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Objective: To explore a new method for color image analysis of ultrasomics and
investigate the efficiency in differentiating focal liver lesions (FLLs) by Red, Green, and
Blue (RGB) three-channel SWE-based ultrasomics model.

Methods: One hundred thirty FLLs were randomly divided into training set (n = 65) and
validation set (n = 65). The RGB three-channel and direct conversion methods were
applied to the same color SWE images. Ultrasomics features were extracted from the
preprocessing images establishing two feature data sets. The least absolute shrinkage
and selection operator (LASSO) logistic regression model was applied for feature selection
and model construction. Two models, named RGB model (based on RGB three-channel
conversion) and direct model (based on direct conversion), were used to differentiate
FLLs. The diagnosis performance of the two models was evaluated by area under the
curve (AUC), calibration curves, decision curves, and net reclassification index (NRI).

Results: In the validation cohort, the AUC of the direct model and RGB model in
characterization on FLLs were 0.813 and 0.926, respectively (p = 0.038). Calibration
curves and decision curves indicated that the RGB model had better calibration efficiency
and provided greater clinical benefits. NRI revealed that the RGB model correctly
reclassified 7% of malignant cases and 25% of benign cases compared to the direct
model (p = 0.01).

Conclusion: The RGB model generated by RGB three-channel method yielded better
diagnostic efficiency than the direct model established by direct conversion method. The
RGB three-channel method may be promising on ultrasomics analysis of color images in
clinical application.
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INTRODUCTION

Shear-wave elastography (SWE), as an elasticity-based US
technique, is widely used in lesion characterization and liver
stiffness assessment (1–4). It can quantitatively evaluate tissue
stiffness by measuring the velocity (m/s) of shear wave or tissue
elastic modulus (kPa). However, SWE is still operator dependent
in the optimal region selection, and there are few established
guidelines on how to acquire a satisfied SWE image, which
resulted in interobserver variability and subjective diagnostic
decision-making (5, 6).

Radiomics or ultrasomics is a promisingfield for image analysis,
through extracting a high throughput of quantitative data from
medical images for clinical application (7). Its potential to provide a
better insight into tumorcharacteristics that fail tobeappreciatedby
naked eyes facilitates a direct estimation of outcomes (8). Recent
advances related to ultrasomics involved tumor detection,
classification, staging, and therapeutic assessment. In tumor
classification, ultrasomics is mainly based on an analysis of the
grayscale image due to the heterogeneity of the tumor itself.
However, interpreting color images is also required in clinical
practice such as SWE image analysis. For color image analysis,
the most common existing method is directly converted into a
grayscale image, which is usually done by the following color-to-
grayscale algorithms: Intensity, Luminance, Lightness, Value, and
so on (9). According to human’s sensitivity to the R, G, and B
colors, Lightness, which is based on the formula of gray intensity =
0.2126R + 0.7152G + 0.0722B, more closely corresponds to human
perception and preferable in color image conversion, which is
achieved via a nonlinear transformation of the RGB color space.
However, it is not a lossless method for color to grayscale image
conversion, which suffers from a domain shifting problem due to
the overlaps of Red, Green, and Blue (RGB) channel values (9, 10).
Other common analysis methods included RGB to grayscale
elasticity map (5, 11–14) and histogram-based color image
analysis (15). The RGB to grayscale elasticity image is a lossless
inverse procedure, but it required an intermediate image
processing step (such as RGB to Stiffness conversion) for image
analysis. The drawback of the latter method was that information
about the object’s location, shape and texture are discarded.

A representative SWE image consists of a grayscale
accompanied with a corresponding color SWE image. The RGB
color model is composed of three primary channel values, which
can reproduce a broad array of colors. Pixels are the smallest
individual element of an RGB image, and each pixel consists of
three-channel values forming 8-bit values (range, 0–255). RGB
images contain additional discriminative information compared
with grayscale images (16). A very large visual information can be
produced at each pixel location by varying the relative contribution
of eachof the three-channel values. In the direct conversionmethod
Abbreviations: AUC, area under the curve; SWE, shear wave elastography; NRI,
net reclassification index; DCA, decision curve analysis; LASSO, least absolute
shrinkage and selection operator; ROC, receiver operating characteristic; ROI,
region of interest; RGB, red, green, and blue; CI, confidence interval; FLLs, focal
liver lesions; PET-CT, positron emission tomography computed tomography;
SRT, sparse representation theory; AdaBoost, adaptive boosting; SVM, support
vector machine; RF, random forest; LR, logistic regression.
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of SWE-based ultrasomics for FLLs differentiation, we found that
direct conversion of SWE images into grayscale images could
change the pixel values of the original image (10). This direct
conversion method may result in a mismatch between the
converted image and the original color image. Therefore, we
proposed a novel method that generates three single-channel (R,
G, and B, respectively) grayscale images from SWE images and
extracted information from every single-channel image (named as
RGB three-channel method). After this decomposition, the pixel
gray value of every single-channel imagewas consistent with that of
the original RGB color image. We speculated that the RGB three-
channel method could retain and reflect the same characteristics of
the original color image, reducing data loss due to direct
image conversion.

Few studies have reported the color image analysis method
for ultrasomics features extraction in FLLs. The current study
was to evaluate the diagnostic performance of the RGB three-
channel method and the direct conversion method, to see
whether the new method yields better results on SWE-based
ultrasomics for FLLs characterization.

MATERIALS AND METHODS

This retrospective study was approved by the institutional ethics
committee of our hospital, and written informed consent was
obtained from all patients.

Patients
Between January 2015 and December 2016, 127 patients with 130
liver lesions who underwent SWE examination were included in
this retrospective study. The inclusion criteriawere (a) distinct liver
lesions larger than 10 mm at the US, (b) lesions detected with a
maximumdistance of 8 cm fromthe surface of the skin to the center
of the lesion, (c) pathological confirmed lesions or clinical
diagnostic standard (described in reference standard) (17).
Lesions that were previously treated or relapse from previously
treated, adjacent to large vessels (hepatic arterial, hepatic vein,
portal vein, and the inferior vena cava) and with poor SWE image
quality were excluded.

Lesions were divided into the training and validation cohorts
randomly in a ratio of 1:1. The inclusion flow chart for the study
population is presented in Figure 1.

Ultrasound Examination
SWE examinations were performed using an Aixplorer
Ultrasound system (SuperSonic Imagine, Aix-en-Provence,
France) equipped with the SC6-1 convex probe. One radiologist
(TWS) performed the SWE examination independently according
to the European Federation of Societies for Ultrasound in
Medicine and Biology (EFSUMB) guidelines (18). During the
examination, the patient was asked to hold their breath, and the
operator should maintain immobilization for a few seconds
without pressure for SWE image acquisition.

Reference Standard
All the histopathology results of the FLLs were confirmed by
either surgical resection or US-guided biopsy except for
September 2021 | Volume 11 | Article 704218
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hemangiomas. As to hemangiomas, the clinical diagnosis
standard was both with typical characteristics (17) on contrast-
enhanced ultrasonography (CEUS) and with at least 12 months
of follow-up.

Image Conversion
Image conversion was performed using Python (version 3.8.5).
The direct conversion was directly converting an SWE color
image into a grayscale elasticity image. The RGB three-channel
method was converting an SWE color image into three single-
channel images (Figure 2).

Ultrasomics Score
The region of interest (ROI) was delineated along the contour of
the tumor by one radiologist (WW, with more than 15 years of
liver imaging experience). ROI was manually drawn from the
boundary of the index mass on the grayscale image, and the same
ROI was copied and pasted to the corresponding location inside
the SWE image as well as every single channel image. The
features were extracted from the ROI of each converted image
automatically. A total of 5,936 features were extracted from every
single image. In total, 17,808 features were extracted by the
combination of three single-channel images generated by the
RGB three-channel method, whereas 5,936 features were
Frontiers in Oncology | www.frontiersin.org 3
extracted by the direct conversion method. Most of these
features were highly redundant, causing the susceptibility of
the classifier. The least absolute shrinkage and selection
operator (LASSO) regression was used for features reduction
and selection (19). Finally, based on the selected ultrasomics
features, four classifiers, namely, Adaptive Boosting (AdaBoost),
Logistic Regression (LR), Support Vector Machine (SVM), and
Random Forest (RF), were respectively applied to construct
the ultrasomics score for FLLs characterization (4, 20, 21).
The score generated by the direct conversion method and the
RGB three-channel method was named direct score and RGB
score, respectively.

Technique for Oversampling
To alleviate the imbalanced medical dataset and mitigate the
small data size, simple minority oversampling technique
(SMOTE) (22) was applied to generate new synthetic samples
at data level to create the balance between minority and
majority classes.

Model Evaluation and Comparison
The direct score model and RGB score model were applied to
FLLs characterization, and the results were verified in the
validation cohort.
FIGURE 1 | Inclusion flow chart for the study population.
September 2021 | Volume 11 | Article 704218
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Discrimination
Receiver operating curves (ROC) were used to evaluate the
discrimination performance of the direct model and the RGB
model in differentiating malignant from benign FLLs in the
validation cohorts. It was measured by the area under the curve
(AUC). To compare the predictive effect of the direct score model
with the RGB score model, we calculated the net reclassification
index (NRI), which was themost widely used summary statistics to
present the extent of the reclassification of the models.

Calibration curves were drawn for evaluating the accurate
prediction of the two models in the validation cohort. The Brier
Scoreswere compared between twomodels, and a small Brier Score
(23) indicates high prediction accuracy and is well-calibrated.

Clinical Application
A decision curve analysis (DCA) was applied to demonstrate the
clinical usefulness by estimating the standardized net benefit of
Frontiers in Oncology | www.frontiersin.org 4
the prediction models at different threshold probabilities. The
benefit increased with the degree of the curve deviating from
the baseline.

Statistical Analysis
Statistical analysis was performed by SPSS 21.0 for Windows
(Chicago, IL), Python (version 3.8.5), R software (R Foundation
for Statistical Computing, version 3.4.1; https://www.r-project.org/)
and MedCalc Statistical Software version 18.5 (MedCalc Software
bvba, Ostend, Belgium; http://www.medcalc.org; 2018). Chi-
squared test or the Fisher exact test was used for categorical
variables, and the two-sample t-test was for continuous variables
in the comparison of the training and validation cohorts for
baseline characteristics. Python (version 3.8.5) was applied for
feature reduction and model building. LASSO regression was
performed by the “sklearn” package for feature reduction. Based
on “imblearn” package, SMOTE was used for upsampling and
A B

DC

FIGURE 2 | RGB image decomposition by the RGB three-channel method. A 56-year-old man with a 3.5-cm HCC in segment 2 of the liver. The depth from the
body surface to the center of the lesion was <8 cm. (A) SWE color-code image. (B) Red channel. (C) Green channel. (D) Blue channel.
September 2021 | Volume 11 | Article 704218
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balancing the categories of training sample. The RF, SVM,
adaboost, and LR classifiers were constructed by “sklearn”
package. The ROC curves and the calculation of the AUC were
conducted by the “pROC” package. The calibration curves and the
DCA curves were plotted by the “Calibration Curves” package and
“DecisionCurve” package, respectively. The R package “nricens”
was used to perform NRI. A p < 0.05 (two-sided) was considered
statistically significant.
RESULTS

Patient Characteristics
One hundred twenty-seven patients with 130 lesions were
enrolled in the study. Of the 130 FLLs, 90 FLLs were
malignant, including hepatocellular carcinoma (n = 61),
intrahepatic cholangiocarcinoma (n = 12), and liver metastasis
(n = 17). Forty FLLs were benign with focal nodular hyperplasia
(n = 8), hemangioma (n = 27), and inflammatory pseudotumor
(n = 5). These 130 lesions were equally allocated to the training
cohort and the validation cohort at random. There were 65
lesions in the training cohort including 45 malignant lesions and
20 benign lesions. After simple minority oversampling, the
training cohort changed into 90 lesions with 45 malignancy
and 45 benign lesions. The baseline characteristics of the two
cohorts were compared in Table 1.

Feature Selection and Analysis of Ultrasomics
Of 130 FLLs, 30.8% (40/130) were benign and 69.2% (90/130)
were malignant. Based on the two conversion methods, 5,936
features were extracted from the direct conversion method,
Frontiers in Oncology | www.frontiersin.org 5
whereas 17,808 features were extracted from the RGB three-
channel method. After ultrasomics feature selection by LASSO
regression, 29 features from the direct conversion method and 8
features from the RGB three-channel method were potential
predictors for differentiating FLLs. The extracted features for
model construction and the definitions of the features are
presented in Supplementary Material.

Comparison of Two Ultrasomics Models
The AUCs of models using different classifiers are list in Table 2.
The results showed that RF (AUC = 0.813 and 0.926 for direct
model and RGB model, respectively) outperformed the other
classifiers. RF has stability and effectiveness with high staging
performance. The diagnostic sensitivity, specificity, and accuracy
of the direct model using RF as a classifier were 86.7% (95% CI,
73.2%, 94.9%), 60.0% (95% CI, 36.1%, 80.9%), and 78.5% (95%
CI, 58.4%, 103.2%), respectively, while those of the RGB model
were 93.3% (95% CI, 81.7%, 98.6%), 85% (95% CI, 62.1%,
97.8%), and 90.8% (95% CI, 69.1%, 117.1%). The ROC curves
were used to demonstrate the prediction accuracy of the two
ultrasomics models in the validation cohort. The AUCs of the
RGB model and the direct model for FLLs characterization were
0.926 (95% CI, 0.833–0.976) and 0.813 (95% CI, 0.697–0.899),
respectively (p = 0.038) (Table 2), indicating that the RGB model
was more effective in FLLs characterization (Figure 3). NRI was
calculated for quantifying improvement in predicting the
accuracy of the two ultrasomics models. NRI revealed that the
RGB model exhibited a better reclassification in the FLLs
discrimination. 7% of malignant lesions and 25% of benign
ones were reclassified accurately in comparison with the direct
model (p = 0.01) (Table 3).
TABLE 1 | Clinical–pathological characteristics and ultrasomics score in the training and validation cohorts.

Training cohort Validation cohort p value

By patient
Gender (male/female) 45/19 45/18 1.000
Age (mean ± SD)* 51.3 ± 13.8 47.0 ± 13.8 0.077
Hepatitis (positive/negative) 29/35 33/30 0.480
AFP (<20/≥20) (ng/ml) 43/21 42/21 1.000
By lesion
Lesion size (mean ± SD) * (cm) 5.3 ± 3.2 5.6 ± 3.2 0.520
Pathology (benign/malignant) 20/45 20/45 1.000
Benign

Hemangiomas 15/20 12/20 0.501
FNH 2/20 6/20 0.235
Inflammatory pseudotumor 3/20 2/20 1.000

Malignant
HCC 31/45 30/45 1.000
ICC 6/45 6/45 1.000
MLC 8/45 9/45 1.000

Ultrasomics score*
Direct score 0.66 ± 0.40 0.64 ± 0.23 0.686
RGB score 0.68 ± 0.41 0.63 ± 0.32 0.452
September 2021 | Volume 11 | Article
Unless otherwise indicated, data are numbers.
*Data are mean ± standard deviation.
AFP, alpha-fetoprotein; RGB, red, green and blue; FNH, focal nodular hyperplasia; HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; MLC, metastatic liver cancer.
Direct score refers to the application of direct conversion method to the image of the cases in the training and validation sets, and obtain the risks core of each case. RGB score refers to the
application of RGB three-channel conversion method to the image of the cases in the training and validation sets, and obtain the risks core of each case.
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Calibration
In the validation cohort, the calibration curves were drawn to
explore whether the predicted probability was well-agreed with
the real probability in the direct model (Figure 4A) and RGB
Frontiers in Oncology | www.frontiersin.org 6
model (Figure 4B). The reliability of the calibration curves was
assessed by the Brier Scores. A small Brier Score indicated high
prediction accuracy and well calibration. The Brier Scores of the
direct model and RGB model were 0.153 and 0.097, respectively,
indicating the RGB model had a higher prediction accuracy and
better agreement for the calibration curves compared with the
direct model.

Clinical Application
DCAs of the direct score model and the RGB score model were
compared in the validation cohort (Figure 5). The DCA curves
revealed that at any given threshold probability, the RGB score
model in predicting malignancy had a greater net benefit
compared with that of the direct score model.
DISCUSSION

This retrospective study proposed a new RGB three-channel
method for SWE-based ultrasomics color image analysis. The
diagnostic performance of the RGB model generated by this
method was tested in the validation cohort regarding
discrimination, calibration, and clinical application. The RGB
model exhibited superior diagnosis performance than the
direct model, with AUC of 0.813 for direct model and 0.926
for RGB model. The RGB model outperformed the direct model
concerning prediction accuracy, calibration, and clinical
application. Images converted from the RGB three-channel
method could well reflect the original information of the RGB
color image, which reduced less data loss compared with the
direct conversion method. This method captured more
information and may be helpful in clinical practice.
TABLE 2 | Diagnostic performance of direct model and RGB model among different classifiers in the validation cohort.

Model Cutoff value† Sensitivity Specificity Accuracy PPV NPV
(95% CI) (95% CI) (95% CI) (95% CI) (95% CI)

RF Direct 0.500 0.867 0.600 0.785 0.830 0.667
(0.732, 0.949) (0.361, 0.809) (0.584, 1.032) (0.738, 0.894) (0.467, 0.820)

RGB 0.450 0.933 0.850 0.908 0.933 0.850
(0.817, 0.986) (0.621, 0.978) (0.691, 1.171) (0.831, 0.976) (0.652, 0.945)

SVM Direct 0.701 0.822 0.500 0.723 0.787 0.556
(0.679, 0.920) (0.272, 0.728) (0.531, 0.962) (0.700, 0.854) (0.368, 0.729)

RGB 0.661 0.756 0.850 0.785 0.919 0.607
(0.605, 0.871) (0.621, 0.968) (0.584, 1.032) (0.798, 0.970) (0.472, 0.727)

AdaBoost Direct 0.585 0.578 0.800 0.646 0.867 0.457
(0.422, 0.723) (0.563, 0.943) (0.466, 0.873) (0.723, 0.942) (0.359, 0.558)

RGB 0.531 0.800 0.850 0.815 0.923 0.654
(0.654, 0.904) (0.621, 0.968) (0.611, 1.067) (0.807, 0.972) (0.506, 0.777)

LR Direct 0.273 0.822 0.450 0.708 0.771 0.529
(0.679, 0.920) (0.231, 0.685) (0.518, 0.944) (0.689, 0.836) (0.337, 0.713)

RGB 0.686 0.711 0.900 0.769 0.941 0.581
(0.557, 0.836) (0.683, 0.988) (0.571, 1.014) (0.809, 0.984) (0.461, 0.691)
Septembe
r 2021 | Volume 11 |
Unless otherwise indicated, data are percentages, and data in parentheses are 95% confidence intervals.
†Data are cutoff risk score (the output is the specific value, 0–1).
CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; RGB, red, green, and blue; RF, random forest; SVM, support vector machine; AdaBoost, adaptive
boosting; LR logistic regression.
Direct model refers to the model construction based on the application of direct conversion method to the image of the cases in validation set. RGBmodel refers to the model construction
based on the application of RGB three-channel conversion method to the image of the cases in the validation set.
FIGURE 3 | Receiver operating characteristic (ROC) curves for the direct
model and RGB model were performed in the validation cohort. The area
under the curve for direct model US and RGB model were 0.813 (95% CI,
0.697–0.899) and 0.926 (95% CI, 0.833–0.976), respectively.
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Recently, the most common color image processing was
directly converted into a grayscale image, which was based on
the gray intensity = 0.2126R + 0.7152G + 0.0722B. This method
is easy to apply, but the most important limitation is color
information lost during the convention (10). To seek an easy and
effective way on color image analysis for radiomics or
ultrasomics, several research groups have proposed different
methods for color image processing (5, 11–15, 24). Bhatia et al.
(11) separated the color components of the 2D-SWE image and
generated a pure color-code image from removing the layer of
the grayscale image. They established a prediction model in the
identification between benign and malignant thyroid nodules by
extracting 15 gray level co-occurrence matrix features (GLCM).
The sensitivity, specificity, and AUC of this model reached
97.5%, and 90%, and 0.973, respectively. Gatos et al. (13, 14)
developed an RGB-to-stiffness inverse mapping technique in
assessing liver stiffness. This method presented excellent results
Frontiers in Oncology | www.frontiersin.org 7
in the evaluation of liver stiffness with an ACU of 0.87. The above
methods required intermediate image processing step for color
to grayscale conversion. Ma et al. (15) used a histogram-based
color image analysis method in positron emission tomography
computed tomography (PET-CT) image in the differentiation of
nonsmall cell lung carcinoma subtypes. The drawback of this
method was that information about the object’s location, shape,
and texture was discarded. In their study, they combined texture
and color features and got an AUC of 0.89 (95% CI, 0.78–1.00).
Yao et al. (24) established a predictionmodel by extracting features
of multimodal ultrasound images in FLLs characterization. The
feature extraction method used in this study was built on sparse
representation theory (SRT), which was different from the
traditional Radiomics method. Based on this SRT method, color
image analysis was more effective without the need to convert into
grayscale images that occur in traditional radiomics analysis.
However, the image processing and feature extraction process in
A B

FIGURE 4 | Calibration curves for (A) direct model and (B) RGB model performed in the validation cohort. The calibration curves demonstrated a statistical
goodness-of-fit measurement of the models in the characterization of focal liver lesions. The solid line represented the performance of the models, and the dotted line
represented an ideal model. The lesser the solid line deviated from the dotted line, the better the calibration of the model.
TABLE 3 | Evaluation the performance of direct model and RGB model of the validation cohort.

Models AUC NRI

AUC (95% CI) p-value NRI+ NRI− NRI p-value

RF Direct 0.813 (0.697, 0.899) p = 0.038 – – – p = 0.010
RGB 0.926 (0.833, 0.976) 0.067 0.250 0.317

SVM Direct 0.660 (0.532, 0.773) p = 0.010 – – – p = 0.084
RGB 0.857 (0.748, 0.931) −0.067 0.350 0.283

AdaBoost Direct 0.679 (0.551, 0.789) p = 0.002 – – – p = 0.005
RGB 0864 (0.757, 0.937) 0.222 0.050 0.272

LR Direct 0.571 (0.442, 0.693) p = 0.001 – – – p = 0.043
RGB 0.870 (0.763, 0.941) −0.111 0.450 0.339
September 2021 |
 Volume 11 | Artic
Data are percentages and data in parentheses are 95% confidence intervals.
AUC, area under the curve; CI, confidence interval; RF, random forest; SVM, support vector machine; AdaBoost adaptive boosting; LR, logistic regression; NRI+, movement in predicted
risks introduced by change of models in malignant cases; NRI−, movement in predicted risks introduced by changes of model in benign cases.
Direct model refers to the model construction based on the application of direct conversion method to the image of the cases in validation set. RGBmodel refers to the model construction
based on the application of RGB three-channel conversion method to the image of the cases in the validation set.
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their study required highly specialized skills in computer
programming, which was hard to conduct in clinical applications.
In this study, the RGB three-channel method was easier to
implement than the above image processing methods, and
according to our results, the RGB three-channel method can
achieve a good diagnostic performance.

The RGB three channels in the SWE color image were mainly
used to reflect the stiffness distributionof the lesion, from the lowest
stiffness (dark blue) to the highest stiffness (red) and in between is
green (5, 25). This study indicated the RGB three-channel method
could better retain the original information without data loss
compared with the direct conversion method, which was
important for subsequent data mining. We hypothesized this
reason may be due to the change of grayscale pixel value after
direct conversion, consequently resulting in loss of color imagedata.
In the RGB three-channel method, the original color image was
converted into three single-channel grayscale images. Each
grayscale image reflects the pixel values of each color component
in the original color image, and the grayscale pixel value remained
unchanged compared with the original color image.

Medical image analysis is based on the different grayscale
values and textures between the lesion and normal tissue with the
concept that image information can reveal the relation between
underlying pathophysiology and quantitative features (8).
However, color image analysis is also important in radiomics
and ultrasomics. It can provide additional information for lesion
characterization. SWE is a color-coded image with red, green,
and blue reflecting the difference in stiffness according to the
different propagation speeds of the shear wave in tissue. PET-CT
image is a color-code image that can reflect metabolic
information of the tissues by detecting the distribution of
increased tracer uptake values (26). The brightness of color
indicated the degree of tracer aggregation. In this study, we
presented an RGB three-channel method for color image analysis
Frontiers in Oncology | www.frontiersin.org 8
on ultrasomics, which can retain as much information as the
original color image. This method was easy to access with great
potential for clinical application.

There were some drawbacks and limitations to this study. First,
our studywas limitedby a small patient population,whichmay lead
to overfitting and model instability. Second, our data were
retrospectively collected from a single institution, which may
limit generalizability to populations in other geographical regions.
Besides, ROIs for features extraction were drawnmanually, and the
interobserver reproducibility was not evaluated. Finally, we did not
apply deep learning networks in this study as presented in Gatos
et al. (27) andKagadis et al. (28) studies. Further studieswitha larger
sample size and the application of deep learning networkswould be
taken to assess the diagnosis performance of this new method for
widespread implementation in clinical practice.
CONCLUSION

In conclusion, the RGB three-channel method for SWE-based
ultrasomics analysis can effectively retain the original image
information and improve the diagnostic performance in
differentiating FLLs. Our research provides a new technique for
how to better process ultrasomics analysis of color images and
expand theclinical applicationofultrasomicsoncolor imageanalysis.
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