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Ovarian cancer, a common malignant tumor, is one of the primary causes of cancer-
related deaths in women. Systemic chemotherapy with platinum-based compounds or
taxanes is the first-line treatment for ovarian cancer. However, resistance to these
chemotherapeutic drugs worsens the prognosis. The underlying mechanism of
chemotherapeutic resistance in ovarian cancer remains unclear. Non-coding RNAs,
including long non-coding RNAs, microRNAs, and circular RNAs, have been implicated
in the development of drug resistance. Abnormally expressed non-coding RNAs can
promote ovarian cancer resistance by inducing apoptosis inhibition, protective
autophagy, abnormal tumor cell proliferation, epithelial-mesenchymal transition,
abnormal glycolysis, drug efflux, and cancer cell stemness. This review summarizes the
role of non-coding RNAs in the development of chemotherapeutic resistance in ovarian
cancer, including their mechanisms, targets, and potential signaling pathways. This will
facilitate the development of novel chemotherapeutic agents that can target these non-
coding RNAs and improve ovarian cancer treatment.
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INTRODUCTION

Ovarian cancer is a relatively common malignant tumor in women that easily metastasizes in its
advanced stages (1–3). Systemic chemotherapy remains the mainstay treatment of advanced ovarian
cancer (4, 5). However, the emergence of drug resistance has limited its clinical application (6).

Ovarian cancer cells have developed multiple resistance mechanisms, including impairment in
cellular copper transporters, intracellular detoxification, DNA damage repair (DDR), and non-
coding RNA (ncRNA)-mediated drug resistance. Copper transporter 1 (CTR1), ATP7A, and
ATP7B participate in the uptake or efflux of platinum (7, 8). Interestingly, when their expression is
dysregulated, drug concentration within ovarian cancer cells decrease, resulting in drug resistance.
Glutathione S-transferase p (GST-p) is an intracellular detoxification enzyme that promotes the
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conjugation of glutathione (GSH) with chemotherapeutic drugs,
and such conjugated drugs are easily excreted and their toxic
effects are eliminated; overall, this process also results in drug
resistance in ovarian cancer (9–11). The cellular DDR system
detects and repairs damaged DNA to maintain a stable genome,
and this inhibits cisplatin-mediated DNA damage (12, 13). These
abovementioned three mechanisms of drug resistance in ovarian
cancer have been studied in depth. However, the mechanism by
which ncRNA causes drug resistance is unclear.

NcRNAs account for a majority of cellular RNAs and do not
encode any functional proteins (14). After transcription, they
mainly perform their biological functions at the RNA level (15).
Unexpectedly, some ncRNAs promote drug resistance by inducing
multiple cell phenotypes. Among the ncRNAs, long non-coding
RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs
(circRNAs) are thought to be mainly responsible for causing drug
resistance in ovarian cancer. With a length of more than 200
nucleotides, lncRNAs regulate gene expression at the
transcriptional, post-transcriptional, and epigenetic levels (16).
They induce tumor cell stemness, apoptosis inhibition, abnormal
tumor cell proliferation, drug efflux, protective autophagy, and
epithelial-mesenchymal transition (EMT) to facilitate drug
resistance in ovarian cancer. MiRNAs can be 20–25 nucleotides
long (17). They recognize and bind mRNA by complementary base
pairing, leading to mRNA degradation or translational inhibition
(18). The resultant abnormally expressed mRNA can promote drug
resistance by inducing apoptosis inhibition, abnormal glycolysis,
drug efflux, and EMT in ovarian cancer. CircRNAs have a
covalently closed loop structure and are relatively stable (19).
They mainly act as competing endogenous RNAs (ceRNAs) to
reverse the inhibitory effect of miRNAs on mRNA expression (20).
Therefore, circRNAs regulate the expression of resistance-related
proteins by regulating their mRNA expression, which promotes
drug resistance in ovarian cancer.

This review summarizes the functional mechanisms and
signaling pathways of lncRNAs, miRNAs, and circRNAs in
ovarian cancer.

ECTOPIC EXPRESSION OF lncRNAs
MEDIATES CHEMOTHERAPEUTIC
RESISTANCE

Mechanisms of Action of lncRNAs
At the transcriptional level, lncRNAs bind transcription factors
to promote or inhibit the transcription of target genes (Figure 1).
LncRNA HOTAIR recruits and binds the transcription factor
SNAIL, which prevents it from binding to the hepatocyte nuclear
factor 4 alpha (HNF4a) promoter, reducing its expression (21).

At the post-transcriptional level, the Alu element of lncRNA
binds the Alu element of the 3’-untranslated region (3’UTR) in the
target mRNA to form staufen1-binding site (SBS) by incomplete
base-pairing. SBS binds Staufen1 (STAU1) to degrade the target
mRNA (22). STAU1, as an RNA-binding protein, binds to SBS,
leading to the degradation of mRNA in mammals (23). Therefore,
lncRNA can directly interact with specific mRNA to degrade
mRNA (Figure 1). On the contrary, as a type of ceRNA, lncRNA
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can sponge miRNA to release mRNA and restore the function of
mRNA (Figure 1) (24). For example, LINC01118 spongesmiR-134
to rescue the mRNA of ABCC1 (25). LncRNA also functions as a
precursor of miRNA (Figure 1). Most miRNAs are derived from
protein-coding genes in the human genome, but somemiRNAs are
derived from ncRNA-coding genes (26). Specifically, the genes
encoding lncRNA are processed to form primary miRNA (pri-
miRNA), and then pri-miRNA is further processed in the nucleus
by Drosha/DGCR8 into a double-hairpin precursor miRNA (pre-
miRNA) (27). Finally, the pre-miRNA is transported to the
cytoplasm and cut into mature miRNA by Dicer (28). For
instance, the exon of lncRNA H19 contains miR-675, and H19
acts as a precursor of miR-675 to regulate its expression (29).
LncRNA can also change the cellular localization of proteins. For
instance, lncRNA MALAT1 can bind YAP to inhibit its
translocation from the nucleus to the cytoplasm (30).

LncRNA can mediate histone modification, resulting in
epigenetic regulation (Figure 1). Both lncRNA ANRIL and
lncRNA H19 can interact with enhancer of zeste 2 polycomb
repressive complex 2 subunit (EZH2) and suppressor of zeste 12
(SUZ12) (31, 32). EZH2 and SUZ12 are subunits of polycomb
repressive complex 2 (PRC2), and PRC2 inhibits the transcription
of target genes by trimethylation at lysine 27 of histone H3
(H3K27Me3) (33). The interaction of ANRIL and H19 with
EZH2 and SUZ12 can promote H3K27Me3 to inhibit the
transcription of target genes (34, 35). In addition, lncRNA
HOTTIP interacts with WD repeat domain 5 (WDR5) to
promote trimethylation at lysine 4 of histone H3 (H3K4Me3),
thereby promoting the transcriptionof target genes (36).WDR5 is a
core component ofmixed lineage leukemia (MLL), which catalyzes
the formation of H3K4Me3 (36). LncRNA HOTAIR can interact
with EZH2 and lysine specific demethylase 1 (LSD1), which is a
histone demethylase that prevents the formation of H3K4Me3 to
inhibit gene transcription. HOTAIR coordinates the interaction
between EZH2 and LSD1 to detach the methyl groups from H3K4
to transform transcriptional activation into transcriptional
inhibition of the target gene (37). Likewise, lncRNA
ultraconserved element 338 (uc.338) binds BMI1, a subunit of
PRC1, to monoubiquitinate histone H2A on lysine 119
(H2AK119ub1), which inhibits the transcription of target genes
(38). We summarize the mechanisms and signaling pathways of
lncRNAs that lead to platinum or taxane chemotherapeutic
resistance in ovarian cancer (Table 1).

LncRNA-Mediated Chemotherapeutic
Resistance Involves ABC Transporters
ABC transporters are transmembrane proteins that can expel
drugs from within cells through a process called drug efflux.
LncRNAs promote the expression of some ABC transporters by
sponging miRNA, which promotes drug efflux and induces drug
resistance in ovarian cancer (Figure 2) (25, 40, 44). In ovarian
cancer, both lncRNAMALAT1 and LINC01118 are upregulated,
and they both promote drug efflux by increasing the expression
of ABCC1 to induce drug resistance (25, 40). The difference is
that MALAT1 can interact with the Notch1 protein to activate
the Notch1 signaling pathway and promote the expression of
ABCC1 to induce cisplatin resistance, while LINC01118
September 2021 | Volume 11 | Article 742149
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upregulates the expression of ABCC1 by sponging miR-134 to
promote paclitaxel resistance. Moreover, the silencing ofMALAT1
reduced tumor growth when ovarian tumor xenograft model mice
were treated with cisplatin. Although lncRNA UCA1 promotes
cisplatin resistance by inhibiting apoptosis (45), UCA1 can also
promote paclitaxel resistance by inducing drug efflux through
sponging of miR-129 to rescue ABCB1 expression (44). ABCB1
facilitates the elimination of chemotherapeutic drugs from cancer
cells (46). UCA1 is highly upregulated in paclitaxel-resistant
ovarian cancer cells. Drug efflux caused by ABC transporters is a
very important drug resistance pathway. Given the lack of related
Frontiers in Oncology | www.frontiersin.org 3
studies, further studies are needed to understand how lncRNA
makes ovarian cancer cells resistant to chemotherapeutic drugs
through its action on ABC transporters. It will allow us to identify
novel strategies to overcome the drug resistance of ovarian cancer.

LncRNA-Mediated Chemotherapeutic
Resistance Involves EMT
EMT involves transformation of epithelial cells, through loss of
their polarity, into mesenchymal cells, which gives them the
ability of invasion, migration, and anti-apoptosis (47). EMT
induced by lncRNA promotes the malignancy of tumors and
FIGURE 1 | Mechanisms underlying the modification induced by lncRNA at the transcriptional, post-transcriptional, and epigenetic levels. (A) LncRNA binding to
transcription-related proteins mediates transcriptional activation or transcriptional inhibition. (B) LncRNA promotes the degradation of mRNA by recruiting STAU1 to
the SBS of dsRNA. (C) LncRNA, as a ceRNA, separates mRNA from its corresponding miRNA target. (D) LncRNA as a precursor of miRNA, develops into mature
miRNA under the action of Drosha/DGCR8 and Dicer. (E) LncRNA contributes to the formation of H2AK119Ub1 and H3K27ME3, which inhibit gene transcription. In
addition, lncRNA contributes to the formation of H3K4ME3, which promotes gene transcription.
September 2021 | Volume 11 | Article 742149
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makes them resistant to chemotherapeutics (Figure 2) (42). For
example, lncRNA NEAT1 is upregulated in paclitaxel-resistant
ovarian cancer cells, which sponges miR-194 to restore the high
expression of ZEB1. ZEB1 is essential for EMT because it inhibits
the transcription of E-cadherin (48). In addition, NEAT1
knockdown significantly inhibited tumor growth in an ovarian
tumor xenograft mouse model. EMT plays an important role in
cancer metastasis and drug resistance, and the role of lncRNA-
mediated EMT in the drug resistance of ovarian cancer needs
further research.

LncRNA Regulates Chemotherapeutic
Resistance by Inducing Cancer
Cell Stemness
Cancer cell stemness contributes to self-renewal and
differentiation of cancer cells, which help tumor cells to
regenerate and resist the toxicity of chemotherapeutic drugs
(49). LncRNA can promote cancer cell stemness of ovarian
cancer to promote drug resistance (Figure 2) (30). Specifically,
MALAT1 is upregulated in cisplatin-resistant cells as well as in
non-adherent spheres; it interacts with the YAP protein to
inhibit its translocation to the cytoplasm from the nucleus,
which leads to enhanced cancer cell stemness. While cancer
cell stemness is a predominant mechanism contributing to drug
resistance in ovarian cancer cells, not many studies have been
conducted on cancer cell stemness induced by lncRNA.
Therefore, there is further scope for research.

LncRNAs Facilitate Chemotherapeutic
Resistance by Promoting Abnormal Tumor
Cell Proliferation
Abnormal cell proliferation in the presence of chemotherapeutic
drugs indicates that the treatment is ineffective or that the cells
have become resistant. LncRNA HOTAIR reduces the sensitivity
of ovarian cancer to cisplatin by inducing abnormal tumor cell
proliferation (50, 51). Mechanically, HOTAIR activates the Wnt/
Frontiers in Oncology | www.frontiersin.org 4
b-catenin signaling pathway to enhance the expression of
cyclinD1 and CDK4. CyclinD1 is a marker of cell proliferation
(50). It activates CDK4-expressing cells to progress from the G1
phase into the S phase, which accelerates cell cycle progression
(52). In an ovarian tumor xenograft mouse model, HOTAIR
downregulation inhibited tumor growth and cyclinD1
expression, and this inhibition effect was more remarkable
when cisplatin was administered. The role of lncRNA
HOTAIR in chemotherapeutic resistance caused by the
abnormal proliferation of ovarian cancer cells and other tumor
cells is understudied, necessitating further studies.

LncRNA-Mediated Chemotherapeutic
Resistance Involves Induction of
Protective Autophagy
Protective autophagy is another mechanism contributing to
chemotherapeutic resistance (53). Specifically, cancer cells
undergo protective autophagy to obtain nutrients and promote
their survival by degrading metabolic waste, damaged proteins,
and damaged organelles, thereby increasing their resistance
against chemotherapeutic drugs. LncRNA TUG1 mediates
paclitaxel resistance by inducing protective autophagy in
ovarian cancer (Figure 2) (43). Specifically, TUG1 is
upregulated in cisplatin-resistant cells and sponges miR-29b-3p
to indirectly upregulate the expression of Beclin1, which
increases autophagosome formation in ovarian cancer (43). In
an ovarian tumor xenograft mouse model, TUG1 promoted
tumor growth by resisting the effect of paclitaxel, and
downregulation of TUG1 decreased the tumor size and weight.
Drug resistance due to protective autophagy in tumors is a hot
topic of current research, and the role of lncRNA in this
mechanism has gained attention. Although autophagy has long
been known to contribute to drug resistance in cancer cells, the
ability of lncRNA to induce protective autophagy and resulting
in ovarian cancer drug resistance seems to be a new
research direction.
TABLE 1 | Drug resistance in ovarian cancer caused by the ectopic expression of lncRNA.

Drug LncRNA
abbreviation

Pathway Mode of action Modes of drug
resistance

Mechanism of resistance References

Platinum CCAT1 CCAT1/miR-454/
survivin

ceRNA Apoptosis
inhibition

Upregulated CCAT1 induces apoptosis inhibition via miR-454/
survivin pathway, resulting in drug resistance.

(39)

MALAT1 MALAT1/YAP Protein
translocation

Stemness Upregulated MALAT1 promotes cell stemness via YAP, leading
to drug resistance.

(30)

MALAT1 MALAT1/notch1/
ABCC1

Protein
expression

Drug efflux Upregulated MALAT1 leads to drug efflux via notch1/ABCC1
pathway, which promotes resistance.

(40)

PANDAR PANDAR/SFRS2/
P53/P53-Ser15

Epigenetic
regulation

Apoptosis
inhibition

Upregulated PANDAR induces apoptosis inhibition via SFRS2/
P53/P53-Ser15 pathway, leads to drug resistance.

(41)

Taxane LINC01118 LINC01118/miR-
134/ABCC1

ceRNA Drug efflux Upregulated LINC01118 leads to drug efflux to promotes drug
resistance via miR-134/ABCC1 pathway.

(25)

NEAT1 NEAT1/miR-194/
ZEB1

ceRNA EMT Upregulated NEAT1 induces EMT to promote drug resistance
via miR-194/ZEB1 pathway.

(42)

TUG1 TUG1/miR-29b-3p ceRNA Protective
autophagy

Upregulated TUG1 induces protective autophagy leading to
drug resistance via miR-29b-3p pathway.

(43)

UCA1 UCA1/miR-129/
ABCB1

ceRNA Drug efflux Upregulated UCA1 leads to drug efflux to promote drug
resistance via miR-129/ABCB1 pathway.

(44)
September 2021 | Volume 11 |
 Article 74214
ABCB1, ATP binding cassette subfamily Bmember 1; ABCC1, multidrug resistance-associated protein 1; EMT, epithelial mesenchymal transition; SFRS2, arginine/serine-rich 2; YAP, yes-
associated protein; ZEB1, zinc finger E-box-binding homeobox 1.
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LncRNAs Promote Chemotherapeutic
Resistance by Inhibiting Apoptosis
Apoptosis is the self-destructive mechanism of cells, and apoptosis
inhibition rescues cancer cells and induces chemotherapeutic
resistance. LncRNAs regulate apoptosis-related proteins to induce
apoptosis inhibition, thereby inducing cisplatin resistance in
ovarian cancer (Figure 2) (39, 41, 45). Mechanistically, lncRNA
CCAT1 is upregulated in cisplatin-resistant ovarian cancer cells,
which enhances the expression of survivin as lncRNA CCAT1
Frontiers in Oncology | www.frontiersin.org 5
spongesmiR-454 (39). Survivin, an inhibitor of apoptosis, can bind
and inhibit caspase-9, caspase-3, and caspase-7, which hinder
apoptosis and cause cisplatin resistance (54). In the nucleus,
lncRNA PANDAR binding the SFRS2 protein downregulates the
expression of P53 and its phosphorylation at serine 15 (Ser-15),
which inhibits the transcription of P53-mediated pro-apoptotic
genes, including MDM2, BAX, and PUMA (41). In addition,
PANDAR is upregulated by cisplatin. Likewise, lncRNA UCA1
induces cisplatin resistance by indirectly promoting the expression
FIGURE 2 | LncRNAs regulate chemotherapeutic resistance through diverse signaling pathways. Multiple lncRNAs promote drug resistance by inducing drug efflux,
protective autophagy, apoptosis inhibition, tumor stemness, and epithelial-mesenchymal transition (EMT). LINC01118 and UCA1 regulate ABC transporters
promoting drug resistance. TUG1 regulates Beclin1 leading to drug resistance induced by protective autophagy. CCAT1 upregulates survivin to inhibit the expression
of caspase-3, which inhibits apoptosis and leads to drug resistance. PANDAR reduces the expression and phosphorylation of P53, inhibiting apoptosis and
promoting drug resistance. MALAT1 binds YAP and inhibits its translocation from the nucleus to the cytoplasm, which facilitates cancer cell stemness leading to
drug resistance. NEAT1 upregulates the expression of ZEB1, which promotes EMT leading to drug resistance. ZFAS1 promotes the transcription of CLDN4 to
upregulate SP1, which leads to drug resistance.
September 2021 | Volume 11 | Article 742149
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ofSPRK1andBCL-2and inhibiting the expressionofBAX,caspase-
3, and caspase-9 (45). LncRNA NEAT1 regulates miR-770-5p/
PARP1 signaling to induce cisplatin resistance in ovarian cancer
(55). NEAT1 is overexpressed in cisplatin-resistant ovarian cancer
cells and sponges miR-770-5P to upregulate the expression of poly
adenosine diphosphate-ribose polymerase 1 (PARP1), which leads
to chemotherapeutic resistance in cancer (56). Recent studies have
shown that lncRNA SNHG22 is highly expressed in ovarian cancer
tissues and promotes cisplatin resistance (57). SNHG22 sponges
miR-2467 to enhance Gal-1 expression, and Gal-1 activates the H-
Ras/Raf/ERK pathway to induce apoptosis inhibition and drug
resistance (58). Likewise, lncRNA EPEI upregulation indirectly
downregulates P53 expression, leading to carboplatin resistance
in ovarian endometrioid adenocarcinoma (59). Inactivation of P53,
a tumor suppressor gene, can promote carcinogenesis and inhibit
cell apoptosis (60). LncRNA NCK adaptor protein 1 (NCK1)-AS1
not only sponges miR-137 to upregulate NCK1 expression but also
directly interacts with c-CBI to inhibit its degradation caused by
ubiquitination (61). This inhibits the apoptosis of ovarian cancer
cells and makes them resistant to cisplatin (61, 62). In an ovarian
tumor xenograft mouse model, the knockdown of CCAT1 reduced
tumor weight, whereas PANDAR overexpression increased tumor
volume (39, 41). In addition, P53 and PUMA were downregulated
in a PANDAR-overexpressing xenograft mouse model. In ovarian
cancer apoptosis inhibition is a well-known drug resistance
mechanism. Here, lncRNA does not directly regulate the classic
apoptosis pathway to induce drug resistance caused by apoptosis
inhibition. Therefore, in-depth study of lncRNAmay provide new
insights into the classic apoptosis pathway.

LncRNAs Induce Chemotherapeutic
Resistance by Mediating DNA
Regulatory Proteins
LncRNAs induce chemotherapeutic resistance of ovarian cancer
by acting on special DNA regulatory proteins (57, 63–67).
LncRNA HOTAIR can facilitate the expression of Homeobox
A7 (HOXA7) and sponge miR-138-5p to rescue EZH2 and
sirtuin 1 (SIRT1) expression in ovarian cancer, both of which
contribute to cisplatin resistance (63, 68). EZH2 is involved in
histone methylation, while SIRT1 mediates histone deacetylation
(69, 70). In addition, HOTAIR influences the DNA damage
response to promote cisplatin resistance in ovarian cancer (64).
ANRIL overexpression confers makes ovarian cancer cells resistant
to cisplatin through the let-7a/high-mobility group protein A2
(HMGA2) axis (65). HMGA2 can also influence the proliferation
and differentiation of cells by upregulating PRC2 (71–73). LncRNA
ZFAS1 is overexpressed in epithelial ovarian cancer cells and
directly targets miR-150-5p to enhance the expression of
specificity protein 1 (SP1), which makes ovarian cancer cells resist
to cisplatin and paclitaxel (66). Another study showed that SP1, as a
transcription factor, facilitates the transcription of claudin-4
(CLDN4), which causes low DNA methylation and high histone
H3 acetylation in the CLDN4 promoter region (74, 75). In an
ovarian tumor xenograft mouse model, downregulation of
HOTAIR and ANRIL could slow down tumor growth (63, 65). In
addition, HOTAIR downregulation decreased the protein levels of
HOXA7 in vivo. Understanding the role of DNA regulation in
Frontiers in Oncology | www.frontiersin.org 6
organisms is still a difficult problem, and research on lncRNA-
mediated DNA regulatory proteins to promote drug resistance
remains at a relatively superficial level, which requires more
researches to reveal it.
ECTOPIC EXPRESSION OF miRNAs
PROMOTES CHEMOTHERAPEUTIC
RESISTANCE IN OVARIAN CANCER

Mechanisms of Action of miRNAs
MiRNA is a type of endogenous ncRNA with regulatory functions
(76). It is processed by nucleases from longer primary transcripts
and is 20-25 nucleotides long. MiRNA mainly forms a silencing
complex, which binds to the 3’UTR region of the target mRNA
through complementary base pairing and controls the stability and
translation of the mRNA (18). The specific mechanism ofmiRNA-
induced drug resistance in ovarian cancer is described below. Here,
we summarize themechanisms and signaling pathways ofmiRNAs
that lead to platinum or taxane chemotherapeutic resistance in
ovarian cancer (Table 2).

MiRNA-Induced Chemotherapeutic
Resistance Involves ABC Transporters
Multiple miRNAs have been found to regulate the expression of
ABC transporters to mediate drug efflux, leading to
chemotherapeutic resistance (84, 91, 95, 96). Specifically, miR-
130a, miR-1307, and miR-27a promote drug resistance in
ovarian cancer by increasing the expression of P-glycoprotein
(P-gp) (91, 95, 96). P-gp, a drug transporter encoded by multi-
drug resistance-1 (MDR1), is also called ABCB1. It promotes
drug resistance through its drug efflux function. MiR-130a is
overexpressed in cisplatin-resistant ovarian cancer cells, and it
indirectly enhances the expression of P-gp. MiR-1307 and miR-
27a are highly expressed in paclitaxel-resistant ovarian cancer
cells. Mechanically, miR-1307 relieves the transcriptional
repression of ETV4 by directly downregulating CIC expression,
and ETV4 upregulates the transcription of MDR1 by binding to
the MDR1 promoter region (97, 98). MiR-27a targets
homeodomain-interacting protein kinase-2 (HIPK2), which
reduces the transcriptional repression of MDR1 caused by
HIPK2 (99). Downregulation of miR-411, mediated by low
levels of SLC27A2, enhances the expression of ABCG2, which
promotes drug efflux to induce cisplatin resistance in ovarian
cancer (84). The common members of the ABC transporter
family are ABCC1, ABCB1, and ABCG2. ABCC1 and ABCG2
are less frequently reported in studies related to miRNA and
ABC transporters. Therefore, more studies on the miRNA-
induced ABCB1 or ABCG2 expression, which leads to drug
resistance in ovarian cancer, will improve our understanding of
the drug resistance mechanism of ABC transporters.

MiRNA-Mediated Chemotherapeutic
Resistance Involves EMT
EMT has been widely implicated in the malignant behavior of
tumors. It promotes tumor invasion and migration. Li et al. (100)
September 2021 | Volume 11 | Article 742149

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. Ovarian Cancer and Non-Coding RNAs
found that miR-181a is overexpressed in paclitaxel-resistant
ovarian cancer cells, and it induces paclitaxel resistance by
facilitating EMT through the upregulation of N-cadherin and
downregulation of E-cadherin. N-cadherin is a positive
regulator, and E-cadherin is a negative regulator of EMT (101).
The malignant phenotype induced by miRNA-induced EMT
may be the key to ovarian cancer drug resistance, which requires
further research.

MiRNA-Mediated Chemotherapeutic
Resistance Involves Upregulation
of Glycolysis
Glycolysis is beneficial for the malignant phenotype of tumors
as it provides energy for the metabolism of ovarian cancer
cells to induce cisplatin resistance (Figure 3) (77, 102). MiR-
Frontiers in Oncology | www.frontiersin.org 7
1180 induces the abnormal upregulation of glycolysis by
activating the Wnt signaling pathway and its downstream
components including Wnt5a, b-catenin, c-Myc, and
CyclinD1 proteins that can enhance glycolysis. MiR-1180
targets SFRP1 to relieve its inhibitory effect on Wnt5a,
which activates the Wnt/b-catenin signaling pathway to
upregulate PDK1 expression. PDK1 is a key enzyme
required for the glycolysis of tumor cells and is transcribed
by the combination of lymphoid enhancer factor/T-cell factor
(LEF/TCF) and b-catenin (103). This abnormal upregulation
of glycolysis is a cause of cisplatin resistance in ovarian cancer.
Drug resistance in ovarian cancer cells induced by miRNA-
mediated abnormal glycolysis is not extensively studied;
therefore, further research on this topic may reveal a new
link between miRNA and drug resistance.
TABLE 2 | Drug resistance in ovarian cancer caused by the ectopic expression of miRNA and circRNA.

Drug RNA
Abbreviation

Pathway Mode of
action

Modes of
drug

resistance

Mechanism of resistance References

Platinum miR-1180 SFRP1/Wnt-5a/b-catenin Inhibition
of mRNA

Glycolysis Upregulated miR-1180 promotes glycolysis to induce drug resistance
via SFRP1/Wnt-5a/b-catenin pathway.

(77)

miR-223 PTEN/PI3K/AKT Inhibition
of mRNA

Apoptosis
inhibition

Upregulated miR-223 induces apoptosis inhibition to promote drug
resistance via PTEN/PI3K/AKT pathway.

(78)

miR-149-5p MST1, SAV1/YAP, TAZ Inhibition
of mRNA

Apoptosis
inhibition

Upregulated miR-149-5p induces apoptosis inhibition to lead to drug
resistance via MST1, SAV1/YAP, TAZ pathways.

(79)

miR-106a PDCD4/caspase-3,
caspase-8

Inhibition
of mRNA

Apoptosis
inhibition

Upregulated miR-106a inhibits apoptosis to promote drug resistance
via PDCD4/caspase-3, caspase-8 pathway.

(80)

miR-93 PTEN/AKT Inhibition
of mRNA

Apoptosis
inhibition

Upregulated miR-93 inhibits apoptosis to promote drug resistance via
PTEN/AKT pathway.

(81)

miR-214 PTEN/AKT Inhibition
of mRNA

Apoptosis
inhibition

Upregulated miR-214 inhibits apoptosis to promote drug resistance via
PTEN/AKT pathway.

(82)

miR-205 PTEN Inhibition
of mRNA

Apoptosis
inhibition

Upregulated miR-205 induces apoptosis inhibition to promote drug
resistance via the PTEN pathway.

(83)

miR-411 ABCG2 Inhibition
of mRNA

Drug efflux Downregulated miR-411 leads to drug efflux to induce to drug
resistance via the ABCG2 pathway.

(84)

miR-142-5p MCL-1 Inhibition
of mRNA

Apoptosis
inhibition

Downregulated miR-142-5p inhibits apoptosis to promote drug
resistance via the MCL-1 pathway.

(85)

miR-204 IL-6R/STAT3/miR-204/IL-
6R

Inhibition
of mRNA

Apoptosis
inhibition

Downregulated miR-204 in IL-6R/STAT3/miR-204/IL-6R pathway
induces apoptosis inhibition to promote drug resistance.

(86)

miR-125b BAK1 Inhibition
of mRNA

Apoptosis
inhibition

Upregulated miR-125b induces apoptosis inhibition to promote drug
resistance via the BAK1 pathway.

(87)

miR-93 PTEN/AKT Inhibition
of mRNA

Apoptosis
inhibition

Upregulation of AKT leads to drug resistance. (88)

miR-216a PTEN Inhibition
of mRNA

Apoptosis
inhibition

Downregulation of PTEN leads to drug resistance. (89)

miR-21 PTEN Inhibition
of mRNA

Apoptosis
inhibition

Downregulation of PTEN leads to drug resistance. (90)

Taxane miR-1307 CIC/ETV4 Inhibition
of mRNA

Drug efflux Upregulated miR-1307 may lead to drug resistance by promoting
MDR1 transcription via CIC/ETV4 pathway.

(91)

miR-630 APAF-1 Inhibition
of mRNA

Apoptosis
inhibition

Upregulated miR-630 inhibits apoptosis leading to drug resistance via
the APAF-1 pathway.

(92)

miR-106a Caspase-7; BCL10 Inhibition
of mRNA

Apoptosis
inhibition

Upregulated miR-106a inhibits apoptosis leading to drug resistance via
caspase-7, BCL10 pathway.

(93)

miR-29b BAG3/miR-29b/MCL-1 Inhibition
of mRNA

Apoptosis
inhibition

Downregulated miR-29b in BAG3/miR-29b/MCL-1 pathway induces
apoptosis inhibition to promote drug resistance.

(94)

miR-27a HIPK2/MDR1/P-gp ceRNA Drug efflux Downregulation of HIPK2 promotes the transcription of MDR1, thus
promoting drug resistance.

(95)
September 2021 | Volume 11 | A
ABCG2, ATP-binding cassette transporter G2; AKT, protein kinase B; APAF-1, apoptotic protease activating factor-1; BAK1, BCL2Antagonist/Killer 1; CIC, capicua transcriptional
repressor; ETV4, ETS Variant Transcription Factor 4; HOXC8, homeobox C8; IL-6R, interleukin-6 receptor; BAG3, Bcl2-associated athanogene 3; Mcl-1, myeloid cell leukemia 1; MD1R,
multi-drug resistance-1; MST1, macrophage stimulating 1; PDCD4, programmed cell death 4; PI3K, phosphatidylinositide 3-kinases; PTEN, phosphatase and tensin homolog; SAV1,
salvador homolog 1; SFRP1, secreted frizzled-related protein 1; STAT3, signal transducer and activator of transcription 3; TAZ, tafazzin; YAP, yes-associated protein.
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MiRNAs Regulate Chemotherapeutic
Resistance by Inhibiting Apoptosis
As the main reason for chemotherapeutic resistance, apoptosis
inhibition is induced by the abnormal expression of miRNAs to
cause chemotherapeutic resistance in ovarian cancer (Figure 3).
For instance, Xu et al. (79) reported that miR-149-5p is highly
expressed in cisplatin-resistant ovarian cancer cells, and
inactivation of the Hippo signaling pathway induces cisplatin
resistance by directly inhibiting the expression of MST1 and
SAV1. The downregulation of MST1 and SAV1 reduces the
phosphorylation of YAP and TAZ through inhibition of the
phosphorylation of LAST1/2. This enhances the nuclear levels
of YAP and TAZ, and their upregulation inhibits the activity of
Frontiers in Oncology | www.frontiersin.org 8
caspase-3 and caspase-9, leading to apoptosis inhibition. MiR-
106a is highly expressed in cisplatin-resistant and paclitaxel-
resistant ovarian cancer cells (80, 93). It not only targets
PDCD4 to downregulate the level of cleaved caspase-8 and
cleaved caspase-3 in the death receptor pathway but also
directly inhibits the expression of caspase-7 and BCL10.
Therefore, miR-106a inhibits cell apoptosis by downregulating
the expression of apoptosis-related proteins and makes ovarian
cancer cells resistant to cisplatin and paclitaxel. MiR-214 targets
PTEN to induce cisplatin resistance in ovarian cancer (82). The
overexpression of miR-214 in ovarian cancer and the inhibition of
PTEN expression reduce the activation of the AKT pathway,
which promotes the phosphorylation of glycogen synthase kinase
FIGURE 3 | MiRNAs mediate chemotherapeutic resistance by multiple signaling pathways. Multiple miRNAs lead to drug resistance by inducing drug efflux,
apoptosis inhibition, and abnormal glycolysis. MiR-106a, miR-630, and miR-125b inhibit apoptosis to induce drug resistance. MiR-93, miR-223, miR-214, miR-205,
and miR-216a regulate the PI3K/AKT signaling pathway to inhibit apoptosis, which induces drug resistance. The IL-6/STAT3/miR-204 feedback loop inhibits
apoptosis to promote drug resistance. MiR-1180 and miR-197 act via the Wnt signaling pathway to promote drug resistance. MiR-149-5p regulates the expression
of MST1/2 and SAV1 to facilitate drug resistance. MiR-1307 upregulates the expression of ABCB1 to promote drug resistance.
September 2021 | Volume 11 | Article 742149
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3h (GSK3b) and p70 Ribosomal Protein S6 Kinase (p70S6K).
Thus, miR-214 facilitates apoptosis inhibition to induce cisplatin
resistance. Similarly, the upregulation of miR-93, miR-223, or
miR-216a expression can promote the cisplatin resistance of
ovarian cancer through activation of the PI3K/AKT pathway
caused by the sponging of PTEN (78, 81, 88, 89, 104). In
addition, miR-21, miR-130a, miR-205, and miR-93 can
negatively regulate the expression of PTEN, which makes
ovarian cancer cells resistant to cisplatin (83, 90, 96, 105). MiR-
125b is highly expressed in cisplatin-resistant ovarian cancer cells
and targets BAK1 to induce cisplatin resistance (87). As a pro-
apoptotic protein, BAK1 enhances the mitochondrial
permeability and promotes the release of cytochrome C, thereby
promoting the occurrence of mitochondrial apoptosis (106).
PRKCD is considered to induce apoptosis (107). MiR-204, as a
key factor of the IL-6R/STAT3/miR-204 feedback loop, causes
cisplatin resistance in epithelial ovarian cancer (86).
Mechanistically, the binding of interleukin-6(IL-6) to IL-6R
activates JAK2 to promote the level and nuclear translocation of
p-STAT3, which enhances the transcription of anti-apoptotic
proteins (MCL-1, BCL-2, and survivin). It also binds to the
promoter region of TRPM3 to inhibit the transcription of miR-
204, which the then enhances the level of its target protein IL-6R,
further activating the transcription of anti-apoptotic proteins
induced by p-STAT3 to facilitate cisplatin resistance. The high
expression of miR-630 in paclitaxel-resistant ovarian cancer cells
induces apoptosis inhibition by directly downregulating APAF-1
(92, 108). As an activator of mitochondrial apoptosis, APAF-1
induces apoptosis in ovarian cancer. In an ovarian tumor
xenograft mouse model, the upregulation of miR-223 and
miR-205 decreased tumor growth and the expression of
PTEN (78, 83). Likewise, the high expression of miR-204
enhanced cisplatin resistance, and the low expression of
miR-630 increased paclitaxel sensitivity in an ovarian tumor
xenograft mouse model (86, 92). Both miR-204 and miR-630
promote the malignant phenotype of tumor cells. MiRNA
inhibits the apoptosis of ovarian cancer cells mainly through
inhibition of the death receptor pathway, inhibition of the
mitochondrial apoptosis pathway, and activation of the PI3K/
AKT pathway. These three signaling pathways are extensively
studied, but the role of miRNA in these pathways seems like an
unexplored area of research. Studies in this area will deepen our
understanding of the drug resistance of ovarian cancer caused by
apoptosis inhibition.
ECTOPIC EXPRESSION OF circRNAs
INDUCES CHEMOTHERAPEUTIC
RESISTANCE

CircRNA is a new research hotspot in the regulation of drug
resistance of ovarian cancer by ncRNAs, but research on this
topic is still in its nascent stages (109–112). Luo et al. (109)
found that circFoxp1 upregulates the level of CCAAT
enhancer binding protein gamma (CEBPG) and formin-like
3 (FMNL3) to promote cisplatin resistance by sponging miR-
Frontiers in Oncology | www.frontiersin.org 9
22 or miR-150-3p. CEBPG and FMNL3, two oncogenes in
ovarian cancer, are common targets of miR-22 and miR-150-
3p, respectively. Similarly, circTNPO3, circCELSR1, and
circNRIP1 are highly expressed in paclitaxel-resistant
ovarian cancer cells (110–112). CircTNPO3 increases the
expression of NIMA-related kinase 2 (NEK2) by directly
t a r g e t i n g m iR - 1299 , wh i ch th en con t r i bu t e s t o
chemotherapeutic resistance in ovarian cancer (113).
CircCELSR1 regulates the miR-1252/forkhead box R2
(FOXR2) axis to facilitate paclitaxel resistance in ovarian
cancer. CircNRIP1 upregulates the expression of HOXC8 by
sponging miR-211-5p, which makes ovarian cancer cells less
sensitive to paclitaxel. HOXC8 enhances the expression of
PCNA, CyclinD1, Bcl-2, MMP2, and MMP9, thereby
inhibiting the expression of cleaved caspase-3. In an ovarian
tumor xenograft mouse model, the knockdown of circTNPO3,
circCELSR1, or circNRIP1 slowed down tumor growth (110–
112). In addition, the knockdown of circTNPO3 or circNRIP1
increased paclitaxel sensitivity in vivo. In recent years, research
on circRNA has been gaining momentum, but there is a lot of
scope for further research. Therefore, future research could
focus on the relationship between circRNA and ovarian cancer
resistance, which will open avenues for targeting ncRNAs to
overcome drug resistance in ovarian cancer.
CONCLUSIONS

Many types of ncRNAs exist, and each type has many different
members. In this review, we have covered most members of
lncRNA, miRNA, and circRNA families that have been found to
be associated with drug resistance in ovarian cancer in recent
years and their mechanisms leading to drug resistance. Studies
on ncRNAs in ovarian cancer drug resistance have mainly
focused on the well-known drug resistance pathways of
ncRNA, such as apoptosis inhibition, drug efflux, and EMT.
Through these studies, we can understand the role of ncRNAs in
tumors, their function at the molecular level, and their response
to chemotherapeutic drugs. Additional in-depth studies on these
ncRNAs in terms of the signaling pathways that they are
involved in, including identifying the specific upstream and
downstream factors, will help us understand how ncRNAs
induce ovarian cancer drug resistance and lead to poor
prognosis. However, the main challenge is to screen and isolate
the most prominent ncRNAs related to drug resistance from a
large pool of ncRNAs.
FUTURE PERSPECTIVES

Systemic chemotherapy is currently the main treatment
strategy for ovarian cancer patients. Unfortunately, drug
resistance remains an inevitable problem in the long-term
chemotherapy of cancer. Interventions aimed at abnormally
expressed ncRNAs have shown promise in reversing the drug
resistance of ovarian cancer. Currently, several ways have been
September 2021 | Volume 11 | Article 742149
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proposed to achieve ncRNA-targeted therapy including the
upregulation ofncRNAs by utilizing mimics, the exogenous
expression or downregulation of ncRNAs by using small
interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs),
and inhibition of ncRNA function through antisense
oligonucleotides. These methods will allow us to regulate the
expression of ncRNAs restore the drug sensitivity of drug-
resistant ovarian cancer cells. Therefore, the combination of
ncRNA-targeted therapy and chemotherapy may be a
promising method for the treatment of ovarian cancer in the
future. However, it is a major challenge to accurately
and effectively apply these ncRNA modulators to the
human body. It is reported that incorporation of specific
oligonucleotides into nanoparticles can improve their delivery
efficiency, thereby achieving optimal therapeutic effect on
tumors (114). In addition, GalNAc-siRNA conjugates have
been shown to accurately act as siRNAs against mRNAs in
cells; therefore, this technology can be explored to counter
ovarian cancer drug resistance (115). However, prior to the
clinical application of such technology, research on its safety
and practicality is indispensable. More relevant clinical trials
are required to understand the true clinical potential of the
above-mentioned ncRNAs, so that we can develop novel and
effective treatment strategies for ovarian cancer.
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