Pancreatic cancer is a life-threatening malignant disease with significant diversity among geographic regions and races leading to distinct carcinogenesis and prognosis. Previous studies mainly focused on Western patients, while the genomic landscape of Oriental patients, especially Chinese, remained less investigated.
A total of 408 pancreatic cancer patients were enrolled. A panel containing 436 cancer-related genes was used to detect genetic alterations in tumor samples.
We profiled the genomic alteration landscape of pancreatic duct adenocarcinoma (PDAC), intraductal papillary mucinous neoplasm (IPMN), periampullary carcinoma (PVC), and solid-pseudopapillary tumor (SPT). Comparison with a public database revealed specific gene mutations in Oriental PDAC patients including higher mutation rates of DNA damage repair-related genes. Analysis of mutational signatures showed potential heterogenous carcinogenic factors caused by diabetes mellitus. KRAS mutation, especially KRAS G12D mutation, was associated with poor survival, while patients not harboring the 17 significant copy number variations (CNVs) had a better prognosis. We further identified multiple correlations between clinicopathologic variables and genetic mutations, as well as CNVs. Finally, by network-based stratification, three classes of PDAC patients were robustly clustered. Among these, class 1 (characterized by the Fanconi anemia pathway) achieved the best outcome, while class 2 (involved in the platinum drug resistance pathway) suffered from the worst prognosis.
In this study, we reported for the first time the genetic alteration landscape of Oriental PDAC patients identifying many Oriental-specific alterations. The relationship between genetic alterations and clinicopathological factors as well as prognosis demonstrated important genomic impact on tumor biology. This study will help to optimize clinical treatment of Oriental PDAC patients and improve their survival.