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The effects of Carbon ion radiation (C-ion) alone or in combination with fused toes
homolog (FTS) silencing on Notch signaling were investigated in uterine cervical cancer
cell lines (ME180 and CaSki). In both cell lines, upon irradiation with C-ion, the expression
of Notch signaling molecules (Notch1, 2, 3 and cleaved Notch1), g-secretase complex
molecules and FTS was upregulated dose-dependently (1, 2 and 4 Gy) except Notch1 in
ME180 cells where the change in expression was not significant. However,
overexpression of these molecules was attenuated upon silencing of FTS. The spheroid
formation, expression of stem cell markers (OCT4A, Sox2 and Nanog) and clonogenic cell
survival were reduced by the combination as compared to FTS silencing or C-ion
irradiation alone. Additionally, immunoprecipitation and immunofluorescence assay
revealed interaction and co-localization of FTS with Notch signaling molecules. In
conclusion, FTS silencing enhances the radio-sensitivity of the cervical cancer cells to
C-ion by downregulating Notch signaling molecules and decreasing the survival of cancer
stem cells.

Keywords: cervical cancer, fused toes homolog, notch, spheroid, carbon-ion beam
Abbreviations: CCRT, concurrent chemo-radiotherapy; C-ion, Carbon ion; CSCs, cancer stem cells; DAPI, 4′,6-diamidino-2-
phenylindole; DMF, dose modifying factor; ECL, enhanced chemiluminescence; EGF, epidermal growth factor; FTS, fused toes
homolog; GSI, g-secretase inhibitors; Gy, Gray; h, hour; HES1, hairy and enhancer of split-1; HEY, HES related with YRPW
motif; HIMAC, Heavy Ion Medical Accelerator in Chiba; HNSCC, head and neck squamous cell carcinoma; HPV, Human
papillomavirus; IF, immunofluorescence; IP, immunoprecipitation; LET, linear energy transfer; NICD, Notch intracellular
domain; OCT4A, Octamer-binding transcription factor 4A; PBS, phosphate-buffered saline; PEN-2, presenilin enhancer 2; RT,
radiation therapy; SF, surviving fraction; SOX2, SRY-Box Transcription Factor 2.
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INTRODUCTION

Uterine cervical cancer is the fourth most commonly diagnosed
cancer with the fourth leading cause of death due to cancer in
women worldwide. There were estimates of 604,000 new cases
and 342,000 deaths in 2020. Nevertheless, it is the leading cause
of malignancies related death in sub-Saharan Africa, South
America and South-Eastern Asia (1) . The human
papillomavirus (HPV), most frequently HPV 16, is the
predominant risk factor of cervical cancer (2). Notch signaling
has been reported to play a crucial role in cervical cancer
development (3) in which E6 and E7 oncoproteins of HPV
regulate the Notch expression and conjoin to induce cellular
transformation (4).

Notch signaling is a conserved pathway that determines
mammalian cell fate (5). The transmembrane receptors of
Notch communicate with the neighboring cells which express
membrane-bound ligands. The interaction of Notch ligands with
its receptors triggers proteolytic cleavage leading to the release
and translocation of the Notch intracellular domain (NICD) to
the nucleus where NICD activates the target genes transcription.
Constitutive Notch signaling targets comprise not only the
transcriptional regulators of the hairy enhancer split (HES)
and HES related with YRPW motif-family (HEY), but also the
oncogenes like Myc or Ras (6). Thus, the Notch pathway plays a
central role in the maintenance of cancer stem-like properties
and its persistent activation may lead to cancer progression and
metastasis (7, 8).

Even though some tumors relapse, radiation therapy (RT) is
considered as one of the main modalities for cancer treatment
(9). Recently, Notch pathway has been demonstrated to mediate
resistance for RT in tumor cells (10). A thorough understanding
of Notch regulation and its interactions with other relevant
therapeutic pathways is essential for its successful targeting (11).

Carbon ion (C-ion) RT offers more advantages than
conventional RT as it enables efficient cell killing, attributable
to a more accurate dose distribution (12). Furthermore, C-ion
allows high energy deposition and high linear energy transfer
(LET) to its target compared with photon and proton beams. In
addition, the upsurge of energy deposition along the path of ion
beam in the body results in less toxicity to the neighboring
normal tissues (13). More than 27,000 patients with various types
of tumors, including adenoid cystic carcinoma, adenocarcinoma,
malignant melanoma and sarcomas, which are very often x-rays
resistant, have been treated with C-ion worldwide during 1994-
2018 (14, 15).

A favorable local control with minimal radiation toxicity by
C-ion RT alone has been reported for locally advanced cervical
cancer (16). However, despite favorable local control rates,
distant metastasis was high, disease-free survival and overall
survival rates were not too satisfactory compared to concurrent
chemoradiotherapy (CCRT) (17), therefore, efforts to improve
the efficacy of C-ion therapy are highly desirable.

Cancer stem cells (CSCs) can self-renew, differentiate and
repair DNA damage, which renders them resistant to various
therapies, including RT (18). The dose-response curves
comparison for the CSCs and non-CSCs indicated that CSCs
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are resistant to x-rays and C-ion beam (19). Therefore,
eradication of all CSCs is a prerequisite for ultimate cancer
treatment. Some researchers have reported that cisplatin or
gemcitabine in combination with C-ion RT in pancreatic,
mesothelioma and breast cancer improved the efficacy of C-ion
and overcame CSC resistance (20–22). The invasive and
migratory potential of CSCs in head and neck squamous cell
carcinoma (HNSCC) enhance their radioresistance. CSC
invasion process was significantly inhibited by the combination
of cetuximab and C-ion (23). In uterine cervical cancer C-ion
therapy overcame the radiation resistance origination from
hypoxia (24). The radioresistance in CSCs has been often
linked with Notch signaling. Thus inhibition of Notch pathway
could be used to develop an adjuvant approach to RT (25).

Our previous findings have shown FTS as a potential target
for Notch-mediated resistance upon x-ray irradiation in cervical
cancer (10). In this study, effects of the C-ion beam on the Notch
signaling and spheroid formation were investigated in FTS intact
and silenced cells with an objective to evaluate whether targeting
FTS can be a Notch-mediated adjuvant approach in improving
the efficacy of C-ion therapy in cervical cancer.
MATERIALS AND METHODS

Cell Culture and Antibiotics
Two human cervical cancer cell lines, ME180 and CaSki cells,
were procured from RIKEN BioResource Center (Japan) and
cultured in RPMI 1640 and DMEM (Invitrogen, Carlsbad, CA,
USA) supplemented with 10% fetal bovine serum (FBS),
penicillin (100 units/mL) and streptomycin (100 mg/mL). The
cells were grown in a humidified incubator at 37°C and 5% CO2.
Cell harvesting and passaging was done with the help of Trypsin-
EDTA. All standard cell culture reagents were procured from
Invitrogen. Antibodies for FTS and Actin were purchased from
Santa Cruz Biotechnology, Inc. (Dallas, TX, USA). All other
primary and secondary antibodies were purchased from Cell
Signaling Technologies (Beverly, MA, USA).

C-Ion and X-Ray Beam Irradiation
Cells grown in T-25 flasks were irradiated at room temperature
with C-ions accelerated by the Heavy Ion Medical Accelerator in
Chiba (HIMAC) at the National Institute of Radiological
Sciences (NIRS) (Chiba, Japan). The 290 MeV/n carbon-ion
beams were adjusted to be about 70 KeV/µm at the cell surface
using a scatterer (Ta = 0.2 mm, Pb = 1.6 mm), air: 11.8 m, the
flask and PMMA range shifters: 140 mm water-equivalent. The
flasks were positioned in vertical position with the cell adhesion
surface facing the beam source. The particulars regarding the
beam characteristics of C-ion, dosimetry and irradiation
procedures have been explained previously (26–28). To
compare the radiation effects of C-ion and x-ray by FTS
silencing, cells were also irradiated with various doses of x-ray
in a field size of 20 cm x 20 cm at room temperature using a 6
MV medical linear accelerator (Oncor, Siemens, Concord, CA,
USA) at Chungbuk National University Hospital, Department of
October 2021 | Volume 11 | Article 730607
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Radiation Oncology. QA of the medical linear accelerator is
performed in compliance to IAEA-TRS-398.

Colony Formation Assay
The cell survival by irradiation was evaluated using colony
formation assay. After C-ion/x-ray irradiation, cells were washed
with 1X PBS pH 7.5 and single-cell suspension was prepared by
trypsinization. The cells were counted and re-seeded in triplicates
into 60 mm cell culture dishes at appropriate cell densities for
colony formation. The cells were cultured for 7-9 days to make
colonies,fixedwith 20%ethanol and stainedwith0.2% crystal violet
(Sigma, St. Louis, Missouri, USA). The colonies comprising 50 or
more cells were considered as survivors and counted using a
microscope (Olympus Optical, Shinjuku, Tokyo, Japan).
Surviving fractions were calculated on the basis of the plating
efficiencies of corresponding non-irradiated cells. Three
independent experiments were performed with each cervical
cancer cell line. The graphs were plotted for surviving fractions by
C-ion andx-ray in the FTS intact and silenced cells.Dosemodifying
factor (DMF) was calculated as the ratio between FTS intact and
silenced group for the radiation doses of C-ion or x-ray with 10%
surviving fraction (SF10).

Western Blotting
After irradiation, the cells were washed in cold PBS and lysed
with 200 µl of cell lysis buffer (Cell Signaling Technology,
Danvers, MA, USA) supplemented with complete protease
inhibitor cocktail and phosphatase inhibitors (Roche,
Mannheim, Germany) for 30 min on ice . Prote in
concentration of each sample was determined using Bradford
reagent (Bio-Rad, Hercules, CA, USA). 30 µg of total protein
from each sample was resolved on SDS-PAGE gels and
transferred onto PVDF membranes (Millipore, Billerica, MA,
USA). The membranes were then probed with appropriate
primary and secondary antibodies. Finally, the membranes
were exposed to the ECL substrate solution (Thermo Scientific,
Rockford, IL, USA) and images were recorded with the help of
chemidoc (Fujifilm, Tokyo, Japan). Expression of each protein
was calculated by densitometric measurement using the Multi-
Gauge ver. 3.1 Software (Fujifilm, Tokyo, Japan). Band densities
of target proteins were normalized to actin expression to plot the
bar graphs (Supplementary Figures S2–S5).

Spheroid Formation Assay
After transfection with scrambled siRNA or FTS siRNA for 24 h,
the cells were irradiated with C-ion beam. Post-irradiation, the
cells were trypsinized, harvested and single-cell suspension was
prepared. The single-cell suspension was cultured in 60 mm
ultralow attachment plates (Corning, Lowell, MA, USA), in a
serum-free DMEM/F12 growth medium supplemented with 10
ng/mL EGF (Sigma, St. Louis, MO, USA), 10 ng/mL bFGF
(Invitrogen) and 2% B27 (Invitrogen). The images of spheroids
were taken using the Olympus IX71 microscope (Tokyo, Japan).

Cell Viability Assay in Spheroids
To analyze the number of viable cells constituting the spheroids,
7 days after spheroid culture 50 µl of WST-1 solution
Frontiers in Oncology | www.frontiersin.org 3
(DoGenBio, Seoul, South Korea) was added to each well. After
4 h, absorbance at 450 nm was recorded with the help of a
microplate reader (BIO-RAD, CA, USA).

FTS Silencing
Cells were seeded in T-25 or T-75 flask in antibiotic-free RPMI
and allowed to attach overnight. Next morning, the medium was
replaced with transfection medium containing 50 nM of either
scrambled siRNA (sc-37007, Santa Cruz) or FTS siRNA (sc-
93013, Santa Cruz) and incubated at 37˚C. After 6 h, the medium
was replaced with complete growth medium supplemented with
10% FBS and 1% antibiotics, and the cells were incubated for
another 24 h.

Immunoprecipitation (IP) Assay
The cells were lysed 24 h after C-ion irradiation using cell lysis
buffer (Cell Signaling Technology) for 30 min on ice and scraped
using cell scraper (SPL Life Sciences, South Korea). The cell
lysates were centrifuged at 12,000 g for 10 min at 4°C and the
supernatants were collected. 200 mg of total protein from each
sample was incubated overnight with the anti-FTS antibody at
4°C, followed by incubation with protein A/G agarose (Santa
Cruz) for 1 h. Immunoprecipitates were washed twice for 5 min
with cell lysis buffer at 4°C. Bead bound proteins were eluted
with non-reducing sample buffer (Thermo Scientific) at 95°C for
3 min and then subjected to SDS-PAGE and western
blot analyses.

Immunofluorescence (IF) Assay
Cells were grown on chamber slides (154526, Thermo Fisher,
MA, USA), transfected using scrambled or FTS siRNA,
irradiated with 1 Gy C-ion and incubated for 24 h at 37°C in a
CO2 incubator. After incubation, the cells were fixed with 4%
formaldehyde (Thermo Scientific), permeabilized with 0.1%
Triton X-100 (Amresco, Ohio, US) and blocked with 10% FBS
for 30 min followed by overnight incubation at 4°C with
respective primary antibody (1:100 dilution). Cells were further
incubated in the dark at room temperature with Alexa-488/Alexa
594-conjugated secondary antibody for 1 h. Nuclei were counter
stained with DAPI at a concentration of 1 mg/mL (Sigma). After
staining with DAPI the chambers were removed and mounted
using cover slips with anti-fade mounting solution (Dako, CA,
US). The slides were dried overnight in the dark and stored at
-20°C until imaging. Z-stack images were captured with
the help of confocal microscope (Leica DM-IRB, Mannheim,
Germany). For spheroids immunofluorescence, the cells were
irradiated with 1 Gy C-ion after transfection with scrambled or
FTS siRNA. The cells were cultured further in an ultra-low
attachment plate and allowed to form spheroids. The
spheroids were then carefully transferred onto chamber
slides and allowed to adhere overnight. Next morning
immunofluorescence protocol was followed as mentioned
above for adherent cells.

Statistical Analysis
All analytical data are presented as the means ± SD of three
independent experiments. Differences among the groups were
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calculated by GraphPad Prism (GraphPad Software, version 9.1.0
(221), La Jolla, CA, USA, www.graphpad.com) using two way
analysis of variance (ANOVA) module followed by
Dunnett’s/Tukey multiple comparison post-hoc test; p ≤ 0.05,
was considered to be statistically significant.
RESULTS

C-Ion Upregulates FTS, the Notch
Signaling and g-Secretase Complex
Molecules
To determine the effect of C-ion on the Notch signaling, first, we
investigated the change in the expression level of the Notch
signaling molecules at three different doses of C-ion (0, 1, 2 and 4
Gy). In CaSki, the expression of Notch1, 2, 3, cleaved Notch1,
Hes1 and FTS was increased dose-dependently in response to C-
ion irradiation. In ME180, cleaved Notch1 and FTS expression
increased dose-dependently, while other molecules expression
didn’t change much in response to increased radiation doses
(Figure 1). Similarly, the protein expression level of g-secretase
complex molecules (presenilin1, presenilin2, nicastrin and
PEN2) was also elevated, in a dose and time-dependent
manner in both cell lines (Figures 2A, B). Changes in the
expression level of FTS, Notch and g-secretase complex
molecules in response to radiation doses were highly
significant when compared with unirradiated group
(Supplementary Figures S2, S3).
Frontiers in Oncology | www.frontiersin.org 4
FTS-Silencing Attenuates the Expression
of Notch Signaling Molecules
To study the role of FTS on Notch signaling, the FTS gene was
silenced using siRNA. Silencing of FTS reduced C-ion induced
upregulation of Notch1, 2, 3, cleavedNotch1 andHes1 significantly
(Figure 3A and Supplementary Figure S4), in addition to g-
secretase complex proteins (presenilin1, presenilin2, nicastrin and
PEN2) (Figure 3B and Supplementary Figure S4) in both cell
lines. Downregulation of these molecules was further augmented
when FTS silencing was combined with C-ion irradiation
(Figures 3A, B, and Supplementary Figure S4).

Interaction Between FTS and the Notch
Molecules Increases Upon C-Ion
Immunoprecipitation and immunofluorescence assay were
performed to demonstrate the interaction between FTS and the
Notch signaling molecules. Immunoprecipitation demonstrated
the physical interaction between FTS and Notch1/cleaved
Notch1/Hes1 (Figure 4A). Immunofluorescence showed the
increased co-localization of FTS with Notch1/cleaved Notch1/
Hes1 by C-ion irradiation, but the interaction and co-localization
were reduced substantially by FTS-silencing (Figures 4B–D).

The Combination of FTS-Silencing and
C-Ion Decreases Spheroid Formation,
Cancer Stem Cell Markers and Clonogenic
Cell Survival
The spheroid formation and the expression of stem cell marker
proteins (OCT4A, SOX2 and Nanog) in the two cell lines were not
changed by C-ion alone. However, they were decreased
dramatically when combined with FTS-silencing (Figures 5A–C
and Supplementary Figure S5). The number of spheroids and the
viable cells in the spheroids were also reduced significantly by
the combination of FTS-silencing and C-ion (Figures 5D, E). The
RBE value of C-ion to x-rays has been generally considered to be
about 2.5, hence we chose 1, 2 and 4 Gy of C-ion to compare the
radiation effects with 2.5, 5 and 10 Gy doses of x-ray. The survival
curves by C-ion or x-rays were significantly lowered when
combined with FTS silencing (Figure 6). Silencing of FTS was
seen to reduce the radiation dose by approximately 9.3% (x-rays)
and 11.8% (C-ion) in ME180 cells, whereas 17.2% (x-rays) and
9.5% (C-ion) in CaSki cells (Supplementary Table T1). Therefore,
the DMF at SF10 for ME180 cells was 1.093 (x-ray) and 1.118 (C-
ion), whereas it was 1.172 (x-rays) and 1.095 (C-ion) for CaSki
cells. We also calculated the RBE at SF10 for both the cell lines
which were 2.58 for ME180 and 2.66 for CaSki in FTS intact
group, while in the FTS silenced group it was 2.64 for ME180 and
2.49 for CaSki. We observed changes in the RBE value of C-ion by
approximately 15.52% in ME180 cells and 16.72% in CaSki cells
under the influence of FTS silencing (Supplementary Table T1).
DISCUSSION

In the current study, the expression of FTS and Notch signaling
molecules (Notch 1 2, 3, cleaved Notch1 and Hes1) was
FIGURE 1 | The expression of Notch signaling molecules (Notch1, 2, 3,
cleaved Notch1, Hes1) and FTS were increased by C-ion beam in cervical
cancer cells (ME180, CaSki). The cells were irradiated with 0, 1, 2 and 4 Gy
of C-ion and the protein expression was measured with immunoblot 24 h
post-irradiation. The images shown in this figure are the representatives of at
least three independent experiments.
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upregulated, dose dependently, in response to C-ion in CaSki
cells (Figure 1 and Supplementary Figure S2). Additionally,
upregulation of g-secretase complex molecules (presenilin1,
presenilin2, nicastrin and PEN2) was also observed in a
radiation dose and time dependent manner (Figure 2 and
Supplementary Figure S3). The notch signaling pathway is
well-known for its vital role in regulating cell division,
differentiation, survival and maintenance of the CSC
population in many human cancers, including cervical cancer
(25, 29–32). RT awakens CSCs to lead tumor relapse and
subsequent metastasis, although little is known about the
underlying mechanism (33). The radioresistance of CSCs is
governed by a few extrinsic factors (hypoxia, tumor
Frontiers in Oncology | www.frontiersin.org 5
microenvironment, etc.) and intrinsic factors (reactive oxygen
species, DNA repair, apoptosis, autophagy, cell cycle status, etc.).
Activation of Notch signaling leads to treatment failure after RT.
Theys et al. reported that radiation induces upregulation of
Notch signaling in non-small cell lung cancer (NSCLC) in
vitro (34). Higher Notch signaling has been shown to
accelerate tumor growth and increased radioresistance in
NSCLC in vivo (35). Therefore, targeting the Notch signaling
pathway could be an effective therapeutic approach to overcome
radioresistance (11). The g-secretase complex is a multi-subunit
enzyme that plays an important role in the cleavage of
intramembrane substrates of Notch receptors. The cleaved
Notch1 is accountable for inducing the genomic functions of
A B

FIGURE 2 | The expression of g-secretase complex proteins was upregulated by C-ion. The cells were irradiated with 0, 1, 2 and 4 Gy of C-ion and the protein
expression was detected by western blotting 24 h post-irradiation (A) or the cells were irradiated with 0 and 1 Gy C-ion and the protein expression was measured
after 1, 6 and 24 h post-irradiation (B). The images shown are the representatives of at least three independent experiments.
A B

FIGURE 3 | FTS-silencing combined C-ion radiation targets the protein expression of Notch molecules (A) and g-secretase complex (B). ME180 and CaSki cells
were transfected with scrambled siRNA or FTS siRNA. Cells were irradiated with C-ion 1 Gy and the protein expression was measured with immunoblot 24 h post-
irradiation. The images shown in this figure are the representatives of at least three independent experiments.
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Notch signaling. Inhibition of g-secretase has been reported to
enhance radiosensitivity via blocking the Notch signaling
pathway (36). g-Secretase inhibitors (GSIs) in combination
with radiation may prevent up-regulation of the Notch
receptor, ligand and other family members and consequently
diminish the number of surviving CSCs (37). Therefore g-
secretase inhibitors are now being studied in many clinical
trials against colorectal cancer, breast cancer, melanoma,
glioma and lung cancer (37). This study observed that
silencing of FTS alone or in combination with C-ion
attenuated overexpression of Notch and g-secretase complex
molecules (Figure 3 and Supplementary Figure S4).

In adherent cervical cancer cells FTS co-precipitated with
Notch1/cleaved Notch1/Hes1, suggesting FTS molecular
interaction with Notch molecules (Figure 4A). IF assay
demonstrated FTS co-localization with Notch1/cleaved
Notch1/Hes1 in both the cell lines. FTS silencing not only
diminished their expression but also prominently reduced the
co-localization (Figures 4B–D). The co-localization of Notch1/
cleaved Notch/Hes1 and FTS spectacles the importance of FTS in
mediating the Notch signaling in cervical cancer cells. We have
previously identified putative residues involved in the interaction
between FTS and Notch by in silico molecular docking (10),
which further strengthens our IP and IF findings. CSCs are in a
quiescent state in most of the established tumors. Their innate
radioresistance helps them survive the radiation exposure more
Frontiers in Oncology | www.frontiersin.org 6
easily as compared to differentiated cancer cells. Recent
evidences show that CSCs play a crucial role in recurrence and
metastasis in many cancers after radiotherapy (33). It has been
reported that following radiation, CSCs are enriched both in
vitro and in vivo, indicating towards the possibility of radiation-
induced generation of CSCs (38). Formation of spheroids is a
hallmark of cancer stem cells, therefore in the present study, we
evaluated spheroid formation in the cervical cancer cells and
compared expression levels of Notch and its target protein Hes1,
in addition to cancer stem cell markers. In this study, we report
that 1 Gy C-ion does not affect the spheroid formation ability of
ME180 and CaSki cells. Our finding is consistent with other
reports, where sphere-type cells were found to be resistant to
both x-rays and C-ion beams (39). Interestingly, FTS silencing
alone or in combination with 1 Gy C-ion inhibited spheroid
formation in both the cell lines; however, spheroid inhibition was
more remarkable in ME180 cells (Figures 5A, D). Similarly, the
cell viability of spheroids was unchanged with 1 Gy C-ion, but it
was reduced by FTS silencing alone or in combination with C-
ion (Figure 5E). Upregulation of SOX2 and OCT4A indicates
radiation resistance in cervical cancer cells (40). The stem cell
signaling molecules (Notch related) were overexpressed in
cervical cancer adherent cells as a result of 1 Gy C-ion
(Figure 1), but there was no change in the expression level of
these molecules along with other cancer stem cell markers
(Nanog, SOX2 and OCT4A) in the spheroid populations
A B

C D

FIGURE 4 | Immunoprecipitation assay and immunofluorescence show the interaction between FTS and Notch1/cleaved Notch1/Hes1 in ME180 and CaSki cells.
Cells were irradiated with 0 or 1 Gy C-ion and lysed after 24 h. Immunoprecipitation was performed with whole cell lysates using FTS antibody. IgG was used as
negative control (A). For immunofluorescence, the cells were grown in chamber slides. Cells were irradiated with 0 or 1 Gy C-ion. FTS was detected with Alexa Fluor
488 (green), whereas Notch1, cleaved Notch1 and Hes1 were detected using Alexa Fluor 594 (red), 24 h post-irradiation (B–D). The images shown in this figure are
the representatives of at least three independent experiments. White bar in each panel corresponds to 10 µm.
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A

B C

D E

FIGURE 5 | FTS silencing combined with C-ion reduces spheroid formation and cancer stem cell markers in cervical cancer cells. FTS intact or silenced ME180 and
CaSki cells were irradiated with 0 or 1 Gy of C-ion. Following irradiation, the cells were harvested and cultured in ultra-low attachment plates for seven days.
Spheroid formation assay (A). Western blots and immunofluorescence performed with the spheroids displaying the reduced expression of stem cell markers in the
FTS silenced group (B, C), white bar in each panel corresponds to 50 µm. (D) shows the mean number of spheroids from five randomly selected fields under the
microscope in each treatment group. Bars represent normalized values against control group, error bars represent ± SD. (E) shows the viability of the spheroid
forming cells in each treatment group. Bars represent normalized values against control group, error bars represent ± SD. P values of < 0.05 were considered
statistically significant. a p < 0.05; b p < 0.005; c p < 0.001; d p < 0.0001; ns, not significant.
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(Figures 5B, C and Supplementary Figure S5). Nonetheless, a
significant attenuation of Notch molecules and cancer stem cell
markers was observed upon FTS silencing, indicating a potential
role of FTS in the cancer stem cell signaling pathway
(Figures 5B, C and Supplementary Figure S5). We finally
compared DMF at SF10 after irradiation with C-ion and x-ray
in FTS intact and silenced cells. Both the cell lines exhibit
significantly increased radiation sensitivity upon FTS silencing
(ME180-x-ray: p value <0.0001, C-ion: p value <0.01; CaSki – x-
ray: p value <0.0001; C-ion: p value <0.05). At SF10 doses of C-
ion and x-ray (Figure 6 and Supplementary Figure S6,
Supplementary Table T1) a reduction of approximately 10%
radiation dose was observed in the FTS silenced group. These
findings suggest radiosensitization can be achieved both in C-ion
and x-ray by FTS-silencing.

Although few reports onC-ion therapy showeradicationofCSC
in glioma/cancer (41), data pertaining to the Notch signaling
pathway by C-ion therapy are not available. This is the first report
to show that FTS silencing combined with C-ion targets the Notch
signaling and reduces the spheroid formation, cancer stem cell
markers and clonogenic survival in cervical cancer cells.
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