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Objectives: To automate image delineation of tissues and organs in oncological
radiotherapy by combining the deep learning methods of fully convolutional network
(FCN) and atrous convolution (AC).

Methods: A total of 120 sets of chest CT images of patients were selected, on which
radiologists had outlined the structures of normal organs. Of these 120 sets of images, 70
sets (8,512 axial slice images) were used as the training set, 30 sets (5,525 axial slice
images) as the validation set, and 20 sets (3,602 axial slice images) as the test set. We
selected 5 published FCN models and 1 published Unet model, and then combined FCN
with AC algorithms to generate 3 improved deep convolutional networks, namely, dilation
fully convolutional networks (D-FCN). The images in the training set were used to fine-tune
and train the above 8 networks, respectively. The images in the validation set were used to
validate the 8 networks in terms of the automated identification and delineation of organs,
in order to obtain the optimal segmentation model of each network. Finally, the images of
the test set were used to test the optimal segmentation models, and thus we evaluated
the capability of each model of image segmentation by comparing their Dice coefficients
between automated and physician delineation.

Results: After being fully tuned and trained with the images in the training set, all the
networks in this study performed well in automated image segmentation. Among them,
the improved D-FCN 4s network model yielded the best performance in automated
segmentation in the testing experiment, with an global Dice of 87.11%, and a Dice of
87.11%, 97.22%, 97.16%, 89.92%, and 70.51% for left lung, right lung, pericardium,
trachea, and esophagus, respectively.

Conclusion:We proposed an improved D-FCN. Our results showed that this network model
might effectively improve the accuracy of automated segmentation of the images in thoracic
radiotherapy, and simultaneously perform automated segmentation of multiple targets.
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INTRODUCTION

As medical imaging technology and computer technology
are being increasingly applied in the field of oncology
radiotherapy, radiotherapy has now developed to a stage where
precision radiotherapy, characterized by image-guided and
adaptive radiotherapy, became predominant (1, 2). Precision
radiotherapy requires precise delineation of the target area and
organs at risk, accompanied by online image-guided therapeutic
irradiation, as well as the modification and adjustment of
subsequent radiotherapy plans, which ultimately aimed to ensure
the delivery of the effective dose to the target while avoiding normal
tissues and organs. In current practices of clinical radiation therapy
planning, thedelineationof the target area andorgans at riskusually
involves manual work of experienced radiologists and tumor
radiotherapy physicists, which is a time- and labor-intensive
process. The accuracy and efficiency rely heavily on the clinical
experience of physicians and physicists, and it cannot avoid the
large variability between delineators. The development of
computer-automated processing and artificial intelligence is
driving rapid advances in automated and semi-automated
delineation algorithms based on various computational image
processing techniques, some of which have been put into clinical
practices, including segmentation algorithms based on features of
image gray level, color and texture, nonlinear diffusion algorithms
using level setmodel, automated segmentation algorithms based on
templates, and machine learning algorithms based on manually
extracted features (3). However, these semi-automated and
automated segmentation algorithms are still immature. Especially
when boundaries between organ tissues are not obvious, the
performance of automated segmentation is particularly
unsatisfactory. The template-based algorithm requires a lot of
running time due to the compositions of the template library,
while the recognition of image features depending on professional
experience is not necessarily ideal. Besides, most of the current
algorithms are designed for a single organ or tissue, thereby being
incapable of auto-segmenting multiple organs or tissue, which
results in the inefficiency of clinical work.

In recent years, artificial intelligence technologies based on
deep learning have presented tremendous opportunities for
various fields including clinical medicine. Deep convolutional
neural network (DCNN), or convolutional neural network
(CNN) (4), is widely used in computer image recognition and
more and more in the research of automated segmentation of
medical images. For example, the U-net DCNN proposed by Olaf
et al. (5) was applied to biomedical image recognition to achieve
automated segmentation of biological cell images. When the
DCNN is applied to medical image segmentation, image features
can be extracted layer by layer from low to high through multi-
layer convolution operation, and the automatically extracted
features are correctly classified through iterative training and
learning of calibration datasets, so as to achieve simultaneous
Abbreviations: FCN, fully convolutional network; AC, atrous convolution; D-
FCN, dilation fully convolutional networks; DCNN, Deep convolutional neural
network; CNN, convolutional neural network; GPU, graphic processing units; CT,
computed tomography.
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segmentation of multi-structure targets (6–8). If we combine the
trained DCNN model and graphic processing units (GPU)
hardware acceleration, computed tomography (CT) images of
tissues or organs experiencing radiotherapy can be segmented
rapidly, and the structure of the target area and organs at risk can
be accurately delineated automatically, which will promote the
further development of precision radiotherapy.
MATERIALS AND METHODS

Patient Datasets and Computer
Working Platform
For this experiment, we collected the image data from the image
database of clinical radiotherapy cases established at the early
phase by the Department of Radiotherapy of Affiliated Hospital
of Xiangnan University. Our research team searched the image
database according to the disease type and structure, with search
items such as lung cancer, left lung, right lung, pericardium,
trachea, and esophagus, and eventually obtained the image data
of clinical lung cancer cases undergoing radiotherapy. The image
data included chest CT scan sequences of desensitized patients
and the corresponding files of organ structure contour. With the
aid of relevant medical image processing technology that
analyzed and extracted the contouring data of the structure of
each organ in the images, the organ delineation atlas
corresponding to each slice image on the CT image sequence
was thus generated.

The experimental data set contained a total of 120 sets of
chest CT images. Among them, 70 sets were randomly selected as
the training set that included 8,512 axial slice images and organ
delineation contour maps; 30 sets were randomly selected as the
validation set that included 5,525 axial slice images and organ
delineation atlases; 20 sets were randomly selected as the test set
that included 3,602 axial slice images and organ delineation
atlases. Figure 1 is one of the examples, in which Figure 1A is the
axial slice image of the patient and Figure 1B is the organ atlases
delineated by the physician.

This study was performed on an ultramicro 4028GR-TR
computer server. Its hardware system contained two Intel E5-
2650V4 models of CPU, 128 GB of memory, 3 TB of SSD hard
disk, and 8 GPUs of NVIDIA GeForce 1080Ti model; the
software system included Ubuntu Server 16.04 operating
system, CUDA8.0 and cuDNN6.0, and the latest Caffe deep
learning framework.

Optimization and Improvement of Fully
Convolutional Network
The basic mechanism of the FCN proposed by Shelhamer et al.
(9) is that FCN extracts image features through convolution,
performs feature compression for feature image pooling
processing, obtains segmented images as big as the original
image through upsampling, and then optimizes output
adjustment with the jump structure.

Six published networks were used in our study, including
FCN based on the VGG16 (10) algorithm, the DeepLab series
September 2021 | Volume 11 | Article 719398
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proposed by Chen et al., and the U-net (5, 9, 11, 12), as well as
three dilation fully convolutional networks (D-FCN) modified by
our research team through combining the deep learning methods
of fully convolutional network and atrous convolution (AC). It’s
reported that systematic dilation supports exponential expansion
of the receptive field without loss of resolution or coverage,
which increases the accuracy of state-of-the-art semantic
segmentation systems (13). We used the training dataset for
tuning and training to obtain the optimal network models for the
forementioned chest image segmentation by comparing and
comprehensively analyzing the automated segmentation results
and manual delineation results of each network training model.

Preprocessing of data: Because the pre-training models
selected for this study are based on the results of training with
RGB three-channel natural images, and the medical image sets
used in this study are single-channel CT images, it is necessary to
construct the single-channel medical image into three-channel
image in the data input layer. In the present study, we made two
copies of the original image data to constitute virtual three-
channel medical image data.

Published model training: We selected 5 DCNNs based on the
FCN VGG16 algorithm, including FCN 32s, FCN 16s, FCN 8s,
DeepLab-largeFOV, and DeepLabv2-VGG16, and 1 U-net
model, which are suitable for image segmentation. We also
leveraged these models trained on other natural image data
sets as pre-trained models. We modified and optimized the
pre-trained models, including changing the data input layer to
adapt it to the data format of the medical image in our datasets.
We added the window adjustment layer by combining the
difference between medical images and natural images. In our
study, the [-300, 600] window width was divided into three equal
parts according to the characteristics of the window values of
each structure of chest CT. The equally divided value range was
the window width, and the median value was the window value.
The window was adjusted for each channel separately. We set the
number of characteristic maps of the output layer according to
the category of the target that the experiment was designed to
segment, and used the images in the training set to perform
500,000 repeated iterations for tuning and training these network
models, so as to obtain the optimal training result of each
Frontiers in Oncology | www.frontiersin.org 3
network. In addition, it is necessary in the training process to
adjust and optimize the training hyperparameters as actual
training situations might change – specifically, learning
strategy, initial learning rate, batch size, momentum, weight
decay rate, etc., to improve the prediction accuracy of the model.

Training of the modified models: While combining the
characteristics of FCN and the idea of atrous convolution, the
pool3, pool4, and pool5 of the FCN 32s network, as well as part
or all of the subsequent convolutional layers, were modified into
dilation convolutional layer, namely, the so-called D-FCN. A
total of 3 modified FCN models were thereby generated: D-FCN
4s, D-FCN 8s, and D-FCN 16s (Figure 2). Similarly, we
employed the same datasets to tune and train the modified D-
FCN models with the FCN32s network model as a pre-
training model.

Optimal model validation: During the training process, a
series of training models were generated with every 5,000
iterations as an observation mirror image. The manually
delineated structural contour regions in the 5,525 images of the
30 patients in the validation set were used as the prediction targets
to validate the segmentation consistency of the training models
that were obtained from the training of the above 9 networks,
respectively.We worked out the Dice coefficient by calculating the
similarity between the automated segmentation results of the
training models and the manual delineation results, and thus
drew the Dice curve of the training models under different
iterative mirrors of each network. Finally, we found the optimal
segmentation model of each network by analyzing the Dice curve.

Automated Image Segmentation Test of
Network Models
The manually delineated contour regions of 20 sets of 3,602 axial
slice images in the test set were used as the prediction targets. The
optimal segmentation models selected above were employed to
perform the automated segmentation of the targets so that we
could test the effectiveness of each network model and the
accuracy of automated segmentation. We calculated the
similarity between the automated segmentation results and
the manual delineation results in terms of global and individual
organ structures, respectively. We compared the Dice coefficients
A CB

FIGURE 1 | Images of a lung patient in the experimental data. (A) is the original axial slice image of CT scan; (B) is the axial slice image of CT scan delineated by
the physician; (C) is the contour of delineated organs extracted after processing.
September 2021 | Volume 11 | Article 719398
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and comprehensively evaluated each network model while
considering the speed of automated segmentation processing.

Evaluation Indicators
As we all know, intersection-Over-Union (IoU) and Dice
coefficient are both important and common indicators for
segmentation neural network assessment. The previous report
which compared Dice coefficient with IoU, indicated that using
Dice could have higher score than IoU (14). Therefore, in this
paper, Dice coefficient is used to evaluate the effect of automated
Frontiers in Oncology | www.frontiersin.org 4
segmentation by network models, that is, to evaluate the similarity
between the automated image segmentation results and the
manual delineation results of physicians. Dice is calculated by:

Dice(X, Y) =
2 ∗ X ∩ Yj j
Xj j + Yj j

Where X denotes the set of pixels for the automatically
segmented image, Y denotes the set of pixels for the manually
delineated image, | X ∩ Y | is the intersection of two sets of pixels,
A

C

B

FIGURE 2 | 3, 7, 64, 128, 512 and 4096 meant 3 7, 64, 128, 512 and 4096 image channels, respectively; d meant d-1 dilation were plug in between every two
elements of the convolution kernel; 2x and 4x are multiples of upsampling. (A) D-FCN 4S; (B) D-FCN 8S; (C) D-FCN 16S.
September 2021 | Volume 11 | Article 719398
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and | X + | Y | is the union set of the both. The range of Dice is
[0, 1], and the higher the value of Dice is, the closer the result of
automated segmentation is to that of manual delineation. In this
paper, we calculated not only the global Dice of all segmented
target regions, but also the Dice of individual segmented target
region, so as to evaluate the effect of automated segmentation by
the model more comprehensively.
RESULTS

In our study, the training set was comprised of 70 sets of 8,512 CT
axial slice images of patients undergoing pulmonary radiotherapy,
as well as organ atlases manually delineated by radiologists. Nine
deep networks, including 6 published networks and 3 networks
modified by us, were tuned and trained for automated image
segmentation, respectively. 30 sets of 5,525 CT images, as well as
Frontiers in Oncology | www.frontiersin.org 5
manually delineated organ contour atlases, constituted the
validation set, and were used to validate the consistency of the
models obtained from tuning and training. The optimal
segmentation model of each network was determined by Dice
analysis. Finally, the effectiveness and accuracy of the optimal
segmentation model of each network were tested by a test set
containing 20 sets of 3,602 CT images, and the performance of
each model in automated image segmentation of radiotherapy
localization was comprehensively evaluated.

Training and Optimization Results of
Network Model
Figure 3 presents the Dice curves for the training and validation
processes of the 9 networks. The Dice value of each network
model increased with the number of iterations during the
training. The convergence of Dice values showed that the
improved D-FCN 4s model constructed in this study
A CB

D FE

G IH

FIGURE 3 | | Dice curves of the training effects of the 8 network models. (A) is the Dice curve of the training effect of FCN 32s network; (B) is of FCN 16s network;
(C) is of FCN 8s network; (D) is of DeepLab-largeFOV network; (E) is of DeepLabv2-VGG16 network; (F) is of D-FCN 16s network; (G) is of D-FCN 8s network;
(H) is of D-FCN 4s network; (I) is of Unet network.
September 2021 | Volume 11 | Article 719398
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(Figure 3H) had the fastest convergence rate and the best stable
convergence rate compared with the other models.

Table 1 shows the statistical results of the iterative operation
of automated segmentation of organs for each model, including
the optimal Dice score and the number of iterations when
reaching the optimal value. All the models in our study
presented high global optimal Dice, which suggested that the
automated segmentation results were close to the expert
delineation results. The D-FCN 4s model proposed in this
paper had the highest global Dice (87.11%) compared with the
other models, indicating that it had superior performance in
automated segmentation to the other models.

Test Results and Analysis of
Automated Segmentation
Table 2 shows the test results of automated segmentation of
target structures for the 9 models by using the images in the test
set. The table lists the global Dice of one-time automated
segmentation of 6 target organs of each test case by different
models, the optimal Dice of individual organ structure, and the
automated segmentation operation time of each model. The
comparison between the automated segmentation results of
each model for the test set or the validation set both showed
that D-FCN4s has a better segmentation effect than or is
equivalent to the other network models, regardless of the
global Dice or the Dice of the individual structure. Regarding
Frontiers in Oncology | www.frontiersin.org 6
automated segmentation operation time, D-FCN4s was slower in
prediction segmentation than the other models because it
preserved more image details for the sake of a finer
segmentation effect. There was no downsampling operation
above the Pool3 layer, and as a result, the resolution of the
feature image in the following layers was larger, so the amount of
computation increased greatly and the speed of prediction
became slower. However, the predicted automated delineation
speed of DFCN4s, which took less than 3 minutes on average,
was acceptable in the practice of radiotherapy

Figure 4 shows the comparison between the results of
automated segmentation delineation of some test cases and
manual delineation by radiologists. In this figure, each
horizontal line lists a comparison of different test cases. The
left-side images were delineated by physicians and the right-side
images by the D-FCN4s model automatically. The delineated
contours of the both sides are very consistent with each other,
especially for some closed esophageal or tracheal contours that
are not easy to be distinguished by naked eyes. The trained
D-FCN4s show good ability of predictive segmentation.
DISCUSSION

When designing a clinical radiotherapy plan, radiologists are
required not only to accurately determine and delineate the
September 2021 | Volume 11 | Article 719398
TABLE 1 | Iterative operation results of automated organ segmentation for the 8 network models.

Network Model Global Dice/% 95% CI Best epoch (× 10000)

Lower Upper

FCN 32s 86.32 78.25 93.50 77
FCN 16s 86.51 78.68 93.69 80
FCN 8s 86.95 79.23 93.80 78
Deeplab-largeFOV 86.36 77.94 93.67 76
Deeplabv2-VGG16 86.89 79.00 93.93 73
D-FCN 16s 86.47 78.09 93.82 72
D-FCN 8s 87.05 79.11 94.01 78
D-FCN 4s 87.11 79.40 93.95 78
Unet 86.81 78.96 93.75 74
CI, confidence interval.
TABLE 2 | Test results of the optimal segmentation models of the 8 network models.

Network Model Dice/% Average time/s

Global Lung
(L)

Lung
(R)

Heart Esophageal Trachea Spinal
Cord

FCN 32s 86.32 97.15 96.75 88.87 69.13 84.36 81.68 32
FCN 16s 86.51 97.2 96.87 89.34 69.78 84.65 81.2 36
FCN 8s 86.95 97.17 97.08 89.17 70.63 85.13 82.52 36
Deeplab-largeFOV 86.36 97.17 96.94 89.28 68.19 84.51 82.08 13
Deeplabv2-VGG16 86.89 97.14 97.14 89.85 69.83 85.15 82.2 35
D-FCN 16s 86.47 97.2 97.02 89.71 68.23 84.75 81.9 30
D-FCN 8s 87.05 97.21 97.01 90.21 69.79 85.4 82.68 55
D-FCN 4s 87.11 97.22 97.16 89.92 70.51 85.05 82.78 173
Unet 86.81 97.17 96.98 89.67 69.95 84.55 82.51 20
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FIGURE 4 | The comparison between the automated segmentation delineation of some test cases and the manual delineation results of the radiologist. In the figure,
each horizontal line lists a comparison of different test cases. The left side is delineated by physicians and the right side by the D-FCN4s model automatically.
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tumor target area to be treated, but also to delineate the normal
tissues and organs at risk that may be potentially irradiated. The
accuracy of contouring organs at risk determines the quality of
dose optimization in radiotherapy planning (15), thus directly
affecting the success of radiotherapy or the incidence of
complications (16). However, the accuracy of manual
delineation is highly dependent on the clinical experience of
radiologists, whose manual work might be inefficient (17–19).
Therefore, automated organ delineation methods based on
image segmentation have been attracting the tremendous
interest of many scholars, who developed many different
automated image segmentation and delineation algorithm
models. Nonetheless, so far, most of the automated partition
and delineation software commonly used in radiotherapy
clinically are regional segmentation methods based on
regional features such as gray level distribution (20), and the
template automated delineation method based on empirical
atlas and deformation model (21). The former is not effective
for regional segmentation for little variation in gray level
distribution, while the latter is sensitive to template quality,
and the delineation effect is not good enough to meet the
clinical requirements. Relevant studies (22) indicated that the
mean Dice values of template-based automated partition
delineation software using single and multiple template
delineation, in the automated delineation of the geometric
accuracy of organs at risk in head and neck radiotherapy, were
0.68 ± 0.20 and 0.74 ± 0.16, respectively (P = 0.01). Peng
Yinglin et al. (23) found in the pre-clinical test report of the
same automated delineation software that when the image to
be delineated is significantly different from the template image,
the Dice score of automated organ delineation was only 0.46 ~
0.89. In recent years, the emerging deep learning method based
on neural networks can automatically learn features and
perform feature recognition at multiple levels, which has
achieved great results in the application of automated
recognition and segmentation of medical images. Ilsang Woo
et al. (24) used a convolutional network method for automated
segmentation of magnetic resonance images, and the Dice/%
was greater than 85%, significantly higher than that of the
traditional algorithm. Khalifa F et al. (25) employed a
multiscale convolutional network method to perform
automated segmentation of the kidneys on abdominal CT
images with a Dice/% of 97.27%. In this paper, the pre-
training and tuning methods of deep learning were leveraged
to pre-train and optimize the published DCNN models such as
FCN and DeepLab and the Unet model suitable for natural
image segmentation, which were further improved by
optimizing the FCN network model and combining the
atrous convolution method. After the models were fully
tuned and trained, the automated segmentation test was
performed with another set of image in the same category.
The results showed that the performance of the improved
network model in automated organ segmentation was better
than that of the other published models. The D-FCN 4S model
proposed in this study brought about results that were very
close to those of manual delineation in most segmentation of
Frontiers in Oncology | www.frontiersin.org 8
organ structures. The test experiment showed that in terms of
individual organ structure, this D-FCN 4S model had the
highest accuracy in automated segmentation of lung and
pericardium, with an Dice of 97% and 89%, respectively. The
similarity between automated and manual delineation of
trachea and esophagus was relatively low, with an Dice of
70.51% and 85.05%, respectively. Since there is often great
disagreement when physicians delineate organs such as the
esophagus in the closed state (19, 26–29), using these datasets
with great disagreement to train network models might
potentially reduce the automated recognition ability of the
models. At the same time, individual differences in physician
delineation could somewhat reduce the consistency of
automated delineation tests (30, 31). Therefore, when using
machine learning tools like artificial intelligence automated
delineation, it is necessary to label and optimize the data for
deep learning models, and the results from automated
delineation still need to be confirmed and modified by
physicians. In addition, the results of this study revealed that the
ability of the model to recognize and segment some small organ
structures is relatively poor, and thus we need more efforts for
debugging of parameters and iteration deepening when training
and optimizing the models. We should seek more appropriate
network parameters and iteration endpoints to improve the
automated recognition ability and segmentation accuracy of the
model. Besides, the cross-validation with smaller bias should be
performed in the future studies. These are the issues that need to be
addressed in our subsequent studies.
CONCLUSION

This study introduced DCNN based on natural image
segmentation into medical image segmentation and proposed
an modified D-FCN that could effectively improve the ability of
predictive segmentation of target images. Combined with GPU
hardware acceleration, further optimization of network
parameters and training levels might be expected to achieve
rapid segmentation of images of organs at risk in the thoracic
radiotherapy planning, thus paving the ground for automated
design of radiotherapy plans in the future.
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