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A growing body of evidence has shown that circular RNA (circRNA) is a promising
exosomal cancer biomarker candidate. However, global circRNA alterations in cancer and
the underlying mechanism, essential for identification of ideal circRNA cancer biomarkers,
remain under investigation. We comparatively analyzed the circRNA landscape in pan-
cancer and pan-normal tissues. Using co-expression and LASSO regularization analyses,
as well as a support vector machine, we analyzed 265 pan-cancer and 319 pan-normal
tissues in order to identify the circRNAs with the highest ability to distinguish between pan-
cancer and pan-normal tissues. We further studied their expression in plasma exosomes
from patients with cancer and their relation with cancer mutations and tumor
microenvironment landscape. We discovered that circRNA expression was globally
reduced in pan-cancer tissues and plasma exosomes from cancer patients than in
pan-normal tissues and plasma exosomes from healthy controls. We identified dynein
axonemal heavy chain 14 (DNAH14), the top back-spliced gene exclusive to pan-cancer
tissues, as the host gene of three pan-cancer tissue-enriched circRNAs. Among these
three circRNAs, chr1_224952669_224968874_+ was significantly elevated in plasma
exosomes from hepatocellular carcinoma and colorectal cancer patients. It was also
related to the cancer mutation chr1:224952669: G>A, a splice acceptor variant, and was
increasingly transcription-driven in cancer tissues. Moreover, pan-cancer tissue-enriched
and pan-normal tissue-enriched circRNAs were associated with distinct tumor
microenvironment patterns. Our machine learning-based analysis provides insights into
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the aberrant landscape and biogenesis of circRNAs in cancer and highlights cancer
mutation-related and DNAH14-derived circRNA, chr1_224952669_224968874_+, as a
potential cancer biomarker.
Keywords: pan-cancer, circRNA, plasma exosomal biomarkers, machine learning, cancer mutations
INTRODUCTION

Circular RNA (circRNA) is a covalently closed circular and single-
stranded non-coding RNA universally generated by cancer and
normal cells and has been detected in plasma exosomes derived
from these cells (1). CircRNAs are gaining increasing attention as
promising cancer biomarkers that can be detected by liquid
biopsies and are associated with many cancer types, such as
gastric cancer, colorectal cancer (CRC), hepatocellular
carcinoma (HCC) and pancreatic adenocarcinoma (PAAD) (2),
etc. For example, circ-KIAA1244 was downregulated in gastric
tissues and plasma samples in patients with gastric cancer, and this
decrease was negatively correlated with the TNM stage, lymphatic
metastasis, and overall survival of patients (3). In colon cancer, a
scoring model involving four circRNAs effectively predicted the
postoperative recurrence of stage II/III cancer (4). Zhang et al.
showed that the elevation of circUHRF1 in HCC tissues and
plasma exosomes was correlated with poor prognosis and
resistance to anti-PD1 immunotherapy (5).

In recent years, studies have revealed great variability of
circRNA profiles in pan-cancer and pan-normal tissues, for
which numerous circRNA databases have been established (6).
The Cancer-Specific CircRNA Database (CSCD) contains
circRNA classifications that are “cancer-specific”, “normal-
specific” or “common” based on the analysis of hundreds of
pan-cancer and pan-normal tissue samples (7). The MiOncoCirc
database collects thousands of circRNA profiles in pan-cancer
tissues by performing exome capture RNA sequencing (8). The
circAtlas database contains circRNA profiles from thousands of
samples across 19 different pan-normal tissues, showing that
circRNAs can be cell-type specific and species-conserved (9, 10).
The exoRbase database is a collection of exosomal circRNA,
lncRNA, and mRNA profiles from patients with cancer and
healthy controls (11).

To date, the mechanisms underlying circRNA biogenesis
remain unclear, particularly those governing aberrant circRNA
expression in pan-cancer tissues. Previous findings have supported
the back-splicing model, in which the double ends of a pre-mRNA
fragment ligate to form a closed circular structure (12), although
the driving force and machinery mediating back-splicing remain
unclear. The alternative splicing factor Quaking has been
implicated in circRNA regulation, as it has been reported to
alter circRNA expression during the epithelial-mesenchymal
transition, a critical process in cancer metastasis (13). CircRNA
formation is also likely associated with H3K79me2 histone
modifications (14) that have been shown to regulate co-
transcriptional alternative splicing (15).

Back-spliced genes, also called host genes, are often involved in
the correlation analysis with circRNA to investigate transcription
2

and back-splicing. The ratio between circRNA level and host gene
expression is defined as the junction ratio which is used to evaluate
the back-splicing activity (10). The correlations between circRNA
and host gene expression were largely positive for the oncogenes
of prostate cancer (8). A negative correlation has been observed
between circSMARCA5 and SWI/SNF-related matrix-associated
actin-dependent regulator of chromatin subfamily A member
(SMARCA5) in breast cancer tissues and breast cancer cell lines,
which indicated the transcriptional pausing of SMARCA5 induced
by circSMARCA5 (16).

Despite the growing body of data in circRNA research, the
dysregulations of circRNAs in cancer and the principle of back-
splicing remain elusive. Most studies on circRNAs in cancer have
not addressed these issues but rather focused on a specific cancer
type and para-cancer tissues. They failed to study circRNAs from
a pan-cancer view, although the circRNAs related to the
common dysregulations in oncogenesis may reveal the
principles of circRNA dysregulations in cancer and have
higher robustness as therapeutic targets and cancer biomarkers
(17). It was ignored that circRNAs are expressed by diverse
normal tissues in vivo and secreted into plasma exosomes. These
constitute the pan-normal tissue-enriched circRNAs which
should be excluded from exosomal biomarker candidates.

To this end, we performed a comparative analysis to determine
the circRNA landscape in pan-cancer and pan-normal tissues and
identified pan-cancer tissue-enriched and pan-normal tissue-
enriched circRNAs. We examined the expression of pan-cancer
tissue-enriched and pan-normal tissue-enriched circRNAs in
plasma exosomes from patients with cancer (HCC, CRC,
PAAD) and healthy controls. We also studied the relation
between circRNAs and cancer mutations, host gene
transcription, and tumor microenvironment landscape.
Following the conceptual biological process of circRNA
biogenesis and secretion, our study successfully integrated the
big data of public cancer circRNA profiles (Figure 1A).
METHODS

CSCD Pan-Cancer and
Pan-Normal circRNA Profiles
We downloaded circRNA datasets from the highly cited CSCD
database (7) (http://gb.whu.edu.cn/CSCD/#). We reorganized
the original data format of cancer-specific, normal-specific, and
common circRNA counts into the circRNA profiles of individual
samples. We selected the circRNA profiles predicted by the
CIRCexplorer (18) circRNA prediction algorithm against the
GRch38 human reference genome. We removed circRNAs of
counts <2 and samples harboring total circRNA counts <10.
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After removing samples with ambiguous information regarding
tissue types, 265 pan-cancer and 319 pan-normal tissues were
included (Additional file Table S1).

The circRNA nomenclature describes the chromosome, two
back-splicing sites, and strandness, such as “chr1_224
952669_224968874_+.”
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ExoRbase: Plasma Exosome
circRNA Datasets
We downloaded the raw RNA sequencing data of plasma
exosomes collected by exoRbase (11) (http://www.exorbase.org/)
from the Sequence Read Archive database (https://www.ncbi.nlm.
nih.gov/sra/). All HCC, PAAD, CRC patients, and healthy
A B

D

E

C

FIGURE 1 | Characteristics of circRNA landscape in pan-cancer and pan-normal tissues provided by CSCD database. (A) Figure abstract and flow chart of this
study.(B) Pan-cancer and pan-normal samples provided by the CSCD database, and classified by cancer types and tissue types. (C) Abundance of circRNAs in
each pan-cancer and pan-normal tissue sample. (D). Sparsity of circRNA profiles in pan-cancer and pan-normal tissue samples. (E) t-SNE embedding of circRNA
profiles in 584 tissue samples, after principal component analysis. The top 10%, top 10%–20%, and top 20%–30% of stably expressed circRNAs, and the others
were analyzed respectively. Red: pan-cancer tissues; blue: pan-normal tissues. Rainbow: tissue types.
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controls were included. We used the CIRCexplorer (18) circRNA
prediction algorithm and GRch38 human reference genome to
analyze the raw RNA sequencing data for circRNA profiles,
removing any circRNAs of counts <2.

MiOncoCirc: Pan-Cancer and Pan-Normal
Gene Expression and circRNA Profiles
We downloaded circRNA datasets from the MiOncoCirc
database (8) (https://mioncocirc.github.io/). We reorganized
the original data format into the circRNA profiles of individual
samples. The circRNA profiles in the MiOncoCirc database were
predicted by the CIRCexplorer (18) circRNA prediction
algorithm against the GRch38 human reference genome. In
total, the circRNA profiles of 876 pan-cancer and 74 pan-
normal tissues were included (Additional file Table S3).
Among these samples, the gene expression profile of 325 pan-
cancer and 20 pan-normal tissues were also provided.

We included the following cancer types: multiple myeloma
(MM), colon adenocarcinoma (COAD) prostate adenocarcinoma
(PRAD), bladder urothelial carcinoma (BLCA), breast invasive
carcinoma (BRCA), skin cutaneous melanoma (SKCM),
pancreatic adenocarcinoma (PAAD), kidney renal clear cell
carcinoma (KIRC), esophageal carcinoma (ESCA), lung squamous
cell carcinoma (LUSC), liver hepatocellular carcinoma (LIHC),
ovarian serous cystadenocarcinoma (OV), and thyroid carcinoma
(THCA). We also included the normal controls (NORM).

Gene Functional Enrichment
Metascape (19) (http://metascape.org/) is an online tool useful
for functional enrichment analysis. We chose the Gene
Prioritization by Evidence Counting algorithm and selected the
Reactome and Gene Ontology databases. The parameters for
pathway and process enrichment were defined as follows: min
overlap = 3, p-value (accumulative hypergeometric p-values)
cutoff = 0.01, and min enrichments = 1.5.

LASSO Regularization Analysis
We used the R package “glmnet” (20) to perform the least
absolute shrinkage and selection operator (LASSO)
regularization analysis, which is a type of machine learning
model. For the training set, we randomly selected 70% of pan-
cancer and pan-normal tissue samples, with the other 30%
comprising a validation set. For LASSO regularization analysis,
50% of the training set was randomly sampled, and LASSO
regression was applied for 50 repetitions. Five-fold cross-
validation and Akaike information criterion (AIC) analyses
were performed to estimate the expected generalization error
and the selected optimal value of the “1-se” lambda parameter.
An adaptive general linear model to select pan-normal tissue-
enriched circRNAs was constructed, with the random seeds
being set to 42 to ensure the reproducibility of the results.

Weighted Gene Co-Expression
Network Analysis
We used the R package “WGCNA” (21) to perform the co-
expression analysis of circRNAs and identify circRNA co-
Frontiers in Oncology | www.frontiersin.org 4
expression modules that were positively correlated with pan-
cancer tissues. The parameters were selected as follows (a): For
the top 10% of stably expressed circRNAs: power = 4, max block
size = 21,249, min module size = 5, reassign threshold = 0, merge
cut height = 0.25, type of correlation = Pearson (b); For the top
10%–20% of stably expressed circRNAs: power = 4, max block
size = 23,709, min module size = 5, reassign threshold = 0, merge
cut height = 0.25, type of correlation = Pearson (c); For the top
20%–30% of stably expressed circRNAs: power = 6, max block
size = 20,768, min module size = 5, reassign threshold = 0, merge
cut height = 0.25, type of correlation = Pearson.

Support Vector Machine
We used the R package “caret” and “e1071” (20) to construct a
support vector machine, which is a type of machine learning
model. For the training set, we randomly selected 70% of pan-
cancer and pan-normal tissue samples, with the other 30%
comprising a validation set. We used the training set to train a
support vector machine model to perform the binary
classification of pan-cancer and pan-normal tissues, and we
used the validation set (which was not used for feature
selection in the LASSO regularization analysis or support
vector machine training) to evaluate the predictive
performance of the model. During model training, the
performance was improved using the support vector machine
tuning function which optimally determined the “gamma” and
“cost” parameters by five-fold cross-validation. The performance
was then evaluated quantitatively and represented by a receiver
operating characteristics curve, which reflected the accuracy of
the circRNAs involved in the model to classify pan-cancer and
pan-normal tissues. The random seeds were set to 42 to ensure
the reproducibility of the results.

IntOGen: Cancer Mutation Database
IntOGen (22) (https://intogen.org/) database is a compendium
of mutational cancer drivers. We used IntOGen to search for
potential cancer-associated mutations at the two splice sites of
cancer-specific, pan-cancer tissue-enriched, and pan-normal
tissue-enriched circRNAs. The human reference genome used
for this analysis was GRch38.

The cancer mutation nomenclature describes the genomic
position and nucleotide variant, such as “chr1:224952669:G>A”.

xCell: Cell Types Enrichment Analysis
xCell (23) (https://xcell.ucsf.edu/) is a method learned from
thousands of pure cell types from various sources, which
performs cell type enrichment analysis based on gene
expression in 64 immune and stromal cell types. We used
xCell to infer the abundance of 64 cell types from the gene
expression profile of cancer and normal tissues provided
by MiOncoCirc.
Statistical Analysis
We used R software (Version 3.6.0) algorithms to conduct basic
visualization and statistical analysis, including density, violin, bar,
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and line plots, Venn diagrams, heatmaps, t-distributed stochastic
neighbor embedding (t-SNE), and principal component analysis
(PCA). The Session Info of R software can be found in the
Supplementary Material and the GitHub repository.
RESULTS

CircRNAs Are Less Abundant and Less
Stably Expressed in Pan-Cancer Tissues
Compared With the Pan-Normal Tissues
In total, we used 265 pan-cancer tissue samples across 15
different tissue types and 319 pan-normal tissue samples from
38 anatomical sites, provided by the CSCD database (7)
(Figure 1B and Additional File Table S1). The abundance of
circRNAs in pan-cancer tissues was significantly lower than that
in the pan-normal tissues, and the latter showed a greater range
of expression (Figure 1C). Most pan-cancer tissues harbored
extremely low circRNA levels, whereas some pan-normal tissue
expressed very high circRNA levels. The number of circRNA
types did not increase with the increase in the total counts of
circRNAs (Additional File Figure S1A), suggesting that the
nature of tumorigenesis, rather than the sequencing depth, was
the underlying cause.

Most circRNAs were expressed at low levels in the analyzed
tissues. Of the combined samples (584 in total), the top 10% of
stably expressed circRNAs occurred in ≥20 samples, top 20% in ≥7
samples, top 30% in ≥4 samples, and top 40% in ≥2 samples.
Approximately 50% of circRNAs occurred in only one of the 584
samples. This sparsity of circRNA expression was more prominent
in pan-cancer tissues than in pan-normal tissues (Figure 1D).

Based on the hypothesis that more commonly expressed
circRNAs have a higher potential to serve as biomarkers, a total
of 210,784 circRNAs were divided into four groups: the top 10%,
top 10%–20%, and top 20%–30% stably expressed and other less
stably expressed circRNAs. t-SNE embedding of the four groups of
top stably expressed circRNA profiles demonstrated that samples
from the same tissue type tended to be neighbors. t-SNE embedding
of the top 10% stably expressed circRNAs showed the most distinct
separation of the different sample types, regardless of whether PCA
was performed (Figure 1E and Additional File Figure S1B). These
results support previous observations that circRNA expression
exhibits high tissue type-specificity (10). Therefore, downstream
analyses were employed separately for the different expression
groups (top 10%, 10%–20%, and 20%–30% of stably
expressed circRNAs).

Pan-Cancer and Pan-Normal Tissues
Share a Large Proportion of Top Actively
Back-Spliced Genes and Show Differences
in Functional Enrichment
Firstly, we briefly revisited the concept of cancer-specific
circRNAs, which indicates the circRNAs observed exclusively
in pan-cancer tissues, as defined by the CSCD database. About
97.65% of circRNA host genes observed in the pan-cancer tissues
were also detected in pan-normal tissues (Figure 2A). A total of
Frontiers in Oncology | www.frontiersin.org 5
82.16% circRNAs present in pan-cancer tissues were also
observed in pan-normal tissues (Figure 2B). Most of the
11,343 cancer-specific circRNAs were not stably expressed, and
only 74 circRNAs were stably expressed in ≥4 tissues (Figure 2C
and Additional file Table S2). Interestingly, the host genes of
these 74 circRNAs displayed functional enrichment in myeloid
cell differentiation, regulation of lymphocyte apoptotic process,
and growth regulation, which are likely related to
oncogenesis (Figure 2D).

We also found that some genes were more actively back-
spliced, thereby serving as host genes of a greater number of
differentially expressed circRNAs. The top 30 actively back-spliced
host genes in pan-cancer (Figure 2E) and pan-normal tissues
showed prominent overlap (Figure 2F), despite the ranking
difference. Dynein axonemal heavy chain 14 (DNAH14) was the
third most actively back-spliced gene exclusive in pan-cancer
tissues. Titin (TTN) was the top actively back-spliced gene
exclusive in pan-normal tissues. TTN was recently reported to
serve as a host gene for regulatory circRNAs with important roles
in the splicing of muscle genes in the human heart (24). Although
functional enrichment analysis of the top 30 highly spliced host
genes showed prominent overlap, those in pan-cancer tissues were
enriched in the ubiquitin-dependent protein catabolic process, cell
cycle, and negative regulation of the catabolic process. In contrast,
those in pan-normal tissues were enriched in “MET activates
PTK2 signaling”, “response to muscle stretch”, “heart
development”, “cell-matrix adhesion”, and “cellular response to
organonitrogen compounds” (Figure 2G). The overlap between
the top actively back-spliced host genes in pan-cancer and
pan-normal tissues increased steadily as the ranking quantile
increased, whereas the least actively back-spliced host genes
(ranking quantile <0.3) also showed significantly increased
overlap (Figure 2H).
Pan-Normal Tissue-Enriched circRNAs
Are Associated With Universal
Cellular Functions
Given that cancer-specific circRNAs were not likely a good
cancer biomarker, we aimed to screen for circRNAs with the
highest ability to distinguish the pan-cancer and pan-normal
tissues, which were the candidates for plasma exosomal
cancer biomarker.

Pan-normal tissue-enriched circRNAs were selected by LASSO
regularization analysis, from the top 10%, 10%–20%, and 20%–30%
stably expressed circRNAs (Additional files Figures S2A, B). We
selected the 14 pan-normal tissue-enriched circRNAs among the
top 10% of stably expressed circRNAs (Figure 3A) that exhibited
the strongest ability to classify pan-cancer and pan-normal tissues
(Figure 3B). The pan-normal enriched circRNAs were universally
and stably expressed in the pan-normal tissues, while they were
almost not observed in the pan-cancer tissues. These pan-normal
tissue-enriched circRNAs were derived from protein-coding host
genes (Table 1), which were enriched in universal cellular functions,
including endosomal transport and the phosphate metabolic
process (Figure 3C).
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FIGURE 2 | Cancer-specific circRNAs and host genes, and top actively back-spliced host genes. (A) Venn diagram showing the overlap between the host genes of
circRNAs in pan-cancer and pan-normal tissues. (B) Venn diagram showing the overlap between circRNA profiles of pan-cancer and pan-normal tissues. (C) Cancer-
specific circRNAs harbored by different counts of samples. (D) Functional enrichment of the host genes of the stably expressed cancer-specific circRNAs. (E) Top 30
actively back-spliced host genes in pan-cancer tissues. Proportion of total circRNA types related to the same host gene represents the back-splicing activity. (F) Top 30
actively back-spliced host genes in pan-normal tissues. (G) Functional enrichment of the top 30 actively back-spliced host genes in the pan-cancer and pan-normal
tissues. (H) Overlap between the top actively back-spliced host genes in pan-cancer and pan-normal tissues.
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A B

C

FIGURE 3 | Pan-normal tissue-enriched circRNAs. (A) Heatmap illustrating the expression of pan-normal tissue-enriched circRNAs selected by LASSO regularization
analysis among the top 10%, top 10%–20%, and top 20%–30% stably expressed circRNAs. Turquoise: top 10%; yellow: top 10%–20%; gray: top 20%–30%. Red:
pan-cancer tissues; blue: pan-normal tissues; rainbow: tissue types. (B) Receiver operating characteristic curve showing the sensitivity of pan-normal tissue-enriched
circRNAs to classify pan-cancer and pan-normal tissues via the support vector machine. The top 10%, top 10%–20%, and top 20%–30% of stably expressed circRNAs
were separately analyzed. Blue: training set; red: validation set. (C) Functional enrichment of the host genes of pan-normal tissue-enriched circRNAs among the top 10%
of stably expressed circRNAs.
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Pan-Cancer Tissue-Enriched circRNAs
Are Predominantly Back-Spliced
From Oncogenes
LASSO regularization analysis was not adequate to identify pan-
cancer tissue-enriched circRNAs potentially due to their low
abundance and sparsity. Therefore, we performed co-expression
analysis to identify pan-cancer tissue-enriched circRNAs. Co-
expression modules positively correlated with cancer were the
firebrick, orange-red, and salmonmodules in the top 10% of stably
expressed circRNA group; white-smoke, sienna, and dark-olive-
green modules in the top 10%–20% of stably expressed circRNA
group; and coral and deep-pink modules in the top 20%–30% of
stably expressed circRNA group (Additional Files Figures S3A,
B). The enrichment of these pan-cancer tissue-enriched circRNAs
in cancer tissues was observed, although with variations between
different cancer types. They were most stably elevated in HCC and
T-cell acute lymphoblastic leukemia bone marrow, whereas they
were unstably expressed in pancreatic and kidney cancers
(Figure 4A). Similar to pan-normal tissue-enriched circRNAs,
pan-cancer tissue-enriched circRNAs selected from the top
10% stably expressed circRNAs showed the strongest ability
to distinguish pan-cancer tissues from pan-normal tissues
(Figure 4B and Additional File Figure S4A). The 22 pan-cancer
tissues-enriched circRNAs from the top 10% stably expressed
circRNAs were further selected by LASSO regularization analysis
(Figure 4C andAdditional Files Figures S4B,C), amongwhich 18
circRNAs were most pan-cancer tissues-enriched and were
derived from protein-coding host genes (Table 2). Interestingly,
the host genes of pan-cancer tissue-enriched circRNAs and top
10% stably expressed circRNAs were most significantly enriched
in “oncogene-induced senescence” which implicated the
tendency of oncogenes to be circRNA host genes in cancer
tissues (Figure 4D).

Increased Levels of Pan-Cancer Tissue-
Enriched circRNAs Related to Cancer
Mutations Are Present in Plasma
Exosomes From Patients With Cancer
Next, we investigated pan-cancer tissue-enriched and pan-
normal tissue-enriched circRNAs in plasma exosomes by
Frontiers in Oncology | www.frontiersin.org 8
analyzing al l the healthy control (HC), pancreatic
adenocarcinoma (PAAD), colorectal cancer (CRC), and
hepatocellular carcinoma (HCC) datasets collected by the
exoRBase database. The diversity of circRNA profiles in
plasma exosomes from CRC and HCC patients was lower than
those from PAAD and NP (Figure 5A). Furthermore, circRNAs
were less abundant in the plasma exosome from CRC and HCC
patients (Figure 5B). The sparsity of circRNA profiles was also
observed in plasma exosomes but was different from the higher
sparsity of circRNA expression in pan-cancer tissues
(Figure 1D); the circRNA profiles in plasma exosomes from
cancer patients were more stable (Figure 5C). These differences
in plasma exosomal circRNA profiles among cancer types have
not been previously reported.

We found that the abundance of cancer-specific, pan-cancer
tissue-enriched and pan-normal tissue-enriched circRNAs was
different in plasma exosomes. Pan-normal tissue-enriched
circRNAs were the most abundant, while cancer-specific
circRNAs were the least abundant, and pan-cancer tissue-
enriched circRNAs were intermediate (Figure 5D). This
observation supported that cancer-specific circRNAs were not
a good candidate for plasma exosomes and that pan-normal
tissue-enriched circRNAs were universally expressed and
secreted by normal tissues.

Thereafter, we studied the differential expression of pan-
cancer tissue-enriched and pan-normal tissue-enriched
circRNAs in the plasma exosomes from healthy controls and
patients with PAAD, CRC, and HCC. Specifically, the circRNA
chr1_224952669_224968874_+ related to a splice acceptor
variant of DNAH14 (chr1:224952669:G>A) was a pan-cancer
tissue-enriched circRNA significantly elevated in plasma
exosomes from CRC and HCC patients. Related to the same
cancer mutation, the circRNA chr1_224952669_224974153_+
was highly expressed in the plasma exosomes of both healthy
controls and cancer patients (Figure 5E). chr2:45546731: C>A
was a splice donor variant of the S1 RNA binding domain 1
(SRBD1), and the circRNA chr2_45546731_45553730_- was
highly expressed in the plasma exosomes from PAAD.
chr10_110964124_110965061_+ was elevated in the plasma
exosomes from CRC, related to chr10:110964124:G>- that was
a splice acceptor variant of SHOC2 leucine-rich repeat scaffold
protein (SHOC2) (Figure 5F). In contrast, no splice donor
variants or splice acceptor variants were related to pan-normal
tissue-enriched circRNAs, despite a splice region variant
of LIF receptor subunit alpha (LIFR) (chr5:38530666:C>G)
be ing re l a t ed to the pan-normal t i s sue -enr i ched
chr5:38523418_38530666_- (Figure 5G).

Expression of Pan-Cancer Tissue-
Enriched circRNAs Is Increasingly
Transcription-Driven in Cancer Tissues
and Correlated With Tumor
Microenvironment Landscape
We characterized the potential functions of pan-cancer tissue-
enriched circRNA chr1_224952669_224968874_+ by analyzing
the circRNA profiles and gene expression profiles provided by the
TABLE 1 | Pan-normal tissue-enriched circRNAs derived from protein-coding genes.

circRNA Host gene name (Protein-coding)

chr1_155438326_155459898_- ASH1L
chr1_1804418_1817875_- GNB1
chr10_1072115_1096246_+ WDR37
chr11_36227084_36227430_+ LDLRAD3
chr12_123498543_123499536_- RILPL1
chr14_24266429_24268619_- RABGGTA
chr16_11020192_11126146_+ CLEC16A
chr17_31940285_31940486_+ SUZ12
chr3_114350273_114351878_- ZBTB20
chr3_172247532_172251541_+ FNDC3B
chr4_40934455_40945070_- APBB2
chr5_38523418_38530666_- LIFR
chr6_138943512_138944622_- REPS1
chr7_98190727_98194572_+ LMTK2
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FIGURE 4 | Pan-cancer tissue-enriched circRNAs. (A) Heatmap illustrating the expression of pan-cancer tissue-enriched circRNAs identified by co-expression
analysis. Firebrick, orange-red, salmon, white-smoke, sienna, dark-olive-green, coral, and deep-pink represent co-expression modules. Red: pan-cancer tissues;
blue: pan-normal tissues; rainbow: tissue types. (B) Receiver operating characteristic curve showing the sensitivity of pan-cancer tissue-enriched circRNAs to classify
pan-cancer and pan-normal tissues via the support vector machine. Different circRNA co-expression modules were analyzed. Blue: training set; red: validation set.
(C) Receiver operating characteristic curve showing the sensitivity of pan-cancer tissue-enriched circRNAs to classify pan-cancer and pan-normal tissues via the
support vector machine. These pan-cancer tissue-enriched circRNAs were selected from the firebrick, orange-red, and salmon co-expression modules. Blue: training
set; red: validation set. (D) Functional enrichment of the host genes of pan-cancer tissue-enriched circRNAs among the top 10% stably expressed circRNAs, which
are the firebrick, orange-red, and salmon co-expression modules.
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MiOncoCirc database (8). Altogether, 879 pan-cancer and 77 pan-
normal tissues from the MiOncoCirc database were included
(Figure 6A). We observed that chr1_224952669_224968874_+
was elevated in most types of pan-cancer tissues in the CSCD and
MiOncoCirc database (Figures 6B, C).

chr1_224952669_224968874_+ was more transcription-
driven in the pan-cancer tissue than in the pan-normal tissues.
chr1_224952669_224968874_+ was 2- to 4-fold elevated in pan-
cancer tissues, while the expression level of DNAH14 was similar
in pan-cancer and pan-normal tissues. Interestingly,
chr1_224952669_224968874_+ levels were positively correlated
with DNAH14 expression in the pan-cancer tissues but not in the
pan-normal tissues (Figure 6D).

This altered host gene correlation was observed in the other
pan-cancer tissue-enriched circRNAs but not in pan-normal
tissue-enriched circRNAs. The correlation between pan-cancer
tissue-enriched circRNAs and their host genes was significantly
higher in the cancer tissue than in the normal tissues but this
change was not observed among pan-normal tissue-enriched
circRNAs. (Figures 6E, F). The average correlation was positive
in cancer tissues, but negative in normal tissues. These data
revealed that pan-cancer tissue-enriched circRNAs were
increasingly transcription-driven in pan-cancer tissues, the
underlying biology of which was potentially the cancer
mutations near the circRNA splicing sites.

Moreover, pan-cancer tissue-enriched and pan-normal
tissue-enriched circRNAs were associated with distinct tumor
microenvironment patterns. The pan-cancer tissues highly
expressing pan-cancer tissue-enriched circRNAs tended to
recruit a greater abundance of NK cells, neutrophils, pro-B
cells, etc. The expression of pan-normal tissue-enriched
circRNAs was positively correlated with a different group of
tumor microenvironment cells, including the CD4+ T-cells,
endothelial cells, and fibroblasts. This result indicated that the
expression level of pan-cancer tissue-enriched and pan-normal
tissue-enriched circRNAs was indicative of different tumor
microenvironment patterns (Figure 6G).
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DISCUSSION

To the best of our knowledge, there has been no machine
learning-based comparative analysis of circRNAs in pan-cancer
and pan-normal tissues or reports regarding the potential
relationship between cancer mutations and circRNAs. Herein,
we identified pan-cancer tissue-enriched and pan-normal tissue-
enriched circRNAs and studied their expression in plasma
exosomes, associated with host gene expression and tumor
microenvironment landscape, to account for the fact that
circRNAs in plasma exosomes are secreted by a wide variety of
pan-normal and pan-cancer tissues (Figure 1A). We chose the
CSCD database in the machine learning-based analysis because it
contained a relatively balanced number of pan-cancer and pan-
normal tissues. We used the datasets in the MiOncoCirc database
to validate pan-cancer tissue-enriched circRNAs and used the
corresponding gene expression profile for integrative analysis.
We used the plasma exosomal RNA sequencing profile from
CRC, PAAD, and HCC patients, which were collected from the
exoRbase database.

Recently, several studies have investigated circRNAs from a
pan-cancer view but implemented different methods. Based on a
circRNA-miRNA-mRNA network in pan-cancer, Chen et al.
discovered that the overexpression of hsa_circ_0004639 and
down-regulation of hsa_circ_0008310 could decrease the
malignancy of cancer cells which were supported by
experimental evidence (25). Analyses of the pan-cancer dataset
from the MiOncoCirc database associated CDR1as with
angiogenesis, extracellular matrix organization, integrin
binding, and collagen binding, as well as the composition of
immune and stromal cells in the tumor microenvironment (26).
Different from these studies, we innovatively used machine
learning-based methods to screen for pan-cancer tissue-
enriched and pan-normal tissue-enriched circRNAs and
further investigated their expression in plasma exosomes from
cancer patients. Our research is less dependent on prior
knowledge compared with previous studies.

First, we revisited the concept of cancer-specific circRNAs
(circRNAs expressed in pan-cancer tissues, but not in pan-
normal tissues), as proposed by the CSCD database (7).
Overall, “cancer-specific” was not an ideal criterion for
screening circRNA cancer biomarkers. Most cancer-specific
circRNAs were expressed very unstably in pan-cancer tissues
(Figure 2C) and were at very low levels in plasma exosomes
(Figure 5D). Pan-cancer tissue-enriched circRNAs were more
stably expressed in cancer tissues, and their host genes were
enriched in the “oncogene-induced senescence” (Figure 4D).
Oncogene-induced senescence is a cellular system responsive to
oncogenic signaling, which is reported to be a “double-edged
sword” that can either induce or inhibit oncogenesis (27). Pan-
normal tissue-enriched circRNAs were universally and stably
expressed in various pan-normal tissues but rarely expressed in
the pan-cancer tissues, suggesting that these circRNAs were lost
during tissue transition from normal to cancerous.

The abundance of circRNAs was less in pan-cancer than in pan-
normal tissues (Figure 1C). The total number of circRNA types did
not elevate with increasing total counts of circRNAs, suggesting
TABLE 2 | Pan-cancer tissue-enriched circRNAs derived from protein-coding genes.

circRNA Host gene name (Protein-coding)

chr1_224952669_224968874_+ DNAH14
chr1_224952669_224974153_+ DNAH14
chr1_225231072_225266769_+ DNAH14
chr10_110964124_110965061_+ SHOC2
chr10_42631928_42636972_- ZNF33B
chr2_45546731_45553730_- SRBD1
chr2_55025085_55028220_- RTN4
chr20_13483226_13587370_- TASP1
chr20_13559007_13580981_- TASP1
chr20_13559007_13587370_- TASP1
chr20_13569506_13587370_- TASP1
chr4_118105017_118114960_+ NDST3
chr4_177353307_177360677_+ NEIL3
chr5_109781395_109789527_+ MAN2A1
chr5_36207169_36227565_- NADK2
chr7_116110707_116112038_- TFEC
chr8_96879797_96880005_+ CPQ
chrX_6150994_6151771_- NLGN4X
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that the sequencing depth was not the reason for this difference
(Figure S1A). Since circRNAs are relatively long-lived RNA
molecules, the rapid proliferation of cancer cells may lead to a
decreased abundance of circRNAs, as observed in colorectal and
ovarian cancer (28). Furthermore, the changes in the level of
splicing factors involved in circRNA biogenesis may contribute
Frontiers in Oncology | www.frontiersin.org 11
to a decreased level of circRNAs (29). Unlike the tissues, the
abundance of circRNAs in plasma exosomes was higher in the
healthy controls and patients with PAAD but lower in the patients
with CRC and HCC (Figure 5B). The possibly related evidence is
that pancreatic adenocarcinoma is a tumor with a relatively low
blood supply, which hinders the secretion of exosomes harboring
A B

D

E F

G

C

FIGURE 5 | Expression of pan-cancer tissue-enriched and pan-normal tissue-enriched circRNAs in plasma exosomes based on exoRbase data. (A) Principle
component analysis of plasma exosomal circRNA profiles of healthy controls (HC), hepatocellular carcinoma patients (HCC), colorectal cancer patients (CRC), and
pancreatic adenocarcinoma patients (PAAD). (B) Abundance of circRNAs in plasma exosomes from HC, HCC, CRC, and PAAD. (C) Sparsity of circRNA profiles in
plasma exosomes from HC, HCC, CRC, and PAAD. (D) Abundance of cancer tissue-specific circRNAs, pan-cancer tissue-enriched circRNAs, and pan-normal
tissue-enriched circRNAs in HC, HCC, CRC, and PAAD. (E) Expression of chr1:224952669:G>A (DNAH14)-related circRNAs in plasma exosomes from HC, HCC,
CRC, and PAAD. (F) Expression of other cancer mutation-related pan-cancer tissue-enriched circRNAs in plasma exosomes from HC, HCC, CRC, and PAAD.
(G) Expression of pan-normal tissue-enriched circRNAs in plasma exosomes from HC, HCC, CRC, and PAAD.
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FIGURE 6 | Functional association studies of pan-cancer tissue-enriched circRNAs using MiOncoCirc data. (A) Pan-cancer and pan-normal samples provided by
the MiOncoCirc database including multiple myeloma (MM), colon adenocarcinoma (COAD) prostate adenocarcinoma (PRAD), bladder urothelial carcinoma (BLCA),
breast invasive carcinoma (BRCA), skin cutaneous melanoma (SKCM), pancreatic adenocarcinoma (PAAD), kidney renal clear cell carcinoma (KIRC), esophageal
carcinoma (ESCA), lung squamous cell carcinoma (LUSC), liver hepatocellular carcinoma (LIHC), ovarian serous cystadenocarcinoma (OV) and thyroid carcinoma
(THCA), together with normal controls (NORM).d (B) Expression of chr1_224952669_224968874_+ in the samples collected by the CSCD database. (C) Expression
of chr1_224952669_224968874_+ in the samples collected by the MiOncoCirc database. (D) Correlation between chr1_224952669_224968874_+ level and
DNAH14 expression in pan-cancer and pan-normal tissues. (E) Distribution of paired correlation scores between pan-cancer tissue-enriched or pan-normal tissue-
enriched circRNAs and host genes in pan-cancer tissues and pan-normal tissues; (F) Alteration of paired correlation scores between pan-cancer tissue-enriched or
pan-normal tissue-enriched circRNAs and host genes during oncogenesis; (G) Correlation between pan-cancer tissue-enriched circRNAs and the abundance of
tumor microenvironment cells in pan-cancer tissues. Red: high Spearman correlation score; blue: low Spearman correlation score.
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circRNAs into the plasma. Consequently, the plasma exosome of
patients with PAAD was more like that of healthy controls.

We highlighted the potential role of DNAH14 as an important
host gene of circRNAs in cancer. DNAH14 was the third-highest
back-spliced host gene in pan-cancer tissues but was not among the
top back-spliced host genes in the pan-normal tissues, although the
overlap between the top back-spliced genes in pan-cancer and pan-
normal tissues was prominent (Figures 2E, F). The pan-cancer
t i s sue-enriched chr1_224952669_224968874_+ and
chr1_224952669_224974153_+ were related to the splice acceptor
variant of DNAH14 (chr1:224952669:G>A). Particularly,
chr1_224952669_224968874_+ was elevated in pan-cancer tissues
compared with the pan-normal tissues, supported by the CSCD and
MiOncoCirc databases (Figures 6B, C). It was significantly elevated
in plasma exosomes from patients with HCC and CRC, which
indicated its potential role as a plasma cancer biomarker.
Although DNAH14 was not upregulated in cancer tissues,
chr1_224952669_224968874_+ was elevated and increasingly
transcription-driven (Figure 6D). Here, we hypothesized that the
splice acceptor variant chr1:224952669:G>A (DNAH14) is relatively
frequent in cancer tissues and cancer-specific circRNAs. It is a
potential driving force facilitating the biogenesis of circRNA
chr1_224952669_224968874_+ in cancer tissues.

DNAH14 encodes a microtubule-associated motor protein
that participates in maintaining the integrity of centrosomes, and
it is often numerically, positionally, or structurally dysregulated
in cancer (30). Dynein encoding genes (DNAH family) are
among the most frequently mutated genes in cancer (22). In
recent studies, somatic mutations in DNAH genes have been
associated with a higher chemotherapy response rate in patients
with gastric cancer (31). These findings and the literature
highlight that DNAH14 as a host gene should be further
examined in researches on circRNAs in cancer.

There were several limitations to our study. First, we did not
analyze pan-cancer plasma exosome circRNA profiles, as the
resources of RNA sequencing data of plasma exosomes from
patients with cancer are limited. Second, the cancer mutations
were not inferred from the pan-cancer tissue samples that we
used, as genomic mutation data was not provided by the current
circRNA databases. In future studies, a collection of circRNA
profiles, genomic mutation data, and gene expression profile of
cancer tissues, together with the plasma exosome circRNA
profiles, in a pan-cancer patient cohort is warranted.
Frontiers in Oncology | www.frontiersin.org 13
CONCLUSION

Our machine learning-based analysis of pan-cancer and pan-
normal tissues provides insights into the aberrant landscape and
biogenesis of circRNAs in cancer. Our results highlight the
cancer mutation-related and DNAH14-derived circRNA,
chr1_224952669_224968874_+, as a potential cancer biomarker.
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