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To investigate whether the maximum standardized uptake value (SUVmax) of 18F-
deoxyglucose (FDG) PET imaging can increase the diagnostic efficiency of CT
radiomics-based prediction model in differentiating benign and malignant pulmonary
ground-glass nodules (GGNs). We retrospectively collected 190 GGNs from 165
patients who underwent 18F-FDG PET/CT examination from January 2012 to March
2020. Propensity score matching (PSM) was performed to select GGNs with similar
baseline characteristics. LIFEx software was used to extract 49 CT radiomic features, and
the least absolute shrinkage and selection operator (LASSO) algorithm was used to select
parameters and establish the Rad-score. Logistic regression analysis was performed
combined with semantic features to construct a CT radiomics model, which was
combined with SUVmax to establish the PET + CT radiomics model. Receiver
operating characteristic (ROC) was used to compare the diagnostic efficacy of different
models. After PSM at 1:4, 190 GGNs were divided into benign group (n = 23) and
adenocarcinoma group (n = 92). After texture analysis, the Rad-score with three CT
texture features was constructed for each nodule. Compared with the Rad-score and CT
radiomics model (AUC: 0.704 (95%CI: 0.562-0.845) and 0.908 (95%CI: 0.842-0.975),
respectively), PET + CT radiomics model had the best diagnostic efficiency (AUC: 0.940,
95%CI: 0.889-0.990), and there was significant difference between each two of them
(P = 0.001-0.030). SUVmax can effectively improve CT radiomics model performance
in the differential diagnosis of benign and malignant GGNs. PET + CT radiomics might
become a noninvasive and reliable method for differentiating of GGNs.

Keywords: lung adenocarcinoma, radiomics, standardized uptake value, fluorodeoxyglucose F18, positron
emission tomography-computed tomography
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INTRODUCTION

Lung cancer is the leading cause of cancer-related deaths
worldwide, especially in China (1, 2). The incidence of lung
cancer is increasing rapidly. It is predicted that China’s lung
cancer mortality will increase by about 40% from 2015 to 2030
(1, 2). Early diagnosis and treatment are crucial for improving the
prognosis of patients. With the significant increase in the detection
of many asymptomatic pulmonary nodules and the change in the
epidemiological trend of lung cancer in China, diagnosis, and
differentiation of ground-glass pulmonary nodules (GGNs) has
become a huge challenge for clinicians (3). It is reported that the
probability of malignancy of GGNs is higher than that of solid
pulmonary nodules (4), but it can also be caused by benign lesions
such as organizing pneumonia and interstitial pneumonia. High-
resolution computed tomography (HRCT) is generally recognized
as a routine method for differentiating GGNs. However,
the radiological features of benign and malignant GGNs
are overlapping, and the judgment of the characteristics of
the lesion is easily to be affected by subjective factors. Therefore,
the diagnostic efficiency of HRCT needs to be improved
(5). According to the recommendation of guidelines for
Management of Incidental Pulmonary Nodules Detected on CT
Images, pulmonary GGNs that cannot be characterized can be
further identified by CT follow-up to observe the dynamic changes
of GGNs (6). However, some benign GGNs and early lung
adenocarcinoma remain stable for a long time, making it
difficult to differentiate them (7). Moreover, long-term follow-up
often brings panic and anxiety to patients. Pathological
examination is the gold standard for the diagnosis of GGNs.
However, the cell composition of GGN is relatively small, which
requires a highly skillful puncture technique for pathological
examination that is difficult to perform. Thus, bronchoscopy and
percutaneous lung puncture techniques have limited application
value in GGNs. Therefore, it is urgent to develop a reliable and
practical noninvasive imaging method to accurately distinguish
benign and malignant GGNs to guide the individualized clinical
management strategy for GGNs.

Radiomics is a very promising diagnostic method. With the
help of mathematical and statistical methods, high-throughput
characteristic spatial data can be extracted from the image data of
the region of interest, and valuable lesion information that the
naked eye may ignore can be effectively captured to improve
the accuracy of disease diagnosis (8–10). Radiomics has the
advantages of real-time, objective, noninvasive, and reusability.
Previous studies have shown that CT texture features are
potentially radiological biomarkers in the differential diagnosis
of lung cancer (11, 12), the prediction of tumor growth (13), gene
expression (14), and the evaluation of therapeutic efficacy (9, 15).
Most of these studies are based on solid pulmonary nodules, and
Abbreviations: 18F-FDG, 18F-fluorodeoxyglucose; AUC, area under the curve;
CI, confidence interval; GGN, ground-glass nodule; HRCT, High-resolution
computed tomography; ICC, intraclass correlation coefficients; LASSO, least
absolute shrinkage and selection operator; mGGN, mixed ground-glass nodule;
PET, positron emission tomography; PSM, propensity score matching; pGGN,
pure ground-glass nodule; ROC, receiver operating characteristic; ROI, region of
interest; SD, standard deviation; SUVmax, maximum standardized uptake value.
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there are few reports on the differentiation of benign and
malignant GGNs. Theoretically, inflammatory lesions and
malignant tumors have completely different biological
behaviors, pathological processes, and internal spatial
structures. Therefore, radiomics that is based on multi-
dimensional characteristics can identify malignant lesions from
benign GGNs. Digumarthy et al. (16) differentiated benign and
malignant lesions in 108 GGNs obtained from 36 patients and
found that only 2/92 radiomic features (cluster shade and surface
volume ratio) could be used for model prediction, with
AUC=0.624, which is of diagnostic value, but its diagnostic
efficacy needs to be improved. It has been reported that the
model with the combination of radiomics and semantic
parameters can improve the performance of radiomics model
alone (17). Besides, PET/CT imaging, as noninvasive dual-
modality imaging that reflects tumor heterogeneity, has been
recognized for its application in the field of lung cancer. Our
previous studies also found that PET metabolic parameters help
identify GGNs (18). Thus, we proposed that adding PET
metabolic parameters (SUV) on the basis of CT radiomics
model will be beneficial in the differentiation of benign and
malignant GGNs.

The purpose of this study was to establish a dual-modality
comprehensive prediction model based on CT texture
parameters, semantic features, and PET metabolic parameters
through analyzing the PET/CT images of patients with
indeterminate lung GGNs who underwent 18F-FDG PET/CT
examination before operation and to investigate whether the
SUVmax can increase the diagnostic efficiency of CT radiomics-
based prediction model in differentiating benign and
malignant GGNs.
MATERIALS AND METHODS

Research Objects
This was a single-center case-control study. We retrospectively
selected patients who received 18F-FDG PET/CT examination in
our hospital from January 2012 to March 2020 for indeterminate
GGNs. The study was approved by the Institutional Ethics
Committee, and no informed consent was required from the
patients for retrospective study [approval No.: (2020) Science
No. 075]. Inclusion criteria: patients with lung GGN; GGN
≤3 cm; patients who underwent PET/CT scan and breath-
holding chest CT scan in our department; the lesions were
resected within 1 month after PET/CT examination, and lung
adenocarcinoma and benign lesions with complete postoperative
pathological data. Exclusion criteria: lesions with poor quality
images that affected the measurement; patients who received any
anti-tumor treatment; lung cancer patients with stage IB or above;
patients with fasting blood glucose level >11.1 mmol/L; patients
with impaired liver function (serum alanine aminotransferase or
aspartate aminotransferase exceeding five times the upper limit of
the normal value).

The total number of GGNs that met the inclusion criteria was
190, belonging to 165 patients, including 53 males and 112
females, aged 60.8 ± 9.2 years (range 31-81 years). All GGNs
December 2021 | Volume 11 | Article 727094
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were divided into a benign group (n = 23) and an
adenocarcinoma group (n = 167) according to postoperative
pathology [the pathological classification of adenocarcinoma
group was based on the classification of lung adenocarcinoma
published by IASLC/ATS/ERS in 2011 (19), and the staging of
the lesion was based on the Eighth Edition of the TNM
Classification of Lung Cancer published by the Union for
International Cancer Control (UICC) in 2017 (20)]. The
patient selection process is shown in Figure 1.

PET/CT Examination
PET/CT imaging was performed using Siemens biograph mCT (64)
PET/CT scanner. The examination procedure was as follows: After
fasting for 4-6 h, the height and weight of the patients were
measured, and fingertip blood was collected for the blood glucose
test. The imaging agent 18F-FDGwas injected intravenously into the
back of the hand or elbow at a dose of (3.70-5.55) MBq/kg, and
the images were collected after the patient rested of (60 ± 5) min.
The patient was lying on the examination table supine, with both
hands holding the head. Low-dose whole-body CT scanning was
performed first from skull base to middle femur, and then whole-
body PET scanning was applied with the same range at 2 min/bed.
Each patient was scanned for about 6-7 beds. No respiratory gating
device was used during image acquisition. Image reconstruction:
TrueX + TOF (ultraHD-PET) with 2 iterations and 21 subsets, and
Gaussian filtering with a full-width at half maximum of 2.0 mm;
matrix (pixels) 200 × 200, zoom 1.00, the image acquisition mode
was 3D. The image was evaluated using TrueD software (Siemens).
CT data were used for attenuation correction of the PET images,
and the corrected PET images were merged with CT images. TrueD
software (Siemens) was used to display and analyze the images.

CT Examination and Image
Reconstruction
After the whole-body PET/CT scan, the breath-holding chest CT
scan was performed immediately, and the GGN site was
Frontiers in Oncology | www.frontiersin.org 3
reconstructed with thin slices. Acquisition and reconstruction
conditions: The tube current was automatically adjusted
according to the human body’s anatomical structure and tissue
density. The tube voltage was 140 kV, the rotation time was 0.5
seconds, the pitch was 0.6, the kernel was B70f very sharp, the
matrix was 512 × 512, the reconstruction layer thickness was 3.0
mm and 1.0 mm, the window width was 1200 HU, and the
window level was -600 HU.

Clinical and Imaging Parameters
The clinical data collected included age, sex, smoking history,
and fasting blood glucose level of the patients. The CT
parameters included the number of GGN (solitary, multifocal),
type of GGN (pGGN, mGGN), location (central, peripheral),
shape (round/oval, irregular), margin (smooth, lobulated),
abnormal bronchus sign, vacuole sign, pleural indentation sign,
vascular convergence sign. PET parameter: SUVmax of nodules.

Texture Analysis and Feature Extraction
The patient’s chest CT images were exported from Siemens
workstation in DICOM format and uploaded into LIFEx software
(version 5.10, http://www.lifexsoft.org). Two experienced nuclear
medicine doctors (Niu R and Shao X) manually delineated each
target lesion, drew the region of interest (ROI) layer by layer along
the lesion’s contour, and automatically calculated and extracted
texture features for each GGN.

Statistical Analysis
First, the GGNs that met the inclusion criteria were matched
with propensity score (PSM) according to benign to malignant
ratio at 1:4. The PS variables were age, sex, smoking history,
fasting blood glucose level, and GGN number grouping
(Supplementary Table S1). The continuous variables with
normal distribution were expressed as the mean ± standard
deviation (SD), continuous variables with non-normal
distribution were expressed as the median (Q1-Q3), and the
FIGURE 1 | Flow chart of the study. GGN = ground-glass nodule, PSM = propensity score matching.
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categorical variables were expressed as frequency (%). T-test or
Mann Whitney U test was used to compare continuous variable
data between groups, chi-square test or Fisher test was used to
compare categorical data between groups.

For texture feature selection, we first removed two parameters
with intraclass correlation coefficients (ICCs) lower than 0.75.
Next, the Mann Whitney U test was performed to screen the
parameters between benign and adenocarcinoma groups (P-
value was relaxed to 0.15). The best predictive features were
selected using the least absolute shrinkage and selection operator
(LASSO) algorithm and 10-fold cross-validation, and the Rad-
score of each GGN was calculated. Multivariable logistic
regression analysis was carried out to construct the joint model
using Rad-score, CT conventional morphological parameters
(semantic features), and PET parameters (SUVmax) with
different CT reconstruction slice thickness. The receiver
operating characteristic (ROC) curve was prepared for each
model, and the area under the curve (AUC) was calculated.
The bootstrap resampling method (times = 500) (21)
recommended by the TRIPOD statement was used to
internally verify the model and calculate 95% confidence
interval (CI) of AUC. Delong test was used to compare
whether the differences in effectiveness between the models
were statistically significant (P <0.05), and the nomogram of
the model was generated. All statistical analyses were performed
using R software, version 3.4.3 (http://www.R-project.org;
software package: glmnet, pROC, rms, dca.R).
RESULTS

General Data
After PSM at a ratio of 1:4, 190 GGNs were divided into benign and
adenocarcinoma groups. There were 23 GGNs in benign group
(including 3 organizing pneumonia, 4 fungal infections, 1 interstitial
pneumonia, 5 granulomatous inflammation, and 10 other benign
lesions), and 92 GGNs in adenocarcinoma group (including 77
invasive lung adenocarcinoma, 8 microinvasive adenocarcinoma,
and 7 preinvasive lesions). The general data of GGNs before and
after PSM is shown in Table 1. Comparing CT semantic features
Frontiers in Oncology | www.frontiersin.org 4
and SUVmax of GGNs after PSM, we found that only pleural
indentation and SUVmax were significantly different between the
benign and adenocarcinoma groups (P <0.001 and 0.024,
respectively). There were no significant differences in nodule type,
location, shape, margin, abnormal bronchus sign, vacuole sign, and
vascular convergence between the benign group and
adenocarcinoma group (all P >0.05) (Table 2).

CT Texture Features Analysis
Through texture analysis, 49 features were obtained for each
GGN (Supplementary Table S2). According to ICC analysis of
two different readers, the ICCs of three texture features of 3 mm
slice thickness CT images were lower than 0.75, including
GLZLM_SZE, GLZLM_SZLGE, and GLZLM_ZP, indicating
that these three texture features needed to be eliminated in
subsequent analysis. In contrast, the ICCs of GGN texture
features of 1 mm slice thickness CT images were all above 0.75
(Supplementary Table S3).

Comparison of CT Texture Features of
Different Slice Thickness Between Benign
Group and Adenocarcinoma Group
Comparing CT texture features of different layer thicknesses of
GGNs between benign group and adenocarcinoma group, we found
that there were 6 parameters (CONVENTIONAL_HUmin,
GLRLM_LGRE , GLRLM_SRLGE, GLRLM_LRLGE,
GLZLM_LGZE, and GLZLM_LZLGE) in the texture features of 3
mm slice thickness CT images that passed the primary screening
(P = 0.064-0.149). There were 12 parameters in the texture features
of 1 mm slice thickness CT images that passed the primary
screening (P = 0.018-0.112), including HISTO_Kurtosis,
HISTO_ExcessKurtosis, HISTO_Energy, GLCM_Homogeneity,
GLRLM_SRE, GLRLM_LRE, GLRLM_LRLGE, GLRLM_RP,
NGLDM_Contrast , GLZLM_SZE, GLZLM_LZE, and
GLZLM_ZP (Supplementary Table S4).

Rad-Scores of CT Images With Different
Slice Thickness
LASSO algorithm and 10-fold cross-validation were carried out
to extract the best subset of CT radiomics features. For CT
TABLE 1 | General data of GGNs in benign group and adenocarcinoma group before and after PSM.

Before matching After matching

Benign (n = 23) Adenocarcinoma (n = 167) P-value Benign (n = 23) Adenocarcinoma (n = 92) P-value

Age (years) 55.8 ± 10.5 60.8 ± 8.7 0.013 55.8 ± 10.5 57.4 ± 8.9 0.477
Sex 0.002 0.428
Female 9 (39.1%) 120 (71.9%) 9 (39.1%) 47 (51.1)
Male 14 (60.9%) 47 (28.1%) 14 (60.9%) 45 (48.9)
History of smoking 0.039 0.800
No 15 (65.2%) 139 (83.2%) 15 (65.2%) 65 (70.7)
Yes 8 (34.8%) 28 (16.8%) 8 (34.8%) 27 (29.3)
Fasting blood glucose (mmol/L) 6.8 ± 1.9 6.7 ± 1.7 0.960 6.8 ± 1.9 6.65 ± 1.69 0.772
GGN number grouping 0.448 1.000
Solitary 15 (65.2%) 95 (56.9%) 15 (65.2%) 58 (63)
Multifocal 8 (34.8%) 72 (43.1%) 8 (34.8%) 34 (37)
December 2021 | Volume 11 | Article
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images of 3 mm slice thickness: Rad-score (3 mm) = −0.00198 ×
CONVENTIONAL_HUmin + 10.16317× GLRLM_LGRE +
66.97979 × GLRLM_SRLGE.

For CT images of 1 mm slice thickness: Rad-score (1 mm) =
11.21344 × GLRLM_LRE + 10.43443 × GLRLM_LRLGE - 0.7472
× NGLDM_Contrast.

ROC curve analysis showed that the AUC values of the Rad-
score of the two reconstruction slices with different thickness
were 0.634 (95%CI: 0.499-0.768) and 0.704 (95%CI: 0.562-
0.845), respectively, with no significant difference between
them (Z = 0.702, P = 0.483) (Supplementary Figures S1, S2).
The diagnostic efficiency of the Rad-score of the two
reconstruction slices is shown in Table 3.

Rad-Score in Combination With CT
Semantic Features to Construct CT
Radiomics Model
Multivariable logistic regression analysis was performed to
construct the CT radiomics models to predict the benign and
malignant GGNs using semantic characteristic parameters of
GGNs and the Rad-scores of CT with different slice thickness
Frontiers in Oncology | www.frontiersin.org 5
individually. The formula of CT radiomics model (3 mm) was as
follows: CT radiomics model (3 mm) = −5.20333 + 1.16220 ×
(abnormal bronchus sign = 1) + 2.12571 × (pleural indentation
sign =1) + 2.23666 × Rad-score (3 mm). The AUC value of the 3
mm CT radiomics model was 0.794 (95%CI: 0.704-0.884), which
was significantly higher than that of Rad-score (3 mm) (Z =
2.232, P = 0.026) (Figure 2).

The formula of CT radiomics model (1 mm) was as follows: CT
radiomics model (1 mm) = −45.94109 + 3.06092 × (abnormal
bronchus sign = 1) + 3.33342 × (pleural indentation sign = 1) +
3.89642 × Rad-score (1 mm). The AUC value of the model was
0.908 (95%CI: 0.842-0.975), which was significantly higher than that
of Rad-score (1 mm) (0.704) (Z = 2.769, P = 0.006) and CT
radiomics model (3 mm) (0.794) (Z = 1.998, P = 0.046) (Figure 2).
The diagnostic efficiency of different models is shown in Table 3.

Construction of PET + CT
Radiomics Model
Furthermore, based on the CT radiomics model (1 mm) and
combined with SUVmax in PET parameters, a dual-modality
prediction model (PET + CT radiomics model) was established to
December 2021 | Volume 11 | Article 727094
TABLE 2 | Comparison of CT semantic features and SUVmax of GGNs between benign group and adenocarcinoma group after PSM.

Features Benign (n = 23) Adenocarcinoma (n = 92) P-value

Type 0.625
pGGN 7 (30.4%) 33 (35.9%)
mGGN 16 (69.6%) 59 (64.1%)
Location 1.000
Peripheral 22 (95.7%) 88 (95.7%)
Central 1 (4.3%) 4 (4.3%)
Shape 0.922
Round/oval 15 (65.2%) 59 (64.1%)
Irregular 8 (34.8%) 33 (35.9%)
Margin 0.111
Smooth 16 (69.6%) 47 (51.1%)
Lobulated 7 (30.4%) 45 (48.9%)
Abnormal bronchus sign 0.080
No 10 (43.5%) 23 (25.0%)
Yes 13 (56.5%) 69 (75.0%)
Vacuole sign 0.904
No 19 (82.6%) 75 (81.5%)
Yes 4 (17.4%) 17 (18.5%)
Pleural indentation <0.001
No 19 (82.6%) 40 (43.5%)
Yes 4 (17.4%) 52 (56.5%)
Vascular convergence 0.559
No 2 (8.7%) 5 (5.4%)
Yes 21 (91.3%) 87 (94.6%)
SUVmax 2.9 (1.4-6.9) 1.8 (1.1-3.0) 0.024
Results in the table: Median (Q1-Q3)/N (%).
TABLE 3 | Comparison of diagnostic efficiency of different models.

Model AUC (95%CI) Best threshold Sensitivity Specificity Accuracy

Rad-score (3 mm) 0.634 (0.499-0.768) 2.162 0.707 0.609 0.687
Rad-score (1 mm) 0.704 (0.562-0.845) 10.920 0.852 0.609 0.779
CT radiomics model (3 mm) 0.794 (0.704-0.884) 0.903 0.794 0.739 0.783
CT radiomics model (1 mm) 0.908 (0.842-0.975) 1.242 0.815 0.956 0.857
PET + CT radiomics model 0.940 (0.889-0.990) 1.931 0.815 1.000 0.870
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predict the benign and malignant GGNs. The formula was as
follows: PET + CT radiomics model = −89.87509 + 7.01593 ×
(abnormal bronchus sign = 1) + 5.03616 × (pleural indentation sign
= 1) +7.74753 × Rad-score (1 mm) − 0.84485 × SUVmax. The AUC
of this radiomics model was 0.940 (95%CI: 0.889-0.990), and the
nomogram of the model as shown in Figure 3A. Two examples of
how to use the nomogram were showed in Figures 3B–E.

We compared the diagnostic efficiency of Rad-score of 1 mm
CT, CT radiomics model, and PET + CT radiomics model in
differentiating benign and malignant GGNs. The results showed
Frontiers in Oncology | www.frontiersin.org 6
that the AUC values of the three models were significantly
different from each other, with Z = 2.174-3.304 and P = 0.001-
0.030, and the PET + CT radiomics model had the highest
diagnostic efficiency (Figure 4). The comparison of diagnostic
efficiency of different models is shown in Table 3.
DISCUSSION

This study systematically analyzed the semantic features of
suspected lung GGNs and 49 radiomics features extracted from
each GGN and constructed a CT radiomics model with abnormal
bronchus sign, pleural indentation sign, and Rad-score. This CT
radiomics model had good differentiation efficiency in benign and
malignant GGNs. We further added SUVmax to the CT radiomics
model to construct the PET + CT radiomics model, which
effectively improved the predictive value of CT radiomics model
in differentiating benign and malignant GGNs.

After PSM, the proportion of pleural indentation sign in CT
semantic features of adenocarcinoma group was significantly
higher than that of benign GGNs. Pleural indentation sign refers
to the pleural indentation caused by the traction of subpleural
lesions on adjacent pleura, which mostly presents as linear or
triangular shadow. Hu et al. reported that this sign is one of the
common features of peripheral lung cancer (22). Although some
semantic features play an important role in clinical application,
they depend on the experience of radiologists or surgeons and
their understanding of the signs, and thus they are easily affected
by subjective factors. Previous literature also reported that single
CT parameters, such as nodule margin characteristics, size, and
CT value, have limited values in differentiating benign and
malignant GGNs (23). Besides, in univariate comparison, we
found that SUVmax of benign GGNs was higher than that of
FIGURE 3 | The nomogram of PET + CT radiomics model for differentiating benign and malignant GGNs and two examples. (A) Nomogram of PET + CT radiomics
model. (B, C) A 31-year-old man with a ground-glass nodule (GGN) on the right upper lung lobe. CT image (B) and PET/CT fusion image (C) show that nodule with
abnormal bronchus sign (27 points), and no pleural indentation was identified (0 points). Rad-score (1 mm) was 10.7 (20 points), maximum standardized uptake
value (SUVmax) was 8.1 (38 points). The total points were 85 points. The risk of adenocarcinoma for this nodule was < 10%. Postoperative pathologic findings
indicated granuloma. (D, E) A 61-year-old man with GGN on the right upper lung lobe. CT image (D) and PET/CT fusion image (E) show that nodule with abnormal
bronchus sign (27 points) and pleural indentation sign (23 points). Rad-score (1 mm) was 11.3 (38 points), SUVmax was 1.1 (71 points). The total points were 163
points. The risk of adenocarcinoma for this nodule was > 90%. Postoperative pathologic findings indicated invasive adenocarcinoma.
FIGURE 2 | Comparison of ROC curves between Rad-score and radiomics
models with different CT reconstruction slice thickness.
December 2021 | Volume 11 | Article 727094
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malignant GGNs, which is consistent with the findings of
McDermott et al. (24) and Chun et al. (25). This may be
because benign GGN is more common in tuberculosis,
organizing pneumonia, and other inflammatory lesions. It is
well known that SUV is a semi-quantitative parameter that
reflects the uptake of 18F⁃FDG in the lesion. The increase of
SUV value represents the increased uptake of glucose in the lesion,
the strong proliferation and growth of cells, and the possibility of
malignant tumor. However, 18F-FDG is not a tumor-specific
imaging agent. The chemotaxis of inflammatory factors and the
accumulation of inflammatory cells may also cause a significant
increase in the uptake of FDG (26, 27). On the contrary, early
lung adenocarcinoma manifesting as GGN showed lower density,
slower growth, less expression of glucose transporter-1 (GLUT-1),
less uptake of FDG, and lower SUVmax (28, 29).

This study found that the consistency of CT images 1mm slice is
better,whereas there are threeparameterswithgreater variability in3
mm CT texture features (including GLZLM_SZE GLZLM_SZLGE,
and GLZLM_ZP). In the analysis of more than 100 PET texture
features, Leijenaar et al. (30) also found that GLZLM feature-based
parameters have the highest variability. In our study, we also found
that the number and types of texture features of CT images that were
significantly different between benign group and adenocarcinoma
group were different with different slice thickness, which may be
related to the different spatial informationdisplay of imagedetails on
CT images with different reconstruction slice thickness. Some
scholars reported that applying different reconstruction software,
parameter settings, and reconstructionmethods can affect radiomics
features extraction (31–33).

The Rad-score (3 mm) contains the traditional CT parameters,
namely, CONVENTIONAL_HUmin and two GLRLM texture
features. HUmin is the minimum CT value of VOI in lesions. The
lower the HUmin value is, the higher the possibility of
Frontiers in Oncology | www.frontiersin.org 7
adenocarcinoma is. This may be because malignant GGN is more
prone to exhibit vacuole signs than benign lesions. GLRLM was
introduced by Galloway (34), which assesses the distribution of
discretized grey levels on an image or a stack of images. It describes
the roughness or smoothness of the image and reflects the
heterogeneity of the tumor. In addition to GLRLM, Rad-score (1
mm) parameter NGLDM_Contrast was also used in the radiomics
model. NGLDM_Contrast is the intensity difference between
neighboring regions, which provides information about the spatial
relationship between an image voxel and its neighboring voxels (35).
The lower the NGLDM_Contrast, the higher the possibility of
adenocarcinoma. It has been reported that NGLDM_Contrast is
also an important prognostic factor for lung cancer, and poor
prognosis is associated with low NGLDM_Contrast (36).
Comparing the Rad-score between slices with different
reconstruction thickness, we found that although the diagnostic
efficiency of Rad-score (1 mm) was slightly higher than that of
Rad-score (3 mm), there was no statistical difference, and the
diagnostic efficiency of both Rad-score (1 mm) and Rad-score (3
mm) was moderate, which is similar to the finding of Digumarthy
(15) (AUC = 0.624).

In this study, the diagnostic efficiency of the CT radiomics
model was significantly better than that of Rad-score alone,
which is consistent with Hyun et al. (37) and Bianconi et al.
(38). Moreover, the thin slice CT radiomics model’s prediction
efficiency is better than that of the 3 mm slice CT radiomics
model, which agrees with the previous reports (31). This may be
because a thin-slice CT image can improve the image’s spatial
resolution and facilitate the display of confidential information
of lesions. In the thin slice CT radiomics model, the abnormal
bronchus sign is also an independent risk factor. Bronchus sign
refers to the appearance of air containing bronchus in the lesion.
When bronchus is dilated, distorted or cut-off truncated, it often
indicates the possibility of malignant lesions. Thus, this sign is
called an abnormal bronchus sign (39). Finally, compared with
Rad-score and CT radiomics model, PET + CT radiomics model
had the best diagnostic efficiency (AUC = 0.940). PET imaging
parameters reflect the lesions’ functional and metabolic status,
provide quantitative information at the molecular level, and
complement CT’s anatomical images. The establishment of the
dual-modality comprehensive PET/CT model helps evaluate the
lesions at multiple levels.

There are still some limitations to this study. First of all, patients
enrolled in this study were those who received preoperative PET/CT
differential diagnosis and staging because of suspicious GGNs, and
therefore the number of benign cases is small, which is the reason
why we conducted PSM. In addition, there were many types of
diseases in the benign group. This heterogeneity may affect the
reliability of the model. The radiomics model constructed in this
study may be only suitable for the differential diagnosis of GGNs
that cannot be determined on CT but not for the screening of
GGNs. Secondly, our previous study showed that LIFEx software
has requirements for voxels, and it is not suitable for some small or
low uptake GGNs. Therefore, we did not perform a PET texture
analysis. PET radiomics needs to be further explored. Thirdly, we
chose the manual segmentation method for ROI delineation, which
is not as stable as the fully/semi-automatic segmentation method.
FIGURE 4 | Comparison of ROC curves of Rad-score, CT radiomics model,
and PET + CT radiomics model of 1 mm CT.
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In a future study, we may try to use the AI-based segmentation
method to obtain image information. Fourth, although the PET +
CT radiomics model has good internal validation performance,
external data remain needed to confirm the robustness and
applicability of this radiomics model.

In conclusion, in this study, we successfully constructed CT
texture feature-based Rad-score, a CT radiomics model using Rad-
score in combination with semantic features (abnormal bronchus
sign and pleural indentation sign) and a PET + CT radiomics model
using CT radiomics model in combination with SUVmax to
differentiate early lung adenocarcinoma from benign lung GGNs
and compared the differential diagnostic efficacy of these models.
PET + CT radiomics model has the best risk prediction
performance and might become a noninvasive and reliable
diagnostic tool for differentiating benign and malignant GGNs.
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