AUTHOR=Du Qing-Hua , Li Jian , Gan Yi-Xiu , Zhu Hui-Jun , Yue Hai-Ying , Li Xiang-De , Ou Xue , Zhong Qiu-Lu , Luo Dan-Jing , Xie Yi-Ting , Liang Qian-Fu , Wang Ren-Sheng , Liu Wen-Qi
TITLE=Potential Defects and Improvements of Equivalent Uniform Dose Prediction Model Based on the Analysis of Radiation-Induced Brain Injury
JOURNAL=Frontiers in Oncology
VOLUME=11
YEAR=2022
URL=https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2021.743941
DOI=10.3389/fonc.2021.743941
ISSN=2234-943X
ABSTRACT=PurposeTo study the impact of dose distribution on volume-effect parameter and predictive ability of equivalent uniform dose (EUD) model, and to explore the improvements.
Methods and MaterialsThe brains of 103 nasopharyngeal carcinoma patients treated with IMRT were segmented according to dose distribution (brain and left/right half-brain for similar distributions but different sizes; VD with different D for different distributions). Predictive ability of EUDVD (EUD of VD) for radiation-induced brain injury was assessed by receiver operating characteristics curve (ROC) and area under the curve (AUC). The optimal volume-effect parameter a of EUD was selected when AUC was maximal (mAUC). Correlations between mAUC, a and D were analyzed by Pearson correlation analysis. Both mAUC and a in brain and half-brain were compared by using paired samples t-tests. The optimal DV and VD points were selected for a simple comparison.
ResultsThe mAUC of brain/half-brain EUD was 0.819/0.821 and the optimal a value was 21.5/22. When D increased, mAUC of EUDVD increased, while a decreased. The mAUC reached the maximum value when D was 50–55 Gy, and a was always 1 when D ≥55 Gy. The difference of mAUC/a between brain and half-brain was not significant. If a was in range of 1 to 22, AUC of brain/half-brain EUDV55 Gy (0.857–0.830/0.845–0.830) was always larger than that of brain/half-brain EUD (0.681–0.819/0.691–0.821). The AUCs of optimal dose/volume points were 0.801 (brain D2.5 cc), 0.823 (brain V70 Gy), 0.818 (half-brain D1 cc), and 0.827 (half-brain V69 Gy), respectively. Mean dose (equal to EUDVD with a = 1) of high-dose volume (V50 Gy–V60 Gy) was superior to traditional EUD and dose/volume points.
ConclusionVolume-effect parameter of EUD is variable and related to dose distribution. EUD with large low-dose volume may not be better than simple dose/volume points. Critical-dose-volume EUD could improve the predictive ability and has an invariant volume-effect parameter. Mean dose may be the case in which critical-dose-volume EUD has the best predictive ability.