G). Data represent at least three
independent sets of experiments. Error bars are means ± SD. ***p < 0.001,
**p < 0.01, *p < 0.05 (t tests).
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