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Glioma is the most common primary central nervous system tumor, accounting for about
half of all intracranial primary tumors. As a non-invasive examination method, MRI has an
extremely important guiding role in the clinical intervention of tumors. However, manually
segmenting brain tumors from MRI requires a lot of time and energy for doctors, which
affects the implementation of follow-up diagnosis and treatment plans. With the
development of deep learning, medical image segmentation is gradually automated.
However, brain tumors are easily confused with strokes and serious imbalances between
classes make brain tumor segmentation one of the most difficult tasks in MRI
segmentation. In order to solve these problems, we propose a deep multi-task learning
framework and integrate a multi-depth fusion module in the framework to accurately
segment brain tumors. In this framework, we have added a distance transform decoder
based on the V-Net, which can make the segmentation contour generated by the mask
decoder more accurate and reduce the generation of rough boundaries. In order to
combine the different tasks of the two decoders, we weighted and added their
corresponding loss functions, where the distance map prediction regularized the mask
prediction. At the same time, the multi-depth fusion module in the encoder can enhance
the ability of the network to extract features. The accuracy of the model will be evaluated
online using the multispectral MRI records of the BraTS 2018, BraTS 2019, and BraTS
2020 datasets. This method obtains high-quality segmentation results, and the average
Dice is as high as 78%. The experimental results show that this model has great potential
in segmenting brain tumors automatically and accurately.

Keywords: automatic segmentation, brain tumor, deep multi-task learning framework, multi-depth fusion module,
magnetic resonance imaging
INTRODUCTION

Glioma is the most common and aggressive brain tumor. It is diffuse and can spread to any part of
the brain, which makes it difficult to detect (1). According to the statistics, the annual incidence of
glioma is about 5 cases per 100,000 people (2, 3). Although gliomas are less common than other fatal
diseases, they are poorly treated and have a higher mortality rate (4). The World Health
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Organization (WTO) divides gliomas into 4 grades, grades 1 and
2 are low-grade gliomas (LGG), and grades 3 and 4 are high-
grade gliomas (HGG), which grade 4 glioma patient survival
time of less than one year (1). Therefore, early diagnosis plays a
vital role.

Magnetic resonance imaging (MRI) is an important method
in medical imaging diagnosis (5). It can visualize interesting
parts of the brain, generate multi-modal images, and provide
more information of the tumor, so it is widely used in clinical
diagnosis, treatment, and surgical planning (6). Generally,
clinicians manually segment brain tumor regions on two-
dimensional MRI slices or planar projections to facilitate the
implementation of the next treatment plan (7). However, this
method of segmentation is laborious and subjective (6). A patient
usually has hundreds of slices, manual segmentation will
consume a lot of time and energy for the doctor. Moreover,
the boundaries of brain tumors are blurred and it is difficult to
distinguish from healthy tissues, which also makes the
segmentation results of experts differ (8, 9). Therefore, it is
urgent to use computer technology to realize automatic
segmentation of medical images. In recent years, with the
development of deep learning, convolution neural networks
(CNN) has been widely used in the field of medical image
segmentation, and CNN has become the main method for its
high efficiency and time-saving. In this paper, brain tumor
segmentation is a multi-category segmentation task, which
often requires a more complex network structure to obtain the
ideal segmentation result. Based on this, we propose a new
network structure to segment brain tumors, called the deep
multi-task learning framework. The contributions of this
article are mainly in the following aspects:

• In this paper, we propose a deep multi-task learning
framework to improve the discontinuity problem of mask
boundary prediction. It adds a distance transform decoder
based on V-Net, which regularizes the mask decoder to
ensure the smoothness of segmentation prediction.

• We also propose the use of linear weighting to combine the
loss function of mask prediction and distance estimation
tasks, and discuss the impact of weight changes on
segmentation accuracy. Besides, we also set weights in the
loss function of mask prediction to reduce the model’s
attention to the background.

• We integrate the multi-depth fusion module into the down-
sampling stage, which can effectively fuse global information
and local information, improving the ability of the network to
extract features. In the control group experiment, we remove
the multi-depth fusion module and find that the accuracy was
reduced, which can verify the effectiveness of the module in
improving accuracy.

The rest of this article is as follows. Section 2 describes the
development of image segmentation, related research on MRI
segmentation of brain tumors, and a summary of the work of the
article. In Section 3, we elaborated on the proposed method,
including data preprocessing, the principle of the model, and the
loss function. In the fourth section, we give the details of the
Frontiers in Oncology | www.frontiersin.org 2
experiment. Then we presented and discussed the experimental
results in Section 5, and finally summarized the conclusions in
Section 6.
RELATED WORKS

Traditional Image Segmentation Method
The earliest and most traditional image segmentation method is
based on threshold segmentation. The basic principle of the
threshold segmentation method is to divide the image pixels into
the target area and the background area by setting the
characteristic threshold. Taheri S. et al. used a threshold-based
method to segment three-dimensional brain tumors, and
adopted two threshold update schemes for searching and
self-adaptation, achieving automatic or semi-automatic
segmentation according to the complexity of the tumor shape
(10). A more widely used algorithm is a segmentation algorithm
based on edge detection, which is one of the most studied
methods. Max W.K. et al. proposed an edge detection method
based on weighted local variance for blood vessel boundary
segmentation, which is robust to changes in edge intensity
contrast (11). But the edge segmented by this method is
not continuous.

Machine Learning
The segmentation method of machine learning is mainly divided
into two categories: supervised learning and unsupervised
learning. Supervised learning includes KNN, Bayes, and ANN
algorithms. Unsupervised learning mainly includes some
clustering methods, such as K-means, FCM, etc. Anbeek P.
et al. applied the KNN algorithm to skull MRI to segment
multiple sclerosis lesions. This method uses voxel position and
signal strength to determine the probability of each voxel lesion
to generate probabilistic segmentation images (12). In order to
improve the segmentation of brain PET images, Xia Y. et al.
proposed to incorporate the a priori anatomical knowledge
represented by the probabilistic brain atlas into the variational
Bayes to segment gray matter, white matter, and cerebrospinal
fluid in brain PET-CT images (13). Franklin S.W. et al. used
ANN technology based on Gabor and moment-invariant
features to segment the retinal blood vessels in the fundus to
accurately obtain the width of the blood vessels (14). In medical
image segmentation, the most commonly used clustering
method is k-means clustering. Moftah H.M. et al. proposed an
adaptive k-means clustering method, which maintains the best
results in the iterative process and can effectively segment MR
breast images (15). The fuzzy C-means algorithm based on
objective function is also commonly used. Chen W. et al.
applied the fuzzy c-means (FCM) clustering method to the
wind field to segment breast lesions from MRI-enhanced
images (16).

Deep Learning
With the development of deep learning, the CNN is gradually
applied to image segmentation, which greatly improves the
June 2021 | Volume 11 | Article 690244
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accuracy of image segmentation. Fully Convolutional Networks
(FCN) is the first network structure that successfully uses deep
learning for image semantic segmentation. FCN converts the
fully connected layers in classification networks such as AlexNet,
VGG Net, and GoogLeNet into convolutional layers and applies
them to segmentation tasks to achieve pixel-level semantic
segmentation (17). Badrinarayanan V. et al. proposed a new
semantic pixel segmentation network structure SegNet, which is
based on the DeconvNet. Their innovation is to input feature
maps during the up-sampling process to better restore the
information lost during the down-sampling process (18). U-
Net is a segmentation network with a simple structure proposed
by Ronneberger et al., which is widely used in medical image
segmentation because it can adapt to a small training set. It is
similar to FCN, but the difference is that U-Net uses features to
be stitched together in the channel dimension to form a thicker
feature, while FCN adds features point by point (19). Although
CNN is very popular, most methods can only process two-
dimensional images, and most medical data used in clinical
practice is composed of three-dimensional volumes. Milletari
et al. proposed a three-dimensional image segmentation network
based on U-Net. Their network is trained end-to-end on the 3D
MRI of the prostate and can predict the segmentation of the
entire 3D image at once (20). Liu et al. proposed a new
convolutional neural network, which consists of three
independent sub-networks, including an improved ResNet50, a
feature pyramid attention network and a naive decoder network.
The three networks are connected to form an end-to-end
prostate segmentation model (21). Ding et al. proposed a fuzzy
information deep learning segmentation (Fl-DL-Seq) network to
segment infant brain tissue. They use the volumetric fuzzy
pooling (VFP) layer to model the local fuzziness of the volume
convolution map by fuzzing, accumulating and deblurring the
neighborhood of the adjacent feature map (22).

Brain Tumor Segmentation
Although a large number of neural network structures have
achieved high segmentation performance in the segmentation
field, they are not necessarily adaptable to the field of brain
tumors. Due to the complexity of multi-modal brain tumors, in
order to obtain clinical segmentation effects, the network
structure must be designed according to the characteristics of
brain tumor MRI images, for this reason, many experts have
done a lot of research. Lachinov D. et al. proposed a deep cascade
method for automatic brain tumor segmentation, which
modified the three-dimensional U-Net architecture to
effectively process multi-modal MRI input. They used multiple
encoders to make each individual mode independently
generating a corresponding feature map (7). Feng X. et al.
proposed to use a set of three-dimensional U-Net with
different hyperparameters to segment brain tumors. They
trained the six networks with different encoder/decoder block
numbers, different input patch sizes, and different loss weights,
and finally performed integrated modeling (23). Lele C. et al.
proposed a model based on 3D convolutional neural networks.
Their innovation lay in extracting features from two different
scales to obtain multi-scale context information. They also
Frontiers in Oncology | www.frontiersin.org 3
proposed a new structure, that was, according to the
characteristics of the brain tumor lesion area, the lesion sub-
regions were stratified (24). Zhou C.H. et al. proposed a
lightweight deep model based on the model cascade (MC)
strategy, a one-time multi-task network (OM-Net), which
could better solve the problem of class imbalance. Besides, they
also designed a cross-task guided attention (CGA) module that
could adaptively recalibrate the channel characteristics (25).
Myronenko A. et al. designed a variational autoencoder (VAE)
branch to reconstruct the input image in a network based on the
encoder-decoder architecture. The function of the VAE branch
was to jointly reconstruct the input image and the segmented
image to standardize the shared encoder (5). Zhang et al.
proposed a brain tumor segmentation model based on multi-
encoders. Each modal image corresponds to a down-sampling
path. This one-to-one feature extraction method reduces the
complexity of the feature extraction (26).

Our Work
Segmentation of brain tumor MRI data based on multimodality
is challenging for the following reasons. First of all, brain tumors
may show similar characteristics with glial hyperplasia and
stroke, which is easy to cause confusion (1). Second, brain
tumors can appear in any part of the brain. Besides, the size,
shape, and appearance of brain tumors in different patients are
also different, which increases the difficulty of segmentation (27).
Finally, the main difficulty of the brain tumor segmentation task
is the imbalance between the classes. Since the lesion area is very
small in most cases, the background area dominates, resulting in
low segmentation accuracy (24). All these make the task of brain
tumor segmentation more difficult.

In this article, in order to deal with the above challenges, we
propose a deep multi-task learning framework combined with a
multi-depth fusion module. It is a derivative of the V-Net
network structure. The traditional V-Net has only one decoder,
which will produce discontinuous boundaries in the
segmentation results. Therefore, we propose a parallel decoder
architecture to perform distance estimation while predicting the
mask to ensure the smoothness of the prediction result. As
shown in Figure 1A, the first decoder is used to predict the
mask, and the second decoder is used to estimate the distance
map. The main function of the distance decoder is to regularize
the mask prediction path to make the boundary of the mask
smooth and continuous. In order to combine the two tasks, we
propose a new loss function, which consists of two parts: the
categorical focal loss of the mask decoder block and the mean
square error of the distance transform decoder block. The final
loss function is the weight of the above two sum up. We also set
some weights for Categorical Focal loss to reduce the attention of
the model to the background area and alleviate class imbalance.
In order to improve the ability of the model to extract features,
we integrate the multi-depth fusion module into the encoder
(28). This module averages and fuses multi-level feature signals,
which can effectively capture global features and local features.
Based on the brain tumor data provided by the BraTS 2018,
BraTS 2019, and BraTS 2020, we evaluate the model and
compare it with the methods proposed by other researchers
June 2021 | Volume 11 | Article 690244
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and participating teams. Experimental results show that this
method has a good segmentation effect.
METHODS

The task of this paper is to segment brain tumors from three-
dimensional MRI images. In order to obtain higher segmentation
accuracy, we propose a deep multi-task learning framework
based on V-Net and integrate the attention module in the
encoder. Figure 1A shows the flow chart of all work. In this
section, we will introduce in detail the preprocessing process and
the structure of the deep multi-task learning framework.

Pre-Processing Steps
The BraTS data all have four MRI sequences with different
contrasts: fluid attenuation inversion recovery (FLAIR), T1-
weighted (T1), T1-weighted contrast enhancement (T1-CE), and
T2-weighted (T2), different contrast may lead to slow convergence
or disappearance of gradients during training, so images must be
standardized. We standardize the four modes separately and then
merge the modes. Here we choose Z-score for standardization, that
is, the image minus the mean divided by the standard deviation. In
Figure 1B, we show the comparison images before and after
Frontiers in Oncology | www.frontiersin.org 4
standardization. The left side is before standardization and the
right side is after standardization (Figure 1B). It can be seen that the
characteristics of the tumor are more obvious after standardization.
The standardized formula is as follows:

bX =
X − �X
s

, (1)

among them, X̂ represents the normalized image, X represents
the original image, �X represents the mean value of the image, and
s represents the standard deviation of the image.

After standardization, the MRI images of four modal
sequences with a size of 240×240×155×1 are combined to
generate a three-dimensional image of four channels, and the
combined image size is 240×240×155×4. Then split the Mask
image, that is, each type of label image is used as a separate
channel image. The original image size is 240×240×155×1, the
generated size is 240×240×155×4, and then the one-hot
operation is performed on each channel. The non-zero value in
channel 0 is the background area, and the non-zero value in
channel 1 is the gangrene area, the non-zero value in channel 2 is
the edema area, and the non-zero value in channel 3 is the
enhanced tumor area. Finally, a patch operation is performed on
the image and the mask, and several images and masks with a
size of 128×128×64×4 are generated.
A

B

FIGURE 1 | (A) Flow chart of our deep multi-task learning framework for brain tumor segmentation. (B) Brain tumor images before and after the standardization.
June 2021 | Volume 11 | Article 690244
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The Deep Multi-Task Learning Framework
The basic idea of a deep multi-task learning framework is to
implement feature information extraction at different resolution
levels through alternately stacked convolutional layers and
down-sampling layers. Then, the features extracted by the
deconvolution joint encoder are used to realize the step-by-
step resolution restoration and feature information restoration.
Distance transform encoder helps smooth segmentation
prediction and attention module helps feature extraction. Its
network structure is shown in Figure 2A. We will elaborate on
the innovation of the model from three aspects: the multi-depth
fusion module, the distance transform decoder, and the
loss function.

Multi-Depth Fusion
The multi-depth fusion module was originally used to perform
whole-heart segmentation of CT images. Ye C. et al. applied the
module to 3D U-Net to obtain the most advanced results (28). It
is incorporated in the down-sampling part of our model. The
structure of the multi-depth fusion block is shown in Figure 2A,
and all convolution operations in the structure use a convolution
kernel with a size of 3×3×3 and a stride of 1.

The operation of superimposing and averaging the signal that
has undergone two convolution operations on the feature map
and the signal that has undergone one convolution operation is
called the fusion of feature maps of different depths. The input
feature map is subjected to two different depth feature map
fusion operations, and the input feature map is subjected to a
convolution operation, and then the two signals are
superimposed and averaged. Finally, the output signal is
combined with the input feature map again as the final output
of the module, its specific process is shown in Figure 2B.

This module averagely merges the characteristic signals of
different depths, which can continuously merge local and global
information. Compared with simply merging feature maps of
different depths, the multi-depth fusion module adopts a better
iterative layered fusion method. This architecture ensures that
the deep feature map can effectively receive feature information
from the shallow feature map. The final signal input and output
resolution remain the same. The original encoder block consists
of two to three convolutional layers and a downsampling layer.
Now we place the multi-depth fusion module in front of each
downsampling layer. The convolution still uses batch
normalization and ReLU activation functions, just change the
location of the ResNet connection. The specific structure is
shown in Figure 2C.

Distance Transform Decoder
Our proposed network has two decoder modules with similar
structures, and each decoder module is assigned a different task.
The mask decoder module performs training mask segmentation
according to pixel classification tasks, and the distance transform
decoder module performs regression tasks to realize distance
map estimation.

The distance transform decoder module is similar in structure
to the mask decoder module. The image size is restored stage by
Frontiers in Oncology | www.frontiersin.org 5
stage by alternately stacking the deconvolution layer and the
convolution layer, and the feature information extracted by the
block-level connection joint encoder module is used to improve
the predictive performance of brain tumor area contour. The
difference with the mask decoder is the output channel in the
distance transform decoder block is 3, which is equal to
the number of input categories of the mask decoder block. We
show in Figure 3 an example of the mask decoder output and the
distance decoder output comparison. In all the figures illustrate
the segmentation results, red color represents the tumor core
(necrosis), yellow color represents the active tumor and green
regions are the edema.

Loss Function
The loss function of the model consists of two parts, the
categorical focal loss of the mask decoder block and the mean
square error of the distance transform decoder block. The final
loss function learned by the optimizer is the weighted sum of the
coefficients of the above two losses, where the distance graph
prediction regularizes template prediction. The overall loss
function formula is as follows:

Ltotal = l1Lmask + l2Ldist, (2)

where l1 and l2 are the scaling factors, Lmask is the loss function
of the mask decoder, and Ldist is the loss function of the distance
transform decoder. The loss function of the mask decoder is
shown in (3) and (4),

LFL = −ylogy 0 �(1 − y 0 )g (3)

Lmask = LFL �W , (4)

where LFL is the pixel-by-pixel classification loss, y represents the
true label, y’ represents the predicted value after activation by
Softmax, and W represents the category weight.

We choose categorical focal loss to solve the problem of
imbalance between the foreground and background categories of
brain tumor images. It adds a gamma factor to the two-class
cross-entropy loss. Here we set the gamma factor to 2, so that the
model reduces the loss of background voxels, and makes the
model pay more attention to the target voxels that are difficult to
segment and easy to error. Finally, in order to further adjust the
category imbalance, we assign a specific weight to each type of
label, the background label weight is assigned a value of 0.1, and
the ET, WT, TC area label weight is assigned a value of 1.0.
For the loss function of the distance transform encoder, we refer
to the practice of Balamurali M. et al. (29), using the mean square
error loss. The loss function of the distance transform decoder is
shown in (5),

Ldist = o
x∈W

(D̂ (x) − D(x))2, (5)

where x represents the pixel, W is the number of voxels in the
whole brain. D̂ (x) is the distance estimation map after activation
of the Sigmoid function and D̂ (x) is the ground truth
distance map.
June 2021 | Volume 11 | Article 690244
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A

B

C

FIGURE 2 | (A) The network structure of our deep multi-task learning framework. (B) Structure diagram of the multi-depth fusion module. (C) A detailed illustration
of the encoder.
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DATASET AND EXPERIMENTS

Datasets
We evaluated our model on three different datasets, BraTS 2018,
BraTS 2019, and BraTS 2020. These datasets all have two types of
brain tumor data, namely high-grade glioblastoma (HGG) and
low-grade glioma (LGG). The MRI of each sample contains four
modes: fluid attenuation inversion recovery (FLAIR), T1
weighting (T1), T1-weighted contrast-enhanced (T1-CE), and
T2 weighting (T2). The ground truth mask of the data has a
necrotic area, edema area, and enhancement area. Our task is to
segment the sub-regions formed by the nesting of three targets,
the enhancing tumor (ET), the whole tumor (WT), and the
tumor core (TC). They are all divided into the training set and
unlabeled validation set by the organizer. Among them,
BraTS2019 and BraTS2020 use the same test data, while the
test data used by BraTS2018 is part of the 125 test data used by
the former. The division of each dataset is shown in Figure 4.

Evaluation Metrics
We follow the evaluation indicators of the brain tumor
segmentation challenge in 2020, using Dice coefficient,
sensitivity, specificity, and Hausdorff95 distance to measure the
performance of the model. The Dice coefficient is an indicator of
the overall evaluation, and its formula is defined as:

Dice =
2TP

FN + FP + 2TP
, (6)

where TP, FN, and FP represent the number of voxels of true
positive, false negative, and false positive respectively. Sensitivity is
Frontiers in Oncology | www.frontiersin.org 7
used to measure the proportion of voxels in the tumor area that
are correctly labeled, which can indicate the accuracy of the
model segmentation of the target area, which is defined as:

Sensitivity =
TP

TP + FN
: (7)

Specificity represents the accuracy of the background voxel
being correctly predicted, it can measure the ability of the model
to predict the background area, defined as:

Specificity =
TN

TN + FP
, (8)

where TN is the number of voxels with true negatives.
Hausdorff95 distance measures the similarity between actual
voxels and predicted voxels. The smaller the value, the closer
the prediction is to the reality, it is defined as:

Haus95(X,Y) = max max
x∈X

min d
y∈Y

(x, y), max
y∈Y

min d
x∈X

(x, y)

� �
(9)

where X is the volume of ground truth, Y is the predicted volume,
and d(.,.) is the distance from point x to point y.

Post-Processing Steps
The most difficult part of BraTS dataset segmentation is to
distinguish between enhanced tumors and tumor cores,
especially when some tumor patients do not have enhanced
tumors. If there is no enhanced tumor label in the ground truth
and prediction, the BraTS Challenge will set the Dice score to 1.
But if the ground truth does not enhance the tumor, even if there
is only one false positive voxel in the prediction, the Dice score
FIGURE 3 | The example output results of the two decoders. Red color represents the tumor core (necrosis), yellow color represents the active tumor and green
regions are the edema.
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will be 0 (30). This greatly affects the Dice value in the ET area.
Therefore, we post-process the segmentation results. If the total
number of predicted enhanced tumors is less than 500, we
replace all enhanced tumor voxels with tumor cores.

Experimental Details
All our implementations are based on Tensorflow 1.13.1, which
is currently one of the most mainstream deep learning
frameworks. Besides, we use the Adam optimizer to train the
model. The specific details are that the entire network is trained
for a total of 500,000 steps, and each training set is traversed
about 10 times. After each traversal of the training set, the order
of the data is randomly shuffled to enhance the robustness of
training. The learning rate is initially set to 0.0001, and the
training set is traversed twice, reducing to half of the original.
Finally, we use Mean Dice as the evaluation index for our
training and output the loss value and accuracy index every 10
steps to achieve effective supervision of model training. At the
same time, the model outputs the segmentation effect map and
the corresponding real label map every 1000 steps and saves the
parameter model. In this way, the segmentation effect of the
model is further monitored through the visualization method.
The segmentation effect map and the real label map during the
training process are shown in Figure 5.

TensorFlow platform is used for algorithm development
using PyCharm with Python 3.6. The runtime platform
processor is Intel (R) Xeon (R) Silver 4210 CPU @2.20GHz
with 128GB RAM and Nvidia Titan RTX GPU on a 64-bit
Windows 10 workstation. All algorithms are trained and tested
using the same GPU and environment.
Frontiers in Oncology | www.frontiersin.org 8
RESULTS AND DISCUSSION

Results
The brain tumor segmentation method proposed in this paper is
experimentally evaluated on three different datasets, namely
BraTS 2018, BraTS 2019, and BraTS 2020. The preprocessing
and segmentation process of these three datasets are the same.
There are multi-modal imaging protocols in these datasets: Flair,
T1, T1-CE, T2. The data comes from different centers, and the
magnetic field strength is also different. The ground-truth was
manually created by experts (31), including three nested sub-
regions: the enhancing tumor (ET), the whole tumor (WT), and
the tumor core (TC). In order to obtain better results, we train on
3D volumes. We use the Dice coefficient, sensitivity, specificity,
and Hausdorff95 distance as the evaluation indicators of the
model. Tables 1 and 2 show the average results of the model on
the validation sets, among them, “Post” represents the post-
processing process added. The results show that the model
achieves good segmentation results and has good robustness.
Among them the segmentation accuracy of the WT and TC
regions is high, but the segmentation accuracy of the ET region is
slightly lower. The reason may be that the boundary between the
ET region and the WT region is not obvious (32). We can see
that post-processing has greatly improved the Dice accuracy in
the ET area, with an average increase of 4%. The Dice value of all
regions in the verification set of BraTS 2020 is greater than 0.75,
especially the WT region is 0.86, which has exceeded the average
level of existing methods. In particular, the specific value is stable
at a high level, indicating that the model has stable performance
in predicting the background area. At the same time, the
FIGURE 4 | The division of the three datasets in the BraTS Challenge.
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FIGURE 5 | Comparison of the ground truth mask and the prediction during training. Red color represents the tumor core (necrosis), yellow color represents the
active tumor and green regions are the edema.
TABLE 1 | Comparison of Dice and Hausdorff95 post-processing of three validation sets.

Dice Hausdorff95

ET WT TC ET WT TC

BraTS 2018 0.687 0.801 0.759 10.4 13.2 15.2
BraTS 2018+Post 0.717 0.801 0.759 9.9 13.2 15.2
BraTS 2019 0.700 0.827 0.788 6.6 8.5 9.2
BraTS 2019+Post 0.730 0.827 0.788 6.1 8.5 9.2
BraTS 2020 0.700 0.860 0.772 39.1 6.7 15.1
BraTS 2020+Post 0.750 0.860 0.772 34.6 6.7 15.1
Frontiers in Oncology | www.frontiers
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TABLE 2 | Comparison of Sensitivity and Specificity post-processing of three validation sets.

Sensitivity Specificity

ET WT TC ET WT TC

BraTS 2018 0.789 0.962 0.800 0.996 0.977 0.995
BraTS 2018+Post 0.829 0.962 0.800 0.996 0.977 0.995
BraTS 2019 0.758 0.967 0.801 0.997 0.981 0.996
BraTS 2019+Post 0.798 0.967 0.801 0.997 0.981 0.996
BraTS 2020 0.749 0.958 0.791 0.999 0.998 0.999
BraTS 2020+Post 0.800 0.958 0.791 0.999 0.998 0.999
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sensitivity has also reached a very high level, and the accuracy of
specificity is not much different, indicating that the model has a
small difference in predicting target area and predicting
background, and can effectively alleviate the problem of class
imbalance in brain tumor segmentation. In MRI segmentation,
multi-modal brain tumors are one of the most challenging tasks.
Frontiers in Oncology | www.frontiersin.org 10
Although our experimental results have some gaps compared
with the top methods, we still achieve high accuracy.

Figure 6 shows a combination of scatter plots and violin
plots of the Dice and Hausdorff95 evaluation indicators in the
three validation sets of BraTS. From the violin chart, it can be
seen that the results are mainly concentrated in one area, and
 

 

 

A

B

C

FIGURE 6 | The result of the evaluation metrics of the validation set. (A) Dice and Hausdorff95 at BraTS 2018, (B) Dice and Hausdorff95 at BraTS 2019 and
(C) Dice and Hausdorff95 at BraTS 2020.
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the median is obviously greater than the average, so the results
are leftward and there are outliers. In the scatter plot, the data
points are concentrated in areas with higher accuracy, which
indicates that the model has a strong ability to predict
individual situations.

We selected some representative segmentation results in the
validation set for display, as shown in Figure 7. Among them
(a) is the validation set of BraTS 2018, (b) is the validation set of
Frontiers in Oncology | www.frontiersin.org 11
BraTS 2019, and (c) is the validation set of BraTS 2020. For a
more comprehensive display, we marked the Dice value of the ET
area. Figure 7 shows the segmentation results of the model in the
validation set samples. From these examples, we can see that the
model has good segmentation results for brain tumors of
different sizes, positions, and shapes, and the predictive ability
of the model is not affected by the intensity of MRI slice scans.
Overall, the model has high performance.
A

B

C

FIGURE 7 | Display of the segmentation results in validation set samples. (A) BraTS 2018 Data, (B) BraTS 2019 Data and (C) BraTS 2020 Data. Red color
represents the tumor core (necrosis), yellow color represents the active tumor and green regions are the edema.
June 2021 | Volume 11 | Article 690244
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Comparison Study Results
In order to further verify the accuracy of the model, we compare
the results of BraTS 2018 with other studies, as shown in Table 3,
here only the values of Dice and Hausdorff95 are shown. Hu Y.
et al. proposed a multi-level up-sampling network (MU-Net) to
automatically segment multi-modal brain tumors. This model
used the global attention GA module to combine the low-level
feature maps obtained by the encoder with the high-level feature
maps obtained by the decoder stand-up (33). Evan G. et al. used a
3-dimensional CNN constructed by the DeepMedic architecture
created by Kamnitsas et al. (34), which contained a low-
resolution and normal-resolution path, each with 11 layers (8).
Tuan T. et al. proposed to segment all glioma regions using a U-
Net model with multiple kernels (35). Weninger L. et al. first
determined the location of the tumor and then used 3D U-Net to
segment it (36). Hu X et al. proposed a 3D-Usid-Unet
architecture, which included a context aggregation path and a
localization path (37). Serrano-Rubio J.P. et al. trained an
extreme random tree (ERT) algorithm to classify abnormal
tissues with multiple labels (38).

We also compare the results of the BraTS 2019 dataset as
shown in Table 4. Kim S. et al. used a two-step convolutional
neural network (CNN) to segment brain tumors in brain MR
images. First used three 2DU-Net to obtain the global information
on the axial, coronal, and sagittal axes, and then used a 3D U-Net
to obtain the local information in the 3D patch (39). The structure
proposed by Amian M. et al. contained two parallel streamlines
with two different resolutions. One was that the deep
convolutional neural network learned the local features of the
input data, and the other was to set the entire image for global
observation. Then the output of each stream was combined to
provide integrated learning of the input image (40). Shi W. et al.
Frontiers in Oncology | www.frontiersin.org 12
proposed a dense channel two-dimensional U-Net segmentation
model based on residual units and feature pyramid units (41).
Agravat R.R. et al. separately trained three tumor subcomponents
and finally combined the three segmentation results to obtain a
complete segmentation (42). Hamghalam M. et al. designed a
novel pixel-by-pixel segmentation framework through a
convolutional 3D to 2D MR patch conversion model (43).
Wang F. et al. trained a deep learning model based on 3D U-net
in the BraTS 2019 dataset with the help of brain intelligence and
patching strategies (44).

We compare the results with the teams participating in the
2020 BraTS Challenge to further demonstrate the effectiveness
and generalization capability of our method. These data are
available on the official website of the challenge as shown in
Table 5. Based on the results of these comparisons, we analyze
that most of the methods can only achieve a relatively high
degree of accuracy in a certain sub-region. At present, there is no
method to achieve the highest accuracy in all sub-regions. How
to balance the accuracy of all segmented regions is also one of the
directions of our future work.

Discussions
We have shown that the proposed multi-task deep framework can
be effectively used inmulti-modal brain tumor segmentation tasks.
At the same time, our integrated multi-depth fusion module can
strengthen the feature extraction ability. The results on the 2020
BraTS dataset have shown the excellent performance of our model
compared to other network structures. The Dice values of our ET,
WT, and TC regions on the validation set are 0.75, 0.86, and 0.77,
respectively, which are all above 0.7. The performance of our
model is balanced among ET, WT, and TC and ranked #1, #2 and
#3 compared to other state-of-the-art methods.
TABLE 3 | Comparison with the BraTS 2018 validation set of other methods.

BraTS 2018 Dice Hausdorff95

ET WT TC ET WT TC

Proposed 0.72 0.80 0.76 9.9 13.2 15.2
Evan G. et al 0.68 0.80 0.67 14.5 14.4 20.0
Hu Y. et al 0.66 0.87 0.72 7.56 6.73 15.74
Tuan T. et al 0.68 0.82 0.70 7.0 9.4 12.5
Weninger L. et al 0.71 0.86 0.82 5.6 7.0 7.9
Hu X. et al 0.72 0.86 0.77 5.5 10.8 10.0
Serrano-Rubio J. P. et al 0.60 0.84 0.73 11.7 9.0 14.7
June 202
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TABLE 4 | Comparison with the BraTS 2019 validation set of other methods.

BraTS 2019 Dice Hausdorff95

ET WT TC ET WT TC

Proposed 0.73 0.83 0.79 6.1 8.5 9.2
Kim S. et al 0.67 0.87 0.76 8.8 14.2 11.7
Amian M. et al 071 0.86 0.77 6.9 8.5 11.6
Shi W. et al 0.69 0.87 0.77 5.9 21.2 12.2
Agravat R.R. et al 0.60 0.70 0.63 11.69 14.33 17.10
Hamghalam M. et al 0.72 0.90 0.80 5.4 7.8 8.7
Wang F. et al 0.74 0.90 0.80 6.0 7.4 5.7
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In order to show the effectiveness of the multi-depth fusion
module in improving the segmentation accuracy, we train the
multi-task model that does not include this module (Model I).
Table 6 shows its segmentation accuracy. Among them, the Dice
scores in the ET, WT, and TC regions are 0.674, 0.848, and 0.747
respectively. Compared with the method proposed in this paper, it
can be seen that the multi-depth fusion module can effectively
improve the segmentation effect. Besides, when setting the weights
of the loss function of the joint two tasks, we consider that the
weight of the auxiliary task of distance estimation should not be
greater than the weight of the segmentation task, so we set both l1
and l2 to 1. In our study, we have also tried different weight
coefficients and set them to 1 and 0.1 for training (i.e., in Model
II), and we have found that the accuracy of the segmentation has
decreased. Therefore, we believe that the weights used in the
article are locally optimal. The above comparison experiments are
all completed on the BraTS 2020 dataset.

In order to show the discrimination of the three methods
more intuitively, we randomly select 4 examples in the training
set for display as shown in Figure 8. Comparing the prediction
results of the three models with the manually segmented labels,
we can find that the model proposed in this paper has more
advantages in detail prediction and has a more refined contour,
which also proves the superiority of the model.

By comparing with some of the leading methods in this field,
combined with some analysis of the results in this article, we have
found that our method still has some limitations. First, in order to
save training costs, we only set the weight coefficients of the loss
function based on experience, and only did a set of experiments to
adjust the weights instead of a large number of experiments to verify
Frontiers in Oncology | www.frontiersin.org 13
whether the weights are optimal to find the global optimal weights.
In future research, we should find the optimal weight for many
experiments to improve the accuracy of segmentation. Second, our
segmentation results are not the best, and there are still some gaps
compared with the top methods, so we propose the following
improvement methods that can be developed in future work.
Since the most clinically concerning information only occupies a
small part of the image, inspired by Chen et al., we can design a
method of region clipping, that is, to locate the part of interest (ROI)
first and then segment it. This method can make the segmentation
more precise. But this will also increase the amount of calculation.
How to find a balance between accuracy and amount of calculation
is also one of the focuses of our future work. Besides, the module we
transplanted in the encoder proved to be suitable for whole-heart
CT segmentation, but this is the first time that it is used for brain
tumor segmentation, so we are not sure whether it is the most
suitable attentionmodule for brain tumor segmentation.We can try
to use some other attention modules, such as the SE module, Non-
local module, etc. After many comparison experiments, we can
verify whether the effect of a multi-depth fusion module is the best.
CONCLUSION

In this article, we propose a deep multi-task learning framework
that integrates multi-depth fusion modules, and perform a
performance test on multiple BraTS datasets, and obtain
satisfactory results. We improved the traditional V-Net
framework and proposed a structure of two parallel decoder
branches. The original decoder can only perform segmentation,
TABLE 6 | Accuracy comparison with other comparative experiments.

BraTS 2020 Dice Sensitivity Specificity Hausdorff95

ET WT TC ET WT TC ET WT TC ET WT TC

Train Proposed 0.79 0.88 0.88 0.85 0.97 0.92 0.99 0.99 0.99 28.4 5.3 4.8
Model I 0.76 0.87 0.87 0.80 0.97 0.91 0.99 0.99 0.99 23.1 5.8 5.9
Model II 0.73 0.85 0.87 0.82 0.98 0.91 0.99 0.99 0.99 28.8 7.0 6.6

Validation Proposed 0.75 0.86 0.77 0.80 0.96 0.79 0.99 0.99 0.99 34.6 6.7 15.1
Model I 0.67 0.85 0.75 0.72 0.94 0.76 0.99 0.99 0.99 42.1 7.4 18.8
Model II 0.67 0.82 0.77 0.73 0.96 0.79 0.99 0.99 0.99 51.5 9.5 11.5
June 2021 |
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Bold values indicate the best performed method.
TABLE 5 | Comparison of validation set of teams participating in the BraTS 2020 challenge.

BraTS 2020 Dice Sensitivity Specificity Hausdorff95

ET WT TC ET WT TC ET WT TC ET WT TC

Proposed 0.75 0.86 0.77 0.80 0.96 0.79 0.99 0.99 0.99 34.6 6.7 15.1
DLU 0.70 0.87 0.78 0.72 0.89 0.78 0.99 0.99 0.99 39.8 8.9 11.2
MQUNSW 0.70 0.86 0.79 0.70 0.93 0.86 0.99 0.99 0.99 40.2 11.6 13.6
Nico@ 0.67 0.87 0.71 0.62 0.84 0.65 0.99 0.99 0.99 41.7 10.1 33.5
agussa 0.59 0.83 0.69 0.60 0.87 0.71 0.99 0.99 0.99 56.6 23.2 30.0
FutureHealth 0.69 0.87 0.79 0.69 0.87 0.78 0.99 0.99 0.99 44.0 10.5 11.7
unet3d 0.70 0.84 0.72 0.71 0.87 0.79 0.99 0.99 0.99 37.4 12.3 13.1
Persistent 0.69 0.82 0.72 0.69 0.85 0.70 0.99 0.99 0.99 36.9 41.5 26.3
Iris 0.68 0.86 0.73 0.67 0.90 0.70 0.99 0.99 0.99 44.1 23.9 20.0
Uncertainty 0.68 0.87 0.78 0.66 0.90 0.77 0.99 0.99 0.99 47.6 12.1 15.7
ovgu_seg 0.60 0.79 0.68 0.66 0.78 0.67 0.99 0.99 0.99 54.1 12.1 19.1
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and the newly added decoder performs the auxiliary task of distance
estimation, which can make the segmentation boundary more
accurate. A total loss function is introduced to combine the two
tasks. At the same time, we added amulti-depth fusionmodule after
each encoder block to enhance the extraction of image features. We
added a gamma factor to the loss function of the mask decoder to
reduce the focus on the background area and set different weights
for each type of label to alleviate the problem of category imbalance.
We evaluated the accuracy of the model online for the BraTS 2018,
BraTS 2019, and BraTS 2020 datasets. As a result, we obtained high-
quality segmentation results, with an average Dice of 78%.
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