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Segmentation of liver tumors from Computerized Tomography (CT) images remains a
challenge due to the natural variation in tumor shape and structure as well as the noise in
CT images. A key assumption is that the performance of liver tumor segmentation
depends on the characteristics of multiple features extracted from multiple filters. In this
paper, we design an enhanced approach based on a two-class (liver, tumor) convolutional
neural network that discriminates tumor as well as liver from CT images. First, the contrast
and intensity values in CT images are adjusted and high frequencies are removed using
Hounsfield units (HU) filtering and standardization. Then, the liver tumor is segmented from
entire images with multiple filter U-net (MFU-net). Finally, a quantitative analysis is carried
out to evaluate the segmentation results using three different methods: boundary-
distance-based metrics, size-based metrics, and overlap-based metrics. The proposed
method is validated on CT images from the 3Dircadb and LiTS dataset. The results
demonstrate that the multiple filters are useful for extracting local and global feature
simultaneously, minimizing the boundary distance errors, and our approach demonstrates
better performance in heterogeneous tumor regions of CT images.

Keywords: liver tumor, CT image, segmentation, multiple filter, convolutional neural network
1 INTRODUCTION

Computerized Tomography (CT) of the abdomen is a diagnostic imaging method that is often used
in clinical practice and to advance research on liver diseases. Among the many liver-related diseases,
hepatocellular carcinoma (HCC) is the most common primary liver cancer. HCC occurs most often
in patients with chronic liver diseases, such as cirrhosis, hepatitis, and liver infection. HCC often
appears as pale masses in the liver which may be unifocal, multifocal, or diffusely infiltrative at the
time of detection. The manifestations of HCC can be divided into massive, infiltrative and nodular.
Each has different radiological features. The massive type is characterized by a large tumor that
occupies almost the entire right or left lobe with an ambiguous or irregular boundary. The diffuse/
infiltrative type consists of multiple diffuse proliferative tumor nodules throughout the liver. The
nodular type is characterized by a small HCC, up to around 2 cm in diameter, and can be divided
into two subtypes: a distinctly nodular type and an indistinctly nodular type. The distinctly nodular
type is represented by a clear nodule with a fibrous capsule and/or fibrous septa in about 50% of
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cases; these are already advanced tumors despite their small size
(1). Meanwhile, an indistinctly nodular tumor appears only
vaguely nodular, with unclear margins. However, most are
detected as hypoechoic or hyperechoic nodular lesions on an
ultrasound exam and can be interpreted as “carcinoma in situ” of
the liver. Currently, indistinct nodular HCCs are the smallest
type of HCC that can be clinically detected. The goals of
evaluating a hepatic nodule on CT images in a patient with
liver cirrhosis include not only identifying the nature of the
lesion but also estimating the hepatic extension of the neoplasia
and any possible localization in extrahepatic sites (2). From
there, a clinician can propose a suitable treatment based on the
exact staging of the disease. Identifying small HCC nodules in a
cirrhotic liver with an irregular parenchymal pattern is not easy.
The level of contrast between the liver and the surrounding area
is low and complex. Liver tumors are varied and complicated in
shape and position and often do not have clear edges. Contrast
factors are commonly known as noise elements in CT images.
Therefore, segmentation of liver tumors is considered a
challenging task.

A clinically trained expert usuallymakes a liver tumor diagnosis
on the basis of many years of experience by manually identifying
liver ROIs on one or more CT slices. However, manual
identification is resource and time intensive for clinical
practitioners and cannot be scaled up for large-scale medical
image data purposes. Therefore, development of an automatic
liver tumor segmentation algorithm is essential.

Table 1 presents a summary of the liver tumor segmentation
methods. Thresholding is the first simple and effective method
that was proposed to automatically separate tumors from liver
and background tissue (3, 19). Then, spatial regularization
methods were developed that extract tumor regions based on
size, shape, surface or spatial information, known as
morphologies (4). In addition, a fuzzy classification-based tool
(6), AdaBoost, was built which trains an algorithm using textural
features (10), and has become the most prominent supervised
classification method. Clustering methods include fuzzy c-means
Frontiers in Oncology | www.frontiersin.org 2
clustering with segmentation refinement using deformable
models (8) and Ek-means (7). Among deep learning methods,
Han, the winner of the first round in the LiTS challenge, proposed
the 2.5D DCNN model, which uses a series of contiguous slices as
inputs and creates a segmentation map that corresponds to the
center slice. The model has 32 layers and uses the long-range
concatenation connections of U-Net (20) in conjunction with the
short-range residual connections of ResNet (21) simultaneously.
H-DenseUNet (18) is a combination of a 2D DenseUNet and a 3D
counterpart. A 2D DenseUNet is used to efficiently extract the
intra-slice features. The 3D counterpart is used to hierarchically
combine the volumetric contexts according to an auto-context
algorithm. A hybrid feature fusion (HFF) layer is then applied to
join the intraslice feature with interslice features. H-DenseUNet is
not an end-to-end model. However, this method achieves state-of-
the-art tumor segmentation results and competitive liver
segmentation performance.

In semantic medical image processing fields, the U-net model
is one of the most popular fully convolutional network models.
The U-net architecture is a pixel-to-pixel fully convolutional
network with a skip connection between the encoder path and
the decoder path. Its greatest advantage comes from the
combination of location information from the downsampling
path and the contextual information from the upsampling path.
This is necessary to produce a good segmentation prediction
based on location and context, combining general information
from all images. However, the standard U-Net architecture
contains only a few layers and, therefore, is not currently deep
enough to address outstanding issues in the medical field.

One of the most promising paths forward involves adding
more layers directly to the network to make a deeper network.
The concept of multiple layers was first introduced in (22) as the
simplest inception model. The main advantage of the inception
module is that it improves the utilization rate of computing
resources by increasing the depth and width of the network while
keeping the computational budget constant (23). Each filter is
presented with specific features or patterns in the original image.
TABLE 1 | Liver tumor segmentation methods.

Author Dataset Methodology

No. of sample Description

(3) 35 Private Thresholding
(4) 10 MICCAI 2008 Adaptive thresholding and morphological processing
(5) 68 MICCAI 2008 Histogram analysis
(6) – MICCAI 2008 Level method with spiral-scanning, supervised fuzzy pixel classification
(7) 21 Private K-mean
(8) 10 LTS08 Implicit surface evolution
(9) 27 Private Texture-based Omni-directional deformable surface model
(10) 16 MICCAI2007 Adaboost
(11) Scale-adaptive supervoxel-based random forest
(12) 78 MICCAI-Sliver07, 3Dircadb1 Convolutional neural network and graph cut
(13) _ MICCAI 2008 Graph-cut and watershed
(14) 10 MICCAI 2008 Entropy based multi-Thresholding
(15) 10 MICCAI 2008 Iterative Bayesian
(16) _ 3Dircadb, JDRD FCNs
(17) 201 LiTS CDNN
(18) 201 LiTS HdenseUnet
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The filter is shifted several times and then applied at different
image positions until the general image has been detailed. In this
way, training efficiency and accuracy are improved.

Inspired by the worksmentioned above but unlike these current
methods, in an effort to develop a deep learning network
appropriate for medical image segmentation tasks, we proposed
an architecture that combines the multiple filter module based on
the U-Net architecture, named MFU-net. Our methods can
adaptively use the features from the multiple filter convolution for
diminishing theboundarydistance errors. Thedetails are as follows:

1. Analyzes the effectiveness of the mean value of each image in
the contrast and gamma enhancement automatically.

2. Based on GoogLeNet, to make the network wider without
causing gradients to vanish, every convolutional layer is
replaced by a multiple filter block with nonuniquely sized
convolutional kernels in each block.

3. Based on the architecture of U-Net, the encoder path and
decoder path are used in a network with skip connections to
transmit feature maps directly from the downsampling
process to the upsampling process. The encoder path is
constructed from Resnet18. The decoder path is proposed
by combining multiple filter blocks together. This contributes
to improve the segmentation performance in the boundary-
distance-based metrics.

Our end-to-end learning can predict liver and tumor
simultaneously. This not only gains the competitive performance
Frontiers in Oncology | www.frontiersin.org 3
of liver segmentation but also contributes to minimizing the
boundary distance error between the predicted and labeled
tumors, which are known to be small and varied in size and shape.
2 MATERIALS AND METHODS

This section provides an explanation of the method used to
segment liver tumors in an end-to-end manner; a schematic
illustration of the pipeline is presented in Figure 1. The liver
tumor segmentation pipeline consists of two main sections:
preprocessing (Hounsfield filtering, standardization) and liver
tumor segmentation. The liver tumor segmentation was designed
using a deep convolutional neural network described on the
right-hand side including the Encoder and Decoder paths.
2.1 Preprocessing
Data preprocessing is the first important step before any deep
learning model can be applied because machine learning and
deep learning algorithms learn from the data, and the learning
output depends on data to solve a particular problem (24, 25).
The entire dataset needs to be normalized and outliers removed.
The processing stage is accomplished through (1).

I 0 = HI + S(I,m,a ,b ,g ), I, I
0 ∈ R512�512 (1)

Functions H and S are defined as (2) and (3).
FIGURE 1 | Proposed phases for automatic liver tumor segmentation.
October 2021 | Volume 11 | Article 697178
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With CT scans, the most common means of calculating some
values relative to the liver is filtering using Hounsfield units
(HUs). It helps to focus concentration on the important aspects
of each segmentation task.

Therefore, with an input CT image, I ∈R512×512, we denote
function H, or Hounsfield, to remove the non-liver-related
organs and tissues.

H = slope� I(x,y) + Intercept (2)

where slope = 0.00390625, Intercept = 0.1 × min(I) since min
(I) < = 0 and Intercept = -min(I) since min(I) > 0.

We recognize that there is extensive heterogeneity in liver and
tumor contrast among slices. As shown in Figure 2, the contrast,
brightness, size, and shape of the liver and liver tumor vary
greatly among CT images. For more detail, Figure 2 illustrates
some examples of the histogram of CT images with
corresponding tumor regions. The pixel value of 0 represents
the background regions. After HU filtering, we can differentiate
between cancerous and noncancerous areas. However, there are
differences between samples in brightness, contrast, and
saturation, leading to harder learning and higher errors. We
also assumed that the mean value of an image influences the
gamma and contrast balance in the whole dataset. As a result, we
process the image for more balance and stay within a more
synchronous range.

Therefore, the next step is standardization. Given an input,
∈R512×512, we define the transform function, S, with some
parameters, a, b, and g. The threshold (selected through
experimentation) was used to balance grammar and contrast
among volumes.

SI,m,a ,b ,g = (a · I(x,y) + b) +
I(x,y)
255

� �g
� 255 (3)

where µ is the mean of the image matrix. The values of a and b
are used to scale the input. The value of g is used to adjust the
contrast or the brightness of the image. All of these parameters
(a, b, and g) are empirically set in our experiments excluding µ.
In particular, the value of a in [1, 2], the value of b in [1, 1.2] and
the value of g in [1.5, 2] of each case. We used the mean value of
the image as the threshold value for applying these a, b, and g
values corresponding with specialized cases.

2.2 Multiple Filter Blocks
This section introduces the multiple filter block (MF block).
Because of the variation in tumor shape and location, the MF
block applies a multi-filter size on the original layer instead of
applying the same filter to one input layer. Our goal is to leverage
the advantages of multiple filters with a filter hierarchy.
Therefore, we take the outputs from the three convolutions
with different filter sizes and concatenate them together to
capture the features of each one. The result is nearly identical
to the output of the Inception-like block described earlier.

The multifilter block is a stack of three convolution layers
with different kernel size: 1 × 1, 3 × 3 and 5 × 5. The first
convolution kernel has a filter size of 1 × 1. We apply this
convolution to reduce the size of the input vector as well as
Frontiers in Oncology | www.frontiersin.org 4
extract local feature. While small kernels extract small complex
features, the large kernel extract simpler features. Therefore, the
next convolutional layer was set to 3 × 3 convolution kernel and
uses a down-sampling size of 2 to obtain the global features. The
last convolutional layer has a kernel size of 5 × 5 and a
downsampling size of 2. The purpose of using this kernel size
is to spread across the image and extract both liver and tumor
features simultaneously.

Each filter learns different features. Therefore, the multi-filter
block is used to deal with the issue by increasing the filter size
instead of iteratively alleviating the image size. The combining
multiple convolution layers is to yield a better result.

Multiple filter block can be performed as in (4).

x 0 = R(x) = max (0, x)

= max (0, F(x,f (1�1) ⊕ F(x,f (3�3)) ⊕ F(x,f (5�5)))

x ∈ Rn�512�512�1

(4)

where R is the Rectified Linear activation function or ReLU,
F is the convolutional layer, f is the filter with various size (1 × 1,
3 × 3, and 5 × 5), x is the input of multiple filter block
(MF block), x' is the output of MF block, and ⊕ represents
concatenation operation.

2.3 Proposed Liver Tumor
Segmentation Method
Inspired by the attention U-Net model, the Inception module, we
proposed a convolutional neural network that integrates multiple
filters into the original U-Net. The proposed Multiple Filter U-
Net architecture, denoted MFU-Net, is demonstrated in the right
side of Figure 1. This model contains the encoder path and the
decoder path. The encoder path likes Restnet18. The decoder
path consists of 10 multiple filter blocks. Between two paths, a
single skip connection is deployed.
3 RESULTS

3.1 Evaluation Metrics
The evaluation metrics for segmentation are inconsistent, and
they tend to be sensitive to one or more different types of
segmentation errors such as size, position, and shape of an
object (26). None of the metrics can cover all of these types of
errors. Therefore, we evaluated the liver tumor segmentation
quality of our algorithm based on boundary-distance-based
metrics, size-based metrics, and overlap-based metrics. Let A
be the ground-truth volume and B the auto-segmentation
volume. Two set of surface voxels of A and B are denoted by S
(A) and S(B), respectively.

3.1.1 Boundary-Distance-Based Metrics
We are interested in three metrics belonging to boundary-
distance-based methods which relied on the definition of
surface distance and quantify the dissimilarity between the
surfaces of the predicted area and the ground-truth.
October 2021 | Volume 11 | Article 697178
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FIGURE 2 | Example of CT images and tumor regions with their histogram of gray-scale images, respectively.
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3.1.1.1 The Average Symmetric Surface Distance
It is then given by (5), in which the value 0 represents for a
perfect segmentation.

ASSD =
SSA∈S(A)d(sA, S(B)) + SSB∈S(B)d(sB, S(A))

S(A)j j + S(B)j j (5)

where d(SA, S(B)) is the shortest distance of an arbitrary voxel SA
to S(B).

3.1.1.2 The Maximum Symmetric Surface Distance
The maximum symmetric Surface Distance (MSSD) is also
known as the symmetric Hausdorff distance. MSSD is based on
maximum distance of an arbitrary voxel SA to S(B) instead of the
average distance like average symmetric surface distance (ASSD)
as in (5).

MSSD = max max
SA∈S(A)

d(SA, S(B)), max
SB∈S(B)

d(SB, S(A))

� �
(6)

Following (6), the output is the true maximum error. Hence, it is
sensitive to outliers. However, this value is required for
applications such as surgical planning, where the worst case
error is more important than average errors (27).

3.1.1.3 Root Mean Squared Deviation
As ASSD andMSSD, the root mean squared deviation (RMSD) is
based on surface distance, which is 0 for a perfect segmentation
as in (7). They are given in millimeters. However, the RMSD is
highly correlated with the average distance but has the advantage
that large deviations from the true contour are punished
stronger.

RMSD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
SN
si=1

s 2
i

r
(7)

3.1.2 Size-Based Metrics
Size-based metrics found the difference in size between the
segmentation and the ground-truth. The best achievable results
can be obtained even when the segmentation and the ground-
truth are disjoint.

3.1.2.1 The Relative Volume Difference
The relative volume difference (RVD), which is an asymmetric
measure, calculates the absolute size differences of the regions, as
a fraction of the size of the reference (8).

RVD =
B − Aj j
Aj j (8)

RVD helps to recognize the method that tends to be over or
under segmentations. A value of 0 for the RVD means both
volumes are identical. In addition, RVD is also used to directly
evaluate the volume metric information which is the single most
important number that provides for applications such as liver
surgery planning.

3.1.3 Overlap-Based Metrics
The family of overlap-based methods is not concerned with the
spatial distribution of voxels or the absolute size of the areas
Frontiers in Oncology | www.frontiersin.org 6
involved but only for the number of correctly classified or
misclassified voxels.

3.1.3.1 Volumetric Overlap Error
The volumetric overlap error (VOE), which is the complement of
the Jaccard index, computes the ratio between intersection and
union of the ground-truth A and prediction B:

VOE = 1 −
A ∩ Bj j
A ∪ Bj j (9)

The value of this measure ranges from 0 to 100 where 0 for
perfect segmentation and 100 for none-overlapping at all.

3.1.3.2 Dice Score
The dice similarity coefficient is measured for each detected
region of interest, as in (10).

DSC =
2 A ∩ Bj j
Aj j + Bj j (10)

3.2 Running Configuration
3.2.1 Datasets
Weconducted experiments on twodatasets from3Dircadb andLiver
Tumor Segmentation (LiTS) dataset. For the 3Dircadb dataset, there
are a total of 22 patients corresponding with 22 volumes of images.
For the List dataset, 201 volumes are getting from the Liver Tumor
Segmentation Challenges. The ground-truths of two datasets were
provided. The 3Dircadb dataset is a subset of the LiTS dataset with
case numbers from 27 to 48. Therefore, using the LiST dataset as the
training data and validation on the 3Dircadb dataset is not allowed.
We trained our model with 109 cases from the LiST dataset after
removing the data from the 3Dircadb dataset and evaluated the
performance on the 3Dircadb dataset and 70 remaining cases of LiST
dataset. Data preprocessing was performed as described in
Preprocessing. Before evaluating the primary performance of our
network, we have randomly divided all images of a total of 109 cases
into 80% for training and 20% for validation to determine the
hyperparameters and avoid overfitting.

3.2.2 Model
The proposed MFU-net was compared with the original U-net,
Attention Unet model. The network settings are presented in
Figure 1. Besides that, we used Adagrad optimizer with a
learning rate of 10-3. All the networks were performed until 50
epochs for convergence with batch size 16. For each run, the best
weight what achieved the best dice score on the validation dataset
were use to evaluate the the performance of these models on the
test dataset.

The evaluation measurements were introduced in section
Evaluation Metrics. The values of RVD, ASSD, MSSD, RMSD,
and VOE are the lower, the more significant. In contrast, higher
dice scores are better.

3.3 Data Preprocessing
In Figure 2, the pixel intensity differs among different slices as
well as various patients. After enhancing the contrast and gamma
based on the mean value of each image, organs appear more
explicit and more homogeneous (Figure 3C) than the original
October 2021 | Volume 11 | Article 697178
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slides (Figure 3A) and the post-Hounsfield-filtered slides
(Figure 3B). These outputs prove that the mean value affects
the contrast and gamma enhancement in each CT slice image.

3.4 Performance Evaluation
In this study, we developed image processing and tumor region
recognition algorithms for CT images of liver HCC. The
algorithms were successfully used to visualize the liver and tumor
regions on CT images in an end-to-end manner. The volume
outcome is the combination of individual slices in the correct
order and coordinates and has the same dimensions and the same
voxel spacing as the input volume. Then the correlation between
predicted volume and ground-truth volume was reported in terms
of six metrics as depicted in Evaluation Metrics.

These charts in Figure 4 depict data about the training curves
of 3Dircard training set to three values: dice score, IOU score,
and loss. Overall, as can be seen from the graph, the MFU-net
learns better than other models. The dice score and IOU score of
MFU-net model were higher than those of other models by more
than 1.15% on each epoch (Figure 4A, B) through training
Frontiers in Oncology | www.frontiersin.org 7
process. Besides that, the loss value was always the lowest in four
compared models (Figure 4C). In addition, integrating the MF
block to traditional U-net and attention U-net improves the dice
score and IOU score, and at the same time reduces the loss values
throughout all the 50 epochs.

Figure 5 depicts the examples comparing the feature maps
from the last layer of MFU-net and original U-net model. There
are three feature maps with a size of (512, 512) corresponding to
background, liver, and tumor regions. The feature map captures
the results of applying the MFU-net and U-net architectures to
the same input (as the raw images shown in Figure 5). We found
that the shape of the livers and their tumor as well as the texture
features of interested objects were clearly visible in the feature
maps from last layer of each architecture. However, these
features are getting better through the MFU-net.

Each class (background, liver, tumor) had a threshold of 0.5
for getting result. The liver and tumor region predicted as the
category with the highest probability. In this analysis, when we
used different abdominal CT images to validate the proposed
approach, we found that it is less sensitive to noise during
A B C

FIGURE 3 | The results after each step in liver tumor preprocessing process. (A) The original slide; (B) the post-Hounsfield-filtered slide; (C) the poststandardized slide.
October 2021 | Volume 11 | Article 697178
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attempted extraction of liver tumors. Some example results are
shown in Figure 6.

Figure 7 gives heatmap information about the results of the
3Dirdcard dataset with four scores: dice score (Figure 7A), IOU
score (Figure 7B), MSSD score (Figure 7C), and ASSD score
(Figure 7D). It is clear that while a higher dice score and IOU
score is better performance, the opposite is true for an MSSD
score and ASSD score. Over 22 volumes, the proposed model
MFU-net predicted better results than other models. It is
noticeable that the predicted score for models without MF
block lagged that of models with MF block.

The performance metrics for LiTS dataset are presented in
Table 2, including boundary-distance-based, size-based, and
overlap-based metric. All compared methods was described in
(28) for liver tumor segmentation results. They all achieved top
rankings for at least one metric as follows: Roth et al. ranked first
according to the ASSD score; Li et al. ranked first according to
Frontiers in Oncology | www.frontiersin.org 8
the MSSD score and dice score; Bi et al. ranked first according to
the RMSD score; MIP_HQU team ranked first according to the
RVD score; Roth et al. and MIP_HQU ranked second according
to the VOE score; and Tian et al. ranked second according to the
dice score. Different from their algorithms, our proposed
method, the MFU-net uses an end-to-end training strategy to
obtain liver and tumor all at once.

Overall, the proposed method MFU-net achieved the best
results on the most of the boundary-distance-based evaluation
metrics. To be more specific, our methods obtained the best
ASSD score (0.864 mm, Table 2), MSSD score (6.035 mm,
Table 2), and RMSD (1.349 mm, Table 2). In the size-based
evaluation metric, our model obtained the aggressive RVD score
(0.066 mm, Table 2). Moreover, in the overlap-based evaluation
metric, the VOE score was also at the highest position (33.50%,
Table 2), while the dice score was competing with any of the
remaining methods (71.90%, Table 2). Consequently, our
A

B

C

FIGURE 4 | Experiments on 3Dircard training set. (A) Training curves of dice score; (B) training curves of IOU score; (C) training curves of loss.
October 2021 | Volume 11 | Article 697178
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algorithm is efficient to train and effective at reducing the overlap
error or distance between the ground-truth and predicted region.

Our method simultaneously recognizes the liver and tumor
region. The predicted tumor performance rose over the
evaluation metrics whereas the liver performance received the
competitive figure with other methods (96% in dice score).

4 DISCUSSION

Liver and tumor segmentation is an essential prerequisite for the
effective therapy of liver disease. However, automatic liver and
tumor segmentation in medical imaging remains a challenging
issue. In recent years, deep learning techniques have brought the
competitive performance to complex medical image analysis
tasks that rely on labeled training datasets.

The proposed method is based on U-net and multiple filters
to find liver and tumor regions simultaneously and accurately.
Different from other existing methods, our method has two
important characteristics regarding the proposed MFU-net.
First, the previous liver tumor segmentation was a two-way
process or cascaded approach (18, 29–33). In other words,
tumor segmentation has been done after liver segmentation
from the abdominal CT scan image. Here, however, liver and
tumor were segmented simultaneously from the abdominal CT
scan images with competitive performance. This reduces the
time and effort needed during the liver tumor segmentation
process. Second, the final segmentation results do not directly
Frontiers in Oncology | www.frontiersin.org 9
depend on any post-preprocessing method such as level set (34),
CRF (35), object-based (36), active contour (29), and so on.

Additionally, the problems that arise in the three-dimensional
imaging segmentation are the complexity of the surface and its
folding as well as the ambiguity of the correct surface topology on
complex voxel sets (37). The region of interest and its expected
boundary can be concealed and are therefore challenging to
segment. This research provides an accurate scheme to alleviate
the surface distance between the ground-truth volume and
autosegmentation volume by considering the effects of multiple
filters compared with a single filter.

To demonstrate its capabilities, we performed experiments to
compare its performance with U-Net, Attention U-net through
visible illustration, quantifying the difference between architectures
using four metrics on the 3Dircadb as shown in Figure 7. We then
performed statistical tests to compare the metrics from the
proposed method and other methods on the LiST dataset
(Table 2). The results show that the proposed method has
significantly improved performance than other methods on most
metrics, especially boundary-distance-based metrics.

5 CONCLUSION

We introduced the method for the liver vs. liver tumor
segmentation that serves as an objective, end-to-end recognition
method. The MFU-net is an architecture that combines the
multiple filter block based on the U-net architecture. The
FIGURE 5 | The feature maps of the last layer extracted from MFU-net and U-net comparing with raw images.
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FIGURE 6 | Liver tumor segmentation results using MFU-net. (A) Raw image; (B) ground truth image; (C) segmented tumor image.
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multiple filter block can be integrated into other deep learning
networks. The results were analyzed on two datasets (3Dircadb
and LiTS) by several measurements to show the improvement of
our proposed method. Multiple filters efficiently learn contextual
Frontiers in Oncology | www.frontiersin.org 11
features of two dependent objects (liver and tumor), minimize the
surface distance errors, and can deal with liver and tumor shape
diversity. Simultaneously, they are less sensitive to contrast and
gamma complexity in CT images. The liver tumor region
A B

DC

FIGURE 7 | Performance on 3Dircadb dataset via four metrics: (A) dice score, (B) Jaccard score, (C) MSSD score, and (D) ASSD score.
TABLE 2 | Comparison between the proposed approach and other liver tumor segmentation methods on the LiTS dataset.

Methods Boundary-distance-based Size-based Overlap-based

ASSD (mm) MSSD (mm) RMSD (mm) RVD (mm) VOE (%) Dice score (%)

MFU-net (ours) 0.864 6.035 1.349 0.066 33.50 71.90
Roth et al. (28) 0.950 6.810 1.600 0.020 34.00 66.00
Li et al. (28) 1.073 6.055 1.562 5.164 35.60 82.90
Bi et al. (28) 1.006 6.742 1.520 3.431 35.60 73.50
MIP_HQU (28) 1.090 7.840 1.800 -0.130 34.00 65.00
Tian et al. (28) 1.189 6.682 1.726 5.921 39.40 79.40
Octob
er 2021 | Volume 11
The bold values are the best (state-of-the-art) values.
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generated by our model can help radiologists locate tumor regions
on CT images swiftly and accurately. The model development
pipeline can be used in other organ and tumor types. In future
work, we would extend this segmentation to other common tumor
types in order to aid better treatment diagnosis.
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