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Overall Survival Prediction
for Gliomas Using a Novel
Compound Approach

He Huang', Wenbo Zhang?, Ying Fang, Jialing Hong, Shuaixi Su and Xiaobo Lai*

School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China

As a highly malignant tumor, the incidence and mortality of glioma are not optimistic.
Predicting the survival time of patients with glioma by extracting the feature information
from gliomas is beneficial for doctors to develop more targeted treatments. Magnetic
resonance imaging (MRI) is a way to quickly and clearly capture the details of brain tissue.
However, manually segmenting brain tumors from MRI will cost doctors a lot of energy,
and doctors can only vaguely estimate the survival time of glioma patients, which are not
conducive to the formulation of treatment plans. Therefore, automatically segmenting
brain tumors and accurately predicting survival time has important significance. In this
article, we first propose the NLSE-VNet model, which integrates the Non-Local module
and the Squeeze-and-Excitation module into V-Net to segment three brain tumor sub-
regions in multimodal MRI. Then extract the intensity, texture, wavelet, shape and other
radiological features from the tumor area, and use the CNN network to extract the deep
features. The factor analysis method is used to reduce the dimensionality of features, and
finally the dimensionality-reduced features and clinical features such as age and tumor
grade are combined into the random forest regression model to predict survival. We
evaluate the effect on the BraTS 2019 and BraTS 2020 datasets. The average Dice of
brain tumor segmentation tasks up to 79% and the average RMSE of the survival
predictive task is as low as 311.5. The results indicate that the method in this paper
has great advantages in segmentation and survival prediction of gliomas.

Keywords: automatic segmentation, deep learning, gliomas, magnetic resonance imaging, overall
survival prediction

INTRODUCTION

Gliomas are the most common primary malignant brain tumors (1). The incidence of primary
intracranial tumors is 23 per 10 million, and gliomas account for about 60% (2). According to the
degree of malignancy, the World Health Organization divides gliomas into low-grade gliomas
(LGQG) and high-grade gliomas (HGG). Different grades of gliomas have different levels of invasion
and variable prognosis, which seriously threatens human health. The best treatment is complete
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surgical resection, however, due to the unresectable nature of
normal brain tissue and the widespread infiltration of malignant
tumors into the brain, complete resection surgery is extremely
difficult (3). Therefore, early detection of tumors and targeted
treatment play a vital role in prolonging the survival time
of patients.

Magnetic resonance imaging (MRI) is one of the most
common methods to obtain brain tumor images, it usually has
multiple modes, namely fluid attenuation inversion recovery
(Flair), T1 weighted (T1), T1 weighted contrast enhancement
(T1-CE) and T2 weighted (T2) (4). Medical image analysis
usually needs to segment the tumor first, but the manual
segmentation method often depends on the doctor’s
experience, knowledge and emotions, and the efficiency is low.
Moreover, doctors can only observe image slices in a fixed
manner, and cannot directly extract feature information in the
segmentation results to quantify the diagnosis results, which
makes the diagnosis have subjective experience. The
development of machine learning and deep learning can
change this situation. Through image processing technology,
the computer can accurately and quantitatively analyze the
tumor area, and make efficient and accurate survival prediction
for patients with brain tumors, so as to formulate personalized
diagnosis and treatment plans for patients.

Up to now, the overall survival prediction of glioma patients
with multimodal MRI has received widespread attention (5). It is
observed that most survival prediction models proposed in the
literature are based on radiomics (6). Although radiological
features extracted from images can be used to predict tumor
grade or molecular biomarkers (7, 8), it is difficult to accurately
predict survival time without considering other factors such as
age. In this article, we propose an automatic prediction method
by combining radioactive features, deep features and clinical
features to provide accurate survival predictions for patients with
glioma. The major contributions of our work are four folds that
can be summarized as follows:

* We improved the V-Net and proposed NLSE-VNet to
segment brain tumors. The innovation of the NLSE-VNet
model lies in porting the Non-Local (NL) module and
Squeeze-and-Excitation (SE) module to the V-Net network
structure. These attention models can enhance feature
extraction capabilities. We have designed multiple ablation
experiments to prove that NLSE-VNet can greatly improve
the accuracy of brain tumor segmentation.

* We extracted various types of radiological features such as
intensity, texture, wavelet, etc., and designed a CNN network
to extract deep features. After cross-validation and a large
number of comparative experiments, it is proved that when
radiological features, deep features and clinical features are
combined, the effect of predicting survival is the best.

e We perform three-dimensional reconstruction of the
segmentation results to provide clinicians with a visual
display. At the same time, in order to improve the
interpretability of feature dimensionality reduction, we draw
feature heat maps to show how the model finds meaningful

features, which provides a reliable basis for the clinical
application of survival prediction.

The remainder of this paper is organized as follows. The second
section describes the previous research on MRI segmentation and
survival prediction of glioma. The third part introduces the method
proposed in this paper in detail, including data preprocessing,
model description and parameter setting. Dataset and Experiments
introduces the data set, evaluation indicators and experimental
configuration. Then, in Experimental Results, the experimental
results are presented and discussed and analyzed. Finally,
conclusions are drawn in Conclusion.

RELATED WORKS

Brain Tumor Segmentation

The segmentation of the tumor area is a prerequisite for
prediction. At present, brain tumor segmentation has received
extensive attention and in-depth research, and various excellent
models have been proposed for segmenting brain tumors. Zhou
et al. improved the model cascade strategy and proposed a single
multi-task network (OM-Net) (9), which can solve the problem
of category imbalance. OM-Net integrates the separated
segmentation tasks into a deep model, which is shared by
Parameters to learn joint features and task-specific parameters
to learn discriminative features. At the same time, they designed
a CGA attention module that can adaptively recalibrate the
characteristics of the channel direction. S. Pereira et al.
designed a deep-level architecture based on a convolutional
neural network using a small 3x3 kernel (1). The model has a
positive effect on overfitting when the network weight is less. In
the training process, the number of LGG classes is increased by
rotating training patches and using HGG samples, and the
number of training patches is artificially increased. Chen et al.
established a model based on 3D convolutional neural network
to segment brain tumors (10). The model obtains multi-scale
context information by extracting the features of two scales of the
receptive domain, and they use hierarchical segmentation to
segment different lesion areas such as necrotic and non-
enhanced tumors, peritumoral edema, and enhanced tumors,
using densely connected The convolution block further improves
performance. Sun et al. proposed an anatomical attention-guided
deep learning framework for segmenting brain tumors (11). It
contains two sub-networks, one is the segmentation sub-
network, and the other is the anatomical attention sub-
network, so as to combine the anatomical structure
information of the brain with The feature information in the
segmentation process is combined to improve performance.
Lachinov et al. proposed an automatic segmentation algorithm
for brain tumors based on deep cascades (12). Their team
modified the 3D U-Net architecture and designed 4 down-
sampling paths to extract the features of the four modalities of
brain tumors. The model can effectively process input images on
multiple scales at the same time and extract features of
specific scales.
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Overall Survival Prediction

Overall survival prediction of cancer patients has also been a
hot research topic in recent years. Sun et al. extracted 4,524
radiomic features from the segmented area of the tumor, then
used decision trees and cross-validation to select effective
features, and finally trained a random forest model to predict
the survival of patients (13). Shboul et al. extracted about
31,000 features from the tumor area, representing texture,
volume, area, and Euler features. Then they performed
recursive feature selection on Euler features separately, and
finally used XGBoost to predict survival (14). Baid et al.
calculated the first-order statistics, shape features, gray-level
co-occurrence matrix and gray-level run length matrix for a
total of 679 features (15). The radiation group variables with
Spearman correlation coefficients of 0.95 and above that are
nearly completely correlated were excluded, and the features
were reduced to 56 dimensions, using multilayer perceptrons to
train the neural network to predict the number of survival days.
Kim et al. extracted a total of 6472 radiological features from
multi-mode MR images, applied the Least Absolute Shrinkage
and Selection Operator (LASSO) to the training data set to
select significant non-zero coefficient radiation features, and
constructed a radiation group using a generalized linear model
to predict the survival period with a scientific model (16).
Weninger et al. used the volume characteristics of all regions
of interest, the distance from the brain to the center of mass of
the tumor, and input the age into the linear regression model
when predicting survival (17). They found that using only the
“age” feature to train the regression model achieved higher
accuracy on the test set. Banerjee et al. extracted two types of
radiological features, namely “semantic” and “agnostic” (18).
The former includes attributes such as size, shape, and location,
while the latter uses histograms, textures, and other
quantitative descriptions to capture the heterogeneity of
lesions. A total of 83 features were extracted as the input of
the multi-layer perceptron to predict the number of survival
days. Wang et al. used internal radiomics analysis software to
extract 43 unique quantitative features in 4 categories, selected
features with high r values in related tests, used support vector
regression SVR to predict OS, and used leave-one-out cross-
validation (LOOCYV) (19).

Our Work

Although computer technology has made significant progress
in the field of brain tumor segmentation and survival
prediction, there are still some challenges that prevent this
fully automated technology from being well applied in clinical
practice. First, the size, location, and shape of brain tumors
vary from patient to patient (20). Secondly, the lesion area in
MRI is very small in most cases, which leads to the voxel
imbalance between the lesion area and the background area
(10). The above challenges all increase the difficulty of
segmentation. Finally, the information obtained from other
data sources, such as genes and age, is usually not used when
extracting radiomic features, which further limits the ability to
distinguish predictions (21). Our goal is to innovate existing

methods to improve the accuracy of segmentation and
prediction on the basis of predecessors.

In this article, we first propose a brain tumor segmentation
model NLSE-VNet, which is an improvement on the V-Net
network structure. We transplant the Squeeze-and-Excitation
(SE) module to the front of each down/up sampling layer of V-
Net (22). It can clarify the interdependence between channels,
and at the same time, the Non-Local (NL) modules are
transplanted after the last encoder block in the network to
capture long-term dependencies (23). The comparative
experiment proves the validity of the model. Secondly, we use
the Pyradiomics toolkit to extract radiological features such as
intensity, texture, and filtering from the original and derived
images, and designed a CNN network to extract deep features.
Since most of the extracted features are redundant, we consider
reducing the dimensionality of the features. After several
experiments, the factor analysis method (FA) was used to
reduce the feature dimension. Finally, a random forest model
was constructed to predict the survival time by using the features,
age, and tumor grade after dimensionality reduction. We have
implemented a fully automatic method from brain tumor
segmentation to survival prediction. The experimental results
show that our proposed method has great potential in
clinical application.

METHODS

The task of this article is to automatically segment brain tumors
and predict the survival time of glioma patients. All the workflow
of this project is shown in Figure 1, which is divided into five
parts: brain tumor segmentation, feature extraction, feature
dimensionality reduction, radiology model selection and
model evaluation.

Glioma Segmentation Model

The basic idea of the NLSE-VNet model is to achieve feature
information extraction of images of different resolutions through
alternating convolutional layers and down-sampling layers, and
then use the features extracted by the up-sampling layer joint
encoder to gradually achieve resolution restoration. The SE
module is placed in front of the down-sampling layer and the
up-sampling layer, and the NL module is placed behind the last
down-sampling layer. These attention modules bring a
significant improvement in segmentation accuracy while
slightly increasing the computational cost. Its network
structure is shown as in Figure 2. We will introduce from four
aspects: preprocessing process, network structure, loss function
and model training.

Data Preprocessing and Data Augmentation

In addition, we use the Z-score method to standardize the images
of the four modalities, and then merge the standardized images
as input to the model. Z-score is the image minus the mean
divided by the standard deviation; its mathematical formula is
as follows:
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FIGURE 1 | Flow chart of brain tumor segmentation and overall survival prediction.
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where Z represents the normalized image, X represents the
original image, X represents the pixel average, and s represents
the pixel standard deviation. Figure 3 shows the comparison
images before and after preprocessing. The first four columns are
the comparison before and after the pre-processing of the four
modes, Flair, T1, T1-CE, and T2, respectively, and the last
column is the comparison after combining the four modes. It
can be seen from Figure 3 that after preprocessing, the contrast
of the tumor part is significantly enhanced compared to normal
tissue, which facilitates image segmentation.

The data enhancement method we use is patch. Combine the
preprocessed MRI of the four modalities to generate a three-
dimensional image with four channels, and then divide the
original image and the mask into multiple blocks. One case
will generate 175 pictures with a size of 128x128x64x4. This
makes it possible to process only one patch instead of the entire
image, thereby better detecting edge features.

Network Architecture

On the basis of the VNet network, we introduced the Squeeze-
and-Excitation (SE) module and the Non-Local (NL) module.
The 3D SE module uses feature recalibration to explicitly model
the interdependence between feature channels, that is, the
importance of each feature channel is automatically obtained
through learning. The specific process of the SE block module is

as follows, the input is X & RZ*H*WxC yhere Z is the depth,
H is the height, W is the width, and C is the number of channels.
Then the input image will undergo a global average pooling,
called squeeze operation, the formula is as (2):

Z HW

Z><H><WEEE

i=1j=1k=1

Fyy(x.) = xc(i,j, k) )

The excitation operation is used to utilize the information
aggregated in the squeeze operation, and the excitation part is
composed of two fully connected layers. The first full connection
compresses the C channel into a C/r channel to reduce the
amount of calculation, and the second full connection returns to
the C channel. r is the compression ratio. The calculation of the
excitation part is shown in (3):

o (g (z (W) 2)) €)

where 0 represents the ReLU activation function, W, e
R+*C and W, € R°%. Finally, by re-calibrating X by
activatings, the final output of the block can be obtained as (4):

s=F,(z, W)= W) =0(W,d

325 = Foare (o> Sc) = ScXc (4)
where X = [%1, X2, ..., %¢| and Feu(x, s.) refers to channel-wise
multiplication. The structure of SE module is shown as in Figure 4.
At the same time, in order to quickly capture remote
dependencies and improve computational efficiency, we have also
introduced a 3D Non-Local module, which is integrated after the
model downsampling stage. Its structure is shown in Figure 5.
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First of all, the network input X = (Z, H, W, 320), after the
weight matrix Wy, W, transform respectively, use the 1x1x1 size
convolution kernel to perform convolution operation to reduce
the number of channels. Then reshape the two outputs to
ZHWx160, then perform matrix multiplication and perform
softmax processing. At the same time, the weight matrix W, is
performed on X again, and the convolution operation of 1x1x1 is
used. Perform a matrix multiplication of this result with the
output result of softmax in the previous step. Finally, the output
channel is restored through a 1xIx1 convolution operation to
ensure that the input and output sizes are exactly the same.

Loss Function

Considering that the tumor area we want to segment only
occupies a small part of the entire scanning area, and the
proportion of foreground and background area is extremely
unbalanced, we choose Categorical Dice as the loss function of
the model to prevent the prediction from being strongly biased
towards the background area that we are not interested in. The
Categorical Dice is an improvement based on the Generalized
Dice loss function (GDL) proposed by Sudre C.H. et al. (24).

The generalized dice loss function has been proved to be able to
effectively solve the problem of brain tumor imbalance. Its
calculation formula is:

2 N
GDL=1-2 Ezlzla)lENi:lplngln 5)
21:1 COIEi:lpln + &n

The weight is defined as o, = 1/(25:1&,1)2. Where N
represents all voxels, | represents the number of categories,
p represents the predicted voxel, g represents the real voxel.
And we assign the weights of different categories. We set the
weight of the background area to 0.1, and the weight of the
gangrene, edema and enhanced tumor area to 1.0, and the value
of wis [0.1, 1.0, 1.0, 1.0]. Through this weight distribution, the
problem that the weight assigned to the background area tends to
0 when there are too many voxels is avoided. The calculation
formula is shown in (6):

2 E?:l lefilplngln
E?:l lezI'\ilpln + &in

Loss = —

(6)
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The realization of the segmentation task is based on
tensorflow 1.13.1. In addition, we used the Adam optimizer
to train the model. The entire network was trained with a total
of 500,000 steps and the training set was traversed 10 times.
After each traversal of the training set, the order of the data
will be randomly shuffled to enhance the robustness of
training. The initial learning rate is set to 0.0001, which is
reduced to half of the original learning rate after traversing the
training set twice. Finally, Mean Dice is used as the evaluation
index of training, and the loss value and accuracy index are
output every ten steps to realize effective supervision of model
training. At the same time, the parameter model is saved every
1000 steps.

1X1X1

Q.
X Pkl % QCQ_I

T1-CE T2

F.(,W)

Merged

FIGURE 3 | Comparison of MRI before and after pretreatment. The first line is the original image, the second line is the preprocessed image. The first four columns
are the images of the four modalities Flair, T1, T1-CE, and T2, and the last column is the merged image.

The experimental environment is run on TensorFlow. The
runtime platform processor is Intel (R) Xeon (R) Silver 4210
CPU @2.20GHz 2.20GHz 128GB RAM, Nvidia Titan RTX, 64-
bit Windows10.The development software platform is PyCharm
with Python 3.6.

Overall Survival Prediction

In the survival prediction task, we extract radiological features
such as intensity, texture, and filtering, and then build a CNN
network to extract deep features. This network can also be used
to predict survival. Subsequently, factor analysis is used to reduce
the dimensions of the above two types of features to remove
redundant features. Finally, the dimensionality reduction
features combined with clinical factors such as age and tumor

le

FIGURE 4 | Structure of Squeeze-and-Excitation module (SE).
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grade are input into the random forest regression model for
survival prediction. The entire flow chart is shown in Figure 6.

Radiological Feature Extraction

Based on the segmentation results, we use the Pyradiomics
toolbox to extract the radiomic features of edema, non-
enhanced verification, and necrosis/cystic nucleus areas. We
mainly extract three types of features: intensity, texture, and
wavelet, as shown in Figure 7. Pyradiomics is an open source
Python software package that can extract the features of
Radiomics from medical images (25).

Then, we further subdivide the extracted radiological features
into 7 categories. The first-order statistical features reflect the
voxel intensity distribution in the image area defined by the
mask. The shape is based on 3D shape features, including a series
of tumor shape features, such as sphericity, circumference ratio,
spindle length, and elongation. The Gray Level Co-occurrence
Matrix (GLCM) defines information about correlation, energy,
contrast, deficiency, variance, probability, entropy, sum of
squares, etc. In addition, we extracted 16 features of the gray
run length matrix (GLRLM), 16 features of the gray size band
matrix (GLSZM), 14 features of the gray dependency matrix
(GLDM) and neighbor gray tone difference Five features of the
matrix (NGTDM). Table 1 shows the detailed information of
feature categories.

We not only extract features from the original image, but also
extract the same features from the image after wavelet
decomposition. Wavelet decomposition can segment the image

into multiple levels of detail components. In the end, we
extracted a total of 2500 radiological features.

Deep learning has been used to predict the survival of patients
with brain tumors. We tried to build a CNN network for the
survival regression task, as shown in Figure 6. With the help of
the segmentation result, we set the MR sequence to retain only
part of the tumor information, and set other pixels to 0 as input.
The CNN network consists of four convolutions with a step size
of 2 and three fully connected layers. The last fully connected
layers are directly used to predict survival time. The model can
either extract deep features or directly use neural networks to
predict survival days. In the end, we extracted 512 deep features.
Since the CNN network can also learn the shape, texture of the
brain tumor, these features are the same as part of the radiology
features, we confirmed this in Overall Survival Prediction Results.
So we believe that the deep features and radiological features
should perform feature reduced together, which helps filter out
repeat features.

Feature Dimensionality Reduction

Some of the features we extract are redundant or have nothing to
do with survival prediction, which will increase the degree of
model overfitting, here we use factor analysis to filter features.
The core of factor analysis is to analyze a series of features and
extract common factors to achieve the purpose of reducing
feature dimensions. First, the feature is used as a factor, and
the feature value of the factor is calculated. The factor with the
eigenvalues greater than 1 can be used as the subsequent feature
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dimensionality reduction. Figure 8 shows the feature values of all
the factors after sorting.

Then we need to determine the dimensionality of the feature
after dimensionality reduction, that is, recursively select within
the range of factors whose feature value is greater than 1.
Traverse the number of factors, reduce the feature to this

FIGURE 7 | Schematic diagram of image feature extraction.
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dimension every two steps, enter the random forest model for
training, and save the feature dimension with the smallest root
mean square error. We draw a heat map of the process of feature
dimensionality reduction, as shown in Figure 9. The abscissa
represents the features before dimensionality reduction, and the
ordinate represents the features after dimensionality reduction

Feature Extraction

<
Q Intensity

Non-enhancing

solid score Q Texture

Necrotic/cystic Q Wavelet

core J

Frontiers in Oncology | www.frontiersin.org

August 2021 | Volume 11 | Article 724191


https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

Huang et al.

OS Prediction for Gliomas

TABLE 1 | Types and contents of extracted features.

Feature Name of the features

Category

First Energy, Total Energy, Entropy, Minimum, 10th percentile, 90th percentile, Maximum, Mean, Median, Interquartile Range, Range, Mean Absolute Deviation,

Order Robust Mean Absolute Deviation, Root Mean Squared, Standard Deviation, Skewness, Kurtosis, Variance, Uniformity.

Statistic

Shape Mesh Volume, Voxel Volume, Surface Area, Surface Area to Volume ratio, Sphericity, Compactness 1, Compactness 2, Spherical Disproportion, Maximum
3D diameter, Maximum 2D diameter (Slice), Maximum 2D diameter (Column), Maximum 2D diameter (Row), Major Axis Length, Minor Axis Length, Least
Axis Length, Elongation, Flatness.

GLCM Autocorrelation, Joint Average, Cluster Prominence, Cluster Shade, Cluster Tendency, Contrast, Correlation, Difference Average, Difference Entropy,
Difference Variance, Joint Energy, Joint Entropy, Informational Measure of Correlation, Informational Measure of Correlation, Inverse Difference Moment,
Maximal Correlation Coefficient, Inverse Difference Moment Normalized, Inverse Difference, Inverse Difference Normalized, Inverse Variance, Maximum
Probability, Sum Average, Sum Entropy, Sum of Squares.

GLRLM Short Run Emphasis, Long Run Emphasis, Gray Level Non Uniformity, Gray Level Non-Uniformity Normalized, Run Length Non-Uniformity, Run Length Non-
Uniformity Normalized, Run Percentage, Gray Level Variance, Run Variance, Run Entropy, Low Gray Level Run Emphasis, High Gray Level Run Emphasis,
Short Run Low Gray Level Emphasis, Short Run High Gray Level Emphasis, Long Run Low Gray Level Emphasis, Long Run High Gray Level Emphasis.

GLSZM Small Area Emphasis, Large Area Emphasis, Gray Level Non Uniformity, Gray Level Non-Uniformity Normalized, Size Zone Non-Uniformity, Size-Zone Non-
Uniformity Normalized, Zone Percentage, Gray Level Variance, Zone Variance, Zone Entropy, Low Gray Level Zone Emphasis, High Gray Level Zone
Emphasis, Small Area Low Gray Level Emphasis, Small Area High Gray Level Emphasis, Large Area Low Gray Level Emphasis, Large Area High Gray Level
Emphasis.

GLDM Small Dependence Emphasis, Large Dependence Emphasis, Gray Level Non-Uniformity, Gray Level Non-Uniformity Normalized, Dependence Non-
Uniformity, Dependence Non-Uniformity Normalized, Gray Level Variance, Dependence Variance, Dependence Entropy, Dependence Percentage, Low Gray
Level Emphasis, High Gray Level Emphasis, Small Dependence Low Gray Level Emphasis, Small Dependence High Gray Level Emphasis, Large
Dependence Low Gray Level Emphasis, Large Dependence High Gray Level Emphasis.

NGTDM  Coarseness, Contrast, Busyness, Complexity, Strength.

(Use numbers to represent feature names). It can be seen the
degree of correlation between the original feature and the feature
after dimensionality reduction.

Random Forest Model

After obtaining the effective feature set, we choose the random
forest regression model to predict the survival period. Random
forest algorithm is an ensemble technology that combines
multiple decision trees, it usually has better generalization
capabilities and not sensitive to multiple collinearity. Random
Forest randomly selects k new self-service sample sets from the

original training data set each time by applying the bootstrap
method with replacement to construct k decision trees, and the
unselected sample sets are used to estimate the generalization
error of the model. Secondly, randomly extract m features at the
node of each tree (m is less than the total number of features),
and select the best split point to split by calculating the amount of
information entropy in each feature. The calculation formula of
information entropy is:

—->'P;log, P; (7)

i=1

S =

| ——~ Eigenvalue=1
250 1 ~—— Eigenvalue of Factors |
200 4—
2 150
5
]
&
4]
100
11
\‘\.
R N ey e o=
0 200 400 600 800
Factors
FIGURE 8 | Eigenvalue curve of factor.
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FIGURE 9 | Heat map of feature dimensionality reduction.
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where P; represents the probability of occurrence of the i-th
situation. Finally, the generated trees are formed into a random
forest, and the random forest is used to classify the new data. The
classification result is determined by the number of votes of the
tree classifier.

We use 1000 basic decision tree regressors. In order to ensure
the robustness of model training, we will cross-validate the
model 100 times and randomly divide the data into a training
set and a test set each time. The training set data accounted for
0.9 of the total, and the test set data accounted for 0.1 of the total.
We make sure to use different data combinations for training and
testing every time. Finally, the average of 100 cross-validations is
used as the final error loss.

DATASET AND EXPERIMENTS

Datasets

The dataset we use comes from the 2019 and 2020 Brain Tumor
Segmentation Challenge. The data set contains two types of
tumors, namely high-grade glioblastoma (HGG) and low-grade
glioblastoma (LGG). The MRI of each sample in the tumor
segmentation task data contains four modalities: fluid
attenuation inversion recovery (FLAIR), T1 weighting (T1),
T1-weighted contrast-enhanced (T1-CE), and T2 weighting
(T2). The tumor sub-regions are edema, non-enhanced
verification, necrosis/cystic nucleus and the entire tumor. We
need to segment the enhancing tumor (ET), whole tumor (WT),
and tumor core (TC) formed by nesting these sub-regions. The
organizer provided 335 training samples and 125 validation
samples without masks in BraTS 2019. In the survival
prediction task, 209 samples containing age, tumor grade
(HGG and LGG) and survival time defined in days are
provided. Also in BraTS 2020, the training set and validation
set sizes are 369 and 125, and 236 survival samples are provided.

We divide the survival data into training set and test set by 9:1
respectively for cross-validation.

Evaluation Metrics

For the evaluation indicators of the segmentation model, we
follow the 4 indicators used in the Brain Tumor Segmentation
Challenge, namely Dice, Sensitivity, Specificity and Hausdorft
distance. Dice is the overall evaluation standard, and its formula
is defined as:

2TP

—_— 8
FP + 2TP + FN ®

Dice =

where EN, TP and FP represent the number of false negative, true
positive and false positive voxels respectively. Sensitivity
represents the sensitivity of the model to voxels of the
segmented region, and is used to measure the accuracy of
segmenting the target region and is defined as:

TP

Sensitivity = TP T EN )

Specificity represents the ability of the model to correctly
predict the background and is defined as:

N
FP + TN
where TN represents the number of true negative. In addition,
Hausdorff95 is a measure of Hausdorff distance. It is more
sensitive to the segmentation boundary. The smaller the value,
the closer the prediction is to the true value.

Specificity = (10)

Hausdorff _ 95(X, Y)

(11)

= maX{rpE%)(m;ier;d(x, ») ryneagcmxieg( d(x,y) }
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where X is the volume of the mask, Y is the volume predicted by
the model, and d(), represents the distance from X to Y.

In addition, for the survival prediction task, we choose MSE,
MAE and RMSE as the evaluation indicators of the model. They
are all used to measure the deviation between the predicted value
and the true value. The calculation formula is as follows:

1
MSE = ;E?:I(Xohs,i _Xpre,i)z (12)
1 n
MAE = gziﬂ ‘Xobs,i - Xpre,i| (13)
(lf Xo si_Xrei :
RMSE:\/E'I( i ~ Xpre) (14)
n

where i represents the patient, n represents the total number of
patients, X, represents the true survival period of the patient,
and X, represents the survival period predicted by the model.

EXPERIMENTAL RESULTS

Segmentation Result

The brain tumor segmentation method proposed in the article is
evaluated experimentally on the BraTS 2019, 2020 dataset. The
data has a multi-modal imaging protocol: Flair, T1, T1-CE, T2.
The mask is manually segmented by experts, including three
nested sub-regions: enhanced tumor (ET), whole tumor (WT)
and tumor core (TC) (5, 26). We train on the 3D volume of brain
tumors, using dice coefficients, sensitivity, specificity and
Hausdorff95 distance to evaluate the performance of the
model. Table 2 shows the average performance of the model
on the validation set, and it can be seen that the model has
achieved good segmentation results.

At the same time, we conducted ablation experiments on BraTS
2020 dataset, removing the SE module, NL module and the V-Net
model without any attention module. Since CNN is the basis for the
automatic segmentation of brain tumors, we also designed a CNN
network to segment brain tumors as a control group. The CNN
network consists of 8 layers of convolution and a sigmoid
classification layer. Table 3 shows the results of these comparative
experiments. On the whole, the performance of NLSE-VNet is the
best. However, the CNN network only uses a small number of
convolutions to reach a medium segmentation level, therefore CNN
has an important role for automatic segmentation.

Figures 10 and 11 respectively show the combination of
violin chart and scatter plot for each evaluation index in the

validation set of the NLSE-VNET model on BraTS 2019 and
BraTS$ 2020. It can be seen from the figure that in all samples, the
results are relatively concentrated in the higher area, and there
are only a few abnormalities, indicating that the model has strong
individual case prediction ability. Since sensitivity measures the
model’s ability to predict the tumor area, and specificity
measures the model’s ability to predict the background, it can
be seen that the distribution range of sensitivity is close to the
specificity, indicating that the model’s ability to predict the
tumor area is similar to the background, effectively alleviating
the problem of category imbalance.

We randomly selected four slices in the training set,
comparing the experts to the model prediction, while three-
dimensional reconstruction of the division results, as shown in
Figure 12. Among them, red represents the core of the tumor,
the combined area of yellow and red represents the enhanced
tumor, and the entire segmented area represents the entire
tumor. It can be seen that the results of the model are very
similar to the standards in overall and detail, providing a more
intuitive diagnostic basis for the doctor.

We randomly selected some examples in the validation set to
visually present the segmentation results and marked the Dice of
the ET area on the graph, as shown in Figure 13. We also
perform three-dimensional reconstruction of the segmentation
results. From these examples, it can be seen that the model is very
effective in segmenting tumors of different sizes, shapes, and
positions, which also provides an important guarantee for the
accuracy of subsequent survival prediction.

Overall Survival Prediction Results

There are 335 cases in the training set of the BraTS 2019
segmentation task, but the organizer only provided survival
labels for 209 cases. BraTS 2020 has 236 cases of lifetime
labeling, and due to the error of the segmentation model, the
data used in the experiment is 232 cases. The features we use are
divided into three categories, clinical factors such as age and
tumor grade provided by the organizer, radiological features
extracted through the Pyradiomics toolkit, and deep features
extracted through CNN. We use these three types of features to
obtain the results on the two testsets as shown in Table 4.

At the same time, we also conducted a comparative
experiment on the BraTS 2020 dataset. In order to ensure
effective comparison, we conducted the same experiment on
the mask provided by the organizer and the prediction result of
our segmentation model. Table 5 lists the results obtained by
combining different types of features. Among them, “CNN (RF)”
represents the use of deep features and random forest models to
predict the survival period, and “CNN (DL)” represents the use

TABLE 2 | Segmentation results of different models for BraTS 2019 and BraTS 2020.

Dice Sensitivity
ET WT TC ET WT
BraTS2019 0.70 0.87 0.74 0.73 0.87
BraTS2020 0.73 0.88 0.79 0.77 0.89

Specificity Hausdorff95
TC ET WT TC ET WT TC
0.70 0.99 0.99 0.99 5.7 7.4 9.8
0.82 0.99 0.99 0.99 36.9 6.5 10.0
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TABLE 3 | Segmentation results of ablation experiments on the BraTS 2020 dataset.

Segmentation Dice Sensitivity Specificity Hausdorff95

Model ET WT TC ET WT TC ET WT TC ET WT TC
NL-VNet 0.68 0.83 0.74 0.78 0.90 0.78 0.99 0.99 0.99 44.66 11.16 15.38
SE-VNet 0.72 0.88 0.78 0.75 0.88 0.79 0.99 0.99 0.99 40.76 6.94 12.46
VNet 0.65 0.86 0.76 0.75 0.89 0.84 0.99 0.99 0.99 55.04 9.21 13.28
CNN 0.69 0.86 0.74 0.70 0.87 0.75 0.99 0.99 0.99 52.88 12.07 18.02

of deep features and neural networks to predict the
survival period.

CNN extracting features is usually difficult to explain the
biological principles behind it (27). In order to have a deeper
understanding of the process of model learning features, we
generate activation maps for each activation layer (ReLU) in the
network (28), as shown in Figure 14. We can observe that after
the first activation layer, some features such as texture and
intensity are learned, and the second activation layer learns
spatial features such as shape and size. It can be seen that the
third activation layer focuses attention on In the TC region,

we speculate that the features of the TC region are more
important for survival prediction than other regions. We can
observe that as the number of layers increases, the features
extracted by CNN will become more and more abstract.

In order to verify that the radiological features extracted from
the original image and the radiological features extracted from
the wavelet image can improve the prediction performance, and
at the same time prove the importance of the clinical features, we
have done comparative experiments, as shown in Table 6.
“Original” represents the radiological features extracted from
the tumor region of the original MR sequence, and “Wavelet”
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FIGURE 13 | Visual display of brain tumor segmentation results in validation set. Red color represents the tumor core (necrosis), yellow color represents the active

tumor and green regions are the edema.

TABLE 4 | The survival prediction result of BraTS 2019 and BraTS 2020.

Dataset MSE MAE RMSE
BraTS 2019 96470.98 229.07 306.78
BraTS 2020 100053.08 240.05 316.31

represents the radiological features extracted from the tumor
region of the image after wavelet processing. Through the
comprehensive comparison in Table 6, it is found that the
radiological features extracted from the original image are
better than those after wavelet in predicting survival. The effect
of clinical factors is not as good as we expected. The reason may
be that the amount of data is small and the features of clinical
factors cannot be reflected.

For intuitive comparison, we show the histogram of the
RMSE of each method in Figure 15. In Figure 15 (a), after
adding the deep features extracted by CNN, the RMSE has been
greatly reduced. Among them, the RMSE of the automatic
segmentation results is reduced by 19.4 percentage points,
while the survival prediction results using only the deep
features are not stable, due to the limitation of data volume,
we cannot get more robust results.

Figure 16 shows the correlation between age and survival
time, and the correlation coefficient is -0.35, that is, there is a
weak negative correlation between them. The study of Weninger
L. et al. also confirmed our conclusions (29). Since the tumor
type of the living time data given by the organizer is HGG, we no
longer discuss the correlation between tumor type and survival

TABLE 5 | Survival prediction results of different types of feature on BraTS 2020.

Method

Mask CNN+ Radiology+ Clinical
Radiology+ Clinical

CNN (RF)

CNN(DL)

CNN+ Radiology+ Clinical
Radiology+ Clinical
CNN(RF)

CNN(DL)

Predict

The bold values provided mean the best performed method.

MSE MAE RMSE
87679.85 225.59 288.84
88899.18 228.04 292.25
91838.87 235.86 297.16
113472.38 257.71 336.86
100053.08 240.05 316.31
162904.10 284.54 392.51
153998.46 284.13 378.85
136770.59 269.37 368.92

Frontiers in Oncology | www.frontiersin.org

August 2021 | Volume 11 | Article 724191


https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

Huang et al.

OS Prediction for Gliomas

Activationl

Original

TABLE 6 | Survival prediction results of different radiological features on BraTS 2020.

Activation2 Activation3

FIGURE 14 | Activation map, the feature map after the RelLU activation layer in the network.

Method MSE MAE RMSE

Mask Original+ Clinical 92542.55 233.08 297.83
Wavelet+ Clinical 89551.18 236.87 296.02

Original 95207.94 235.46 301.94

Wavelet 88840.27 236.17 294.93

Predict Original+ Clinical 168230.24 280.82 389.562
Wavelet+ Clinical 167600.90 292.26 400.93

Original 157355.79 279.59 388.28

Wavelet 167466.49 292.26 401.19

time. However, it has been proved pathologically that HGG
patients with glioma have a poor prognosis, and their survival
period is often shorter than that of LGG.

Comparison
We compare the segmentation results with other methods, as
shown in Table 7. Kim S. et al. proposes to obtain the initial

segmentation probability map with 2D U-Net and then input
the MR image and the initial segmentation into the 3D U-Net
for segmentation (30). Amian M. et al. proposed a 3D deep
segmentation method to divide glioma, including two parallel
streamlines having two different resolutions, one
convolutional neural network for learning local features,
another for the entire image global observation (31). Shi W.

Frontiers in Oncology | www.frontiersin.org

August 2021 | Volume 11 | Article 724191


https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

Huang et al.

OS Prediction for Gliomas

400
-19.4%

wod  -12%

200

RMSE

100

500

400

300+

RMSE

200

100

Mask
CNN+ Radiology+ Clinical
Radiology+ Clinical
CNN (RF) CNN(DL)

Predict

mm Radiology+ Clinical
== CNN (RF)

FIGURE 15 | Histogram of survival prediction results.

mm CNN+ Radiology+ Clinical

CNN(DL)

Mask Predict
Original+Clinical
Wavelet+Clinical

Wavelet

mm  Original+Clinical
mm Wavelet+Clinical
mm Original

Original Wavelet

1750 L4 ° E
i ° i

1500 ]

1250

1000

Survival

750 A

500

250 4

FIGURE 16 | The correlation between age and survival time.

et al. adopted a 2D U-Net network segmentation model based
on dense cell and feature pyramid unit (32). Agravat R.R. et al.
used the three sub-regions of the tumor in the whole
convolutional neural network to fuse the segmentation
results (33).

At the same time, we listed the results of using the BraT$ 2020
dataset. Tarasiewicz T. et al. used Skinny, a lightweight U-Net-
based architecture to segment brain tumors, which was originally
used to detect skin from color images (34). Mchugh H. et al.

believe that two-dimensional segmentation is more
advantageous than three-dimensional segmentation. They use
2D density-UNet to segment brain tumors on two-dimensional
slices (35). Zhao C. et al. replaced the convolution in the three-
dimensional U-Net with two-dimensional multi-view
convolution, and learned features in the axial, sagittal, and
coronal respectively (36). Savadikar C. et al. used probabilistic
U-Net to explore the effect of sampling different segmentation
maps, and at the same time explored the effect of changes in the
number of attention modules on segmentation quality (37).

We also compare the results of survival prediction in Table 8.
Kim S. et al. extracted radiomics features, select a small amount
of features from random forest retrogenizer to avoid overfitting,
and finally predicted the survival time using a random forest
regression model (30). Amian M. et al. extracted the spatial
features of the entire tumor and sub-organization, using a
random forest model to predict the survival time (31). Kofler
F. et al. Only uses age this clinical features to predict the survival
period, and three orthogonal polynomials and posetric
regression models are used (38). Islam M. et al. according to
the geometric shape of the tumor, and the position of the new
radiology features is combined with clinical features, using
XGBooST predictive survival (39).

Here are some methods for survival prediction using the
BraTS$ 2020 dataset. Soltaninejad M. et al. used the ratio of tumor
volume to brain tissue and the average tumor intensity as
features and applied a random forest model to predict survival
time (40). Agravat RR. et al. used a random forest regressor to
train the three types of features extracted from shape, volume,
and age to predict survival (41). Patel ]. extracted 2048 deep
features from the segmentation network, used principal
component analysis to reduce dimensionality, and trained the
Cox risk proportional model for survival prediction (42). Ali M.].
et al. extracted multiple radiological features and image features
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TABLE 7 | Comparison of the results of the segmentation task.

ET
BraTS 2019 Proposed 0.70
Kim S. et al. (30) 0.67
Amian M. et al. (31) 071
ShiW. et al. (32) 0.69
Agravat R.R. et al. (33) 0.60
BraTS 2020 Proposed 0.73
Tarasiewicz T. et al. (34) 0.70
Mchugh H. et al. (35) 0.71
Zhao C. et al. (36) 0.67
Savadikar C. et al. (37) 0.69
The bold values provided mean the best performed method.
TABLE 8 | Comparison of the results of survival prediction task.
Team MSE
BraTS 2019 Proposed 96470.98
Kim S. et al. (30) 121778.60
Amian M. et al. (31) 104253.00
Kofler F. et al. (38) 101877.80
Islam M. et al. (39) 127478.65
BraTS 2020 Proposed 100053.08
Soltaninejad M. et al. (40) 109564.00
Agravat R.R. et al. (41) 116083.48
Patel J. et al. (42) 1562467.00
Ali M.J. et al. (43) 105079.40

The bold values provided mean the best performed method.

from the MRI volume, used random forest recursive features to
eliminate, and then used random forest regression factors
combined with grid search to predict survival (43).

Discussion
In this section we will discuss the results presented and highlight
the shortcomings and solutions in current research.

In the segmentation task, through ablation experiments, we
found that the NL module has limited ability to improve
segmentation accuracy. It may be that the attention module is
not the most suitable model for brain tumor segmentation. We
can try to replace the NL module with some other attention
modules, such as the SCSE module, which is a variant of the SE
module. By focusing on important feature maps or feature
channels, it reduces the impact of unimportant features,
thereby improving image segmentation results. This module
has been applied to brain MR segmentation and achieved
excellent results (44). Or Edge Guidance module, which
combines edge detection and semantic segmentation, and can
use edge information to better supervise and learn semantic
segmentation (45). While ignoring a very important concept in
medical images, that is, the structure of medical images, we will
consider adding structure such as edges and textures when
designing segmentation algorithms in the future.

In this article, we design a CNN network to extract the deep
features of the image. It contains 4 layers of convolution with a

Dice Hausdorff95

WT TC ET WT TC
0.87 0.74 5.7 7.4 9.8
0.87 0.76 8.8 14.2 1.7
0.86 0.77 6.9 8.5 11.6
0.87 0.77 5.9 21.2 12.2
0.70 0.63 1.7 14.3 174
0.88 0.79 36.9 6.5 10.0
0.89 0.75 40.1 4.6 10.7
0.88 0.79 40.6 6.7 10.2
0.86 0.62 47.3 12.6 50.1
0.82 0.72 36.9 41.5 26.3

step size of 2 and 3 layers of fully connected neural networks
(the last 2 layers of fully connected layers are used to directly
predict the survival time). Other network structures were also
tried to extract the deep features, and two layers of convolution
with a step size of 1 and four layers of convolution with a step
size of 1 were added respectively before the fully connected layer.
In order to compare which network extracts the best
performance of the deep feature, we directly use the fully
connected layer to predict the survival time of the deep feature.
The results are shown in Table 9. Here we only extract deep
features from the results of model segmentation. From the results
in Table 9, it can be seen that the 4-layer convolutional network
has the best performance in extracting deep features.

In the survival prediction task, through the comparative
experiments in Table 3, we found that only using deep features
will make the survival prediction results unstable. The experiment
on the mask shows that the neural network results are better than
the random forest, while the experiment on the automatic
segmentation results has the opposite result, because CNN will
show a high degree of variability in different periods. We need more
data to fully obtain the robustness of the CNN results. Radiological
features have better interpretable advantages and generally more
robust results can be obtained. Banerjee et al. designed two new
radiological features, extracted from the brain segmentation atlas
and spatial habitats and proved their effectiveness (46). We consider
introducing these two features in future work to further improve
survival prediction performance. In addition, we can use clinical
knowledge to classify radiological features more finely, in order to
find more suitable feature dimensionality reduction methods, so
that feature dimensionality reduction can also have strong
interpretability and clinical applicability (47).

TABLE 9 | Survival prediction results of different CNN network structures.

Method MSE MAE RMSE
CNN with 4 layers of convolution 136770.59 269.37 358.92
CNN with 6 layers of convolution 138065.90 269.83 363.64
CNN with 8 layers of convolution 144921.16 301.79 380.69

The bold values provided mean the best performed method.
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CONCLUSION

This paper proposes a method for automatically segmenting
brain tumors and predicting the survival time of tumor
patients, and the performance is verified on the BraTS 2019
and BraTS§ 2020. First of all, the traditional VNet is improved,
and the NLSE-VNet model is proposed. It adds an attention
module on the basis of the original V-Net, which can
increase a small amount of calculation and greatly improve
the segmentation accuracy. Secondly, we used the
Pyradiomics toolkit to extract the radiological features of
the segmented tumor regions, and the CNN network
extracted the deep features (48). Then the factor analysis
method is used to reduce the feature dimension, and the
clinical features such as age are input into the random forest
model to predict the survival period. This research combines
promising radiology, machine learning, and deep learning
methods, and achieves an average segmentation accuracy of
0.79, and a average RMSE of 311.5 for survival prediction.
Experimental results show that this method has reached a
relatively prominent level and has good advantages in
clinical applications.
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