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The fundamental basis in the development of novel radiotherapy methods is in-vitro
cellular studies. To assess different endpoints of cellular reactions to irradiation like
proliferation, cell cycle arrest, and cell death, several assays are used in radiobiological
research as standard methods. For example, colony forming assay investigates cell
survival and Caspase3/7-Sytox assay cell death. The major limitation of these assays is
the analysis at a fixed timepoint after irradiation. Thus, not much is known about the
reactions before or after the assay is performed. Additionally, these assays need special
treatments, which influence cell behavior and health. In this study, a completely new
method is proposed to tackle these challenges: A deep-learning algorithm called CeCILE
(Cell Classification and In-vitro Lifecycle Evaluation), which is used to detect and analyze
cells on videos obtained from phase-contrast microscopy. With this method, we can
observe and analyze the behavior and the health conditions of single cells over several
days after treatment, up to a sample size of 100 cells per image frame. To train CeCILE,
we built a dataset by labeling cells on microscopic images and assign class labels to each
cell, which define the cell states in the cell cycle. After successful training of CeCILE, we
irradiated CHO-K1 cells with 4 Gy protons, imaged them for 2 days by a microscope
equipped with a live-cell-imaging set-up, and analyzed the videos by CeCILE and by hand.
From analysis, we gained information about cell numbers, cell divisions, and cell deaths
over time. We could show that similar results were achieved in the first proof of principle
compared with colony forming and Caspase3/7-Sytox assays in this experiment.
Therefore, CeCILE has the potential to assess the same endpoints as state-of-the-art
assays but gives extra information about the evolution of cell numbers, cell state, and cell
cycle. Additionally, CeCILE will be extended to track individual cells and their descendants
throughout the whole video to follow the behavior of each cell and the progeny after
irradiation. This tracking method is capable to put radiobiologic research to the next level
to obtain a better understanding of the cellular reactions to radiation.
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INTRODUCTION

Radiotherapy forms, together with surgery, chemotherapy, and
immunotherapy, the four pillars of cancer treatment. Radiation
acts on all traversed tissues, resulting in the promising
therapeutic outcome of killing tumor cells as well as in acute
and late side effects in healthy tissue. The damaging effects of
radiation on biological tissue have already been known since the
beginning of the 20th century. Since then, there have been efforts
to qualify, quantify and understand these effects as well as the
disparate reactions of different cell and tissue types (1). In the last
100 years, accompanied by fast technological developments,
assays have been developed that measure and quantify
radiation sensitivity on large cell populations in-vitro (2). This
led to fundamental new knowledge on the cellular response
including the discovery of cancer stem cells (3, 4) or deep
knowledge on the effect of different types of radiation (5, 6).
This basic knowledge has been used to improve cancer therapy
(7, 8) and risk assessment for radiation exposure, whether
medical, occupational, or in space missions (9). Furthermore, it
opens the possibility to develop countermeasures or therapy to
radiation injury (10).

The gold standard method established in in-vitro analysis of
direct radiation response is the colony forming assay (CFA) (11).
This assay is used to assess radiosensitivity in-vitro and to
investigate the effects of agents, which are meant to have an
impact on the survival when applied before, during, or after
radiation exposure of cells. In this assay, the overall ability of cells
to proliferate into colonies is used to define the cellular reaction
to radiation (10). Although the ability to form colonies is the
main quality of cellular response to radiation exposure
concerning the reaction of organs or a whole organism, the
detail of individual cellular reactions is of interest to analyze and
predict the time course of reaction of healthy and tumor tissues.
Thus, the time and type of cell death as well as the kind of cell
death, i.e., apoptosis, necrosis, or senescence, combined with cell
survival results in a more detailed look in the mechanisms of
radiation effects (12).

However, this way of performing radiobiology has several
challenges: the first is that for each endpoint and each timepoint
which is examined by classical approaches, a certain experiment
has to be performed requiring a large number of cells (i.e. ten
thousand to millions in total) to get statistically significant results
(13, 14). This limits the applicability particularly in modern
therapy approaches such as particle minibeam or microbeam
research, where only small cell numbers are irradiated (15–19).
Second, one assay alone is less meaningful since only one
property can be studied with each assay. Therefore, different
types of assays must be applied to form a comprehensive picture
of radiation response. Thus, cells are used in different
experiments and samples with slightly different conditions
depending on the type of assay. This adds uncertainties to the
results and aggravates comparability. Third, the assays are ended
at one selected timepoint. This means that the effect is integrated
over a certain time interval in some assays or only a snapshot of
the effects can be investigated in others. Thus, the time dynamic
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is lost. The last challenge is, that most of the assays used or at
least their evaluation cannot be performed using living cells.
Cells must be killed and treated using chemicals such as fixing,
permeabilization, or labeling agents. These agents disturb the
chemical structures of the cells and might disguise the real
radiation effects by adding treatment effects. Furthermore,
almost all assays require washing and transferring of cells
resulting in the loss of cells that cannot be used for analysis
then. This can distort the results especially for high-LET
radiation, where many cells die quickly. Some of these
challenges can be overcome by increasing the number of
performed experiments and thus being able to add more
samples, assays, or timepoints per assay. This increases the
complexity and the number of necessary investigations per
research question.

To analyze the radiation response on a single-cell basis, well-
established assays using single-cell analysis such as comet assay
(20), fluorescence microscopy (21), or gene sequencing are
available (22). These methods of single-cell analysis are time
and resource expensive. The more complex and informative a
single-cell analysis method gets the fewer amount of cells can be
investigated as e.g. in super-resolution microscopy analysis,
where only a few cells can be observed in a reasonable time
(17, 23). In recent history with further biological developments,
such as the use of siRNA or CRIPS/Cas9 and other emerging
technologies, it is possible to measure effects also with a low
number of cells or even single cells and to increase the
throughput (10). Nevertheless, it is quite difficult to interpret
these results correctly and the ability to conclude the cellular
radiosensitivity and behavior upon radiation exposure with only
a single assay is very limited.

This fact leads to a need for a new analysis method, where
cells are kept undisturbed in their physical environment and all
reactions on a single-cell level can be quantified over several
proliferation cycles in one experiment. Such a method is long-
term label-free live-cell microscopy (24). State-of-the-art
microscopes provide a variety of techniques for label-free live-
cell imaging, including phase-contrast, differential interference
contrast, and holography-based methods (25, 26). Using these
techniques on living cells acquiring videos provides the
possibility for accurate tracking of cells and single-cell
reactions to radiation exposure. The major challenge is that a
huge amount of data is produced, which must be analyzed in
detail by detecting and tracking every single cell. Cell tracking
methods for microscopic images are already used in
radiobiology, mostly for fluorescent images. Here, methods like
thresholding (27), region growth (28), or watershed (29, 30) can
be applied to segment interesting structures in these images.
Also, Forrester and co-workers (31) propose a method for
analyzing cell death on time-lapse videos by fluorescent
imaging using fluorescent labeling. But detecting and tracking
cells on images derived by label-free microscopy is much more
challenging. The contrast of the cells compared with the
background is low and the cell shape varies throughout the cell
cycle. One option for analysis is the identification and labeling of
each cell by hand, which is time-consuming and makes the
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Rudigkeit et al. CeCILE
conduction of reasonable and quantitative meaningful radiation
experiments almost impossible. Hence, software packages are
tackling the recognition problem like cell profiler (32) or the Fiji
plugin iTrack4U (33). However, these programs have great
limitations, as cell profiler cannot handle single cells in phase-
contrast videos and iTrack4U has an optimization for phase-
contrast images but is limited to data with a high edge contrast.
To achieve this contrast special imaging conditions are needed,
where information about the health status and cell cycle are lost.
These limitations exclude the use of these programs as standard
recognition tools for phase-contrast images in all kinds of
brightness and contrast combinations. In the cell segmentation
and tracking challenge (34), it was shown that deep-learning
based algorithms outperform conventional image analysis
approaches in cell detection in phase-contrast images,
regarding performance and speed and are even able to
outperform human inspection in complex image classification
and object detection tasks (35). We, therefore, decided to build
an artificial intelligence algorithm that can detect and classify
cells in phase-contrast images to be used as a tool for
radiobiologic research.

In this study, we introduce a state-of-the-art deep-learning
algorithm to solve the complex image analysis task for label-free
live-cell imaging. With this method, a model is trained which can
automatically evaluate the lifecycle of cells in live-cell microscopy
videos. The algorithm can provide information on, among
others, the amount, type, and time of cell death, the cell-cycle
duration, possible cell cycle arrest and proliferation rate as well as
family trees for every single cell including also temporal
information. With this powerful method, single-cell reactions
can be perfectly studied and differences between cells of a single
population can be identified. We are aware of currently existing
limitations of the introduced algorithm, regarding the amount of
detectable cells and generalization but we also show its great
potential for the future. Nevertheless, we decided to publish this
first proof-of-principle to use such an algorithm in
radiobiological research, as since decades a method of this kind
is urgently needed. We think it is important to address as much
beneficiaries as possible, to be able to adapt further developments
to the needs of possible users in future.

We propose, in the first step, to use phase-contrast imaging.
This technology is the most common contrast-enhancing
technology, which is normally included in a well-equipped
laboratory microscope. Furthermore, good and reliable videos
can be acquired with less amount of data, compared to e.g.
holographic methods. Nevertheless, recognizing cells on phase-
contrast images is a challenging task, as cells in culture have poor
contrast. Additionally, depending on cell cycle phase, cells show
different shapes and morphologies. Therefore, simple methods
like thresholding or region growth, which rely on the intensity of
regions for differentiation to segment the cells, cannot be applied.
Rather, a method based on pattern recognition is needed. In the
last decade, one method for recognizing patterns on images was
most successful – the deep-learning based Convolutional Neural
Network (CNN) – and is now used in most of the algorithms for
the classification of objects in images (36–38). The accuracy of
Frontiers in Oncology | www.frontiersin.org 3
the CNN is highly dependent on the datasets used for training
and validation and the CNN architecture. The model ResNet-101
(39) is best suited for classification due to its high accuracy in a
short training time and is commonly used in object detectors (40,
41). Therefore, the algorithm developed in this study takes the
ResNet-101 as a basis.

The detection of objects, i.e. the identification of an object
within an image containing an unknown number of objects
together with the correct classification, is an even more complex
task. There are many approaches to solve this, where the most
accurate results are achieved by the RCNN (Region based
Convolutional Neural Network) family. This model family
outperforms other commonly used models like the YOLO
(You Only Look Once) family in terms of recognizing tiny
objects and detecting them in crowded areas (42), which is the
case for cells on microscopic images. All members of the RCNN
family are two-stage detectors. Hence, these models consist of
two separate networks. One is responsible for detecting objects in
an image (learning the so-called “objectness”) and predicting
their bounding boxes. The other network classifies these objects
with a CNN. The computationally most efficient and most
accurate network of this family is the “faster RCNN” (43). Its
efficiency is due to the usage of a backbone fully convolutional
network which extracts a feature map from the input image from
where the predictions can be made. This approach makes the
algorithm additionally end-to-end trainable resulting in high
accuracy. Furthermore, this model is well established, and fast in
training and is the commonly used building block in many object
detection tasks (41, 44, 45). Hence, this model is chosen as a basis
for CeCILE.

In this study, we introduce the faster RCNN based algorithm
CeCILE (Cell Classification and In-vitro Lifecycle Evaluation),
which can detect and classify cells of three different categories of
vital cells (living, round, and dividing) and one category of dead
cells in live-cell phase-contrast videos. We show the whole
process of the creation of a proper data set up to the final
object detection algorithm. Furthermore, we test the algorithm in
a radiobiological experiment, where we irradiated CHO cells
in-vitro with 4 Gy of 20 MeV protons. The results achieved with
the algorithm accompanied by manually analysis, as the
performance of CeCILE is limited at the moment, are compared
to cell survival measured with the gold-standard colony forming
assay as well as FACS (fluorescence activated cell sorting) based
apoptosis and necrosis assay.
MATERIALS AND METHODS

Cell Culture
For the experiments in this study, two epithelial cell lines Chinese
Ovarian hamster cells (CHO-K1) and human cervical carcinoma
cells (HeLa) were used.

CHO-K1 were used for the radiation experiments and the
generation of the dataset. The cells were cultivated in RPMI
growth medium (R8758-500ML, Sigma Aldrich, USA),
June 2021 | Volume 11 | Article 688333
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supplemented with 10 % FCS (F0804-500ML, Sigma Aldrich,
USA), 1 % Penicillin-Streptomycin (P4333-100ML, Sigma
Aldrich, USA) and 1 % Sodium Pyruvate (S8636-100ML,
Sigma Aldrich, USA) grown at a temperature of 37°C, 5 %
CO2 and 100 % humidity, which is denoted in the following as
cell culture conditions.

Additionally, HeLa cells were used to generate the dataset for
training the algorithm. HeLa cells were cultivated in RPMI
growth medium (R8758-500ML, Sigma Aldrich, USA)
supplemented with 10 % FCS (F0804-500ML, Sigma Aldrich,
USA) and 1 % Penicillin-Streptomycin (P4333-100ML, Sigma
Aldrich, USA) at cell culture conditions.

Irradiation
The experiments were performed at the ion-microprobe SNAKE
(46, 47) at the tandem accelerator of the Maier-Leibniz-
Laboratorium in Garching near Munich, Germany.

Irradiation and Sample Preparation for CFA Assay
and Caspase 3/7-Sytox Assay
CHO-K1 cells for Colony-forming and Caspase3/7-Sytox assay
were seeded 24 h before irradiation in self-designed sample
holders (15). These sample holders keep the cells under
physiological conditions and saturated atmosphere, while there
is no medium on the cells during irradiation. A detailed
description can be found in (15, 47). In these containers, the
cells grow on a 6 μm Mylar foil coated with gelatin to encourage
the growth on the foil. For coating, the gelatin was warmed up to
37°C and solved in distilled water to a 0.1 % (w/w) solution. 1 ml
of the solution was then added on the Mylar foil in the area of
the sample holders, where the closed sample holder has a
window only covered by two Mylar foils, and incubated for
30 min at 37°C. Then the gelatin solution was removed and the
sample holder was washed two times with PBS. Finally, the
sample holders dried on air for a minimum of 2 h. For seeding
the cells in a well-restricted area of approx. 6 mm x 6 mm, a
silicon insert (Culture insert 2 well, Ibidi, Germany) was used.
This insert restricts the growth area to two rectangular areas with
a gap of 500 μm in between. The inserts stick themselves on the
gelatin-coated stretched Mylar foil and every insert was put in
the middle of the window area of the sample holders at the same
position by using a self-made template. In each well of the insert,
30.000 cells were added in 100 μl growth medium. CHO-K1 cells
were then incubated in the inserts for 24 h at cell culture
conditions. Before irradiation, the insert was removed, 3 ml
growth medium was added, and the sample holder was closed.
Five samples were irradiated for colony forming assay and four
samples for Caspase 3/7-Sytox assay. The field size of the
irradiation field was 6.5 mm x 6.5 mm. The CHO-K1 cell
samples were mounted in the irradiation position in the
beamline at an upright rotated microscope. With this
microscope, the position of the cells could be visualized and the
sample holders could be aligned to the beam. The irradiation
procedure in upright position lasted about 10 min. Consequently,
the unirradiated sham samples were treated the same as irradiated
samples, without switching on the irradiation. The CHO-K1 Cells
Frontiers in Oncology | www.frontiersin.org 4
were irradiated with a target dose of 4 Gy of 20 MeV protons at a
dose-rate of 3.7 Gy/min. The dose was monitored during
irradiation with an ionization chamber between the sample and
the ion beam. The detector was connected to an electrostatic beam
switch, which switched off the beam after the dose limit was
reached as given from the ionization chamber. The ionization was
calibrated with EBT3 gafchromic films (Ashland Advanced
Materials, USA) and verified for each irradiation by a film
placed behind the sample. The dosimetric measurements using
the EBT3 gafchromic films showed an actual mean irradiation
dose of (3.8 ± 0.7) Gy (standard deviation, cf. Supplementary
Tables 3 and 4). This dose will later be referred as the 4 Gy
irradiation. Variation of dose came from variations in ionization
gas concentrations and beam current variations coming from the
accelerator, which could not be fully compensated. The mean dose
was calculated by the 9 irradiated samples. The large dose error
originates from an outlier, which received only 2.29 Gy, which
almost doubles the standard deviation.

Irradiation and Sample Preparation for
Phase-Contrast Analysis
CHO-K1 cells were seeded in a self-designed live-cell-imaging
(LCI) container as described in detail by Hable and co-workers
(48). In this experiment, a glass window was used in the LCI
container instead of a scintillator window, because the ion-
detection was performed between beam and sample and
therefore a scintillator window was no longer needed. To
encourage the cells to grow on glass, the glass window was
coated with gelatin in the same way as described above, except
adding 700 μl of the gelatin solution on the glass window instead
of 1 ml, because of the smaller area. A four-well insert (micro
insert 4 well, Ibidi, Germany) was used to restrict the growth
area. This insert has a circular shape and contains four
rectangular wells for growing the cells in smaller restricted
rectangular areas. The insert was positioned in the middle of
the window of the LCI container. In each well, 1000 cells were
added in 10 μl growth medium solution and another 300 μl of
medium was added as a medium reservoir on top of the insert.
The samples were incubated after seeding for 24 h at cell culture
conditions. Before irradiation, the insert was removed and the
container was closed. The cells were covered with polypropylene
foil to keep them at saturated conditions and prevent drying of
the cells during irradiation. For proton irradiation, the LCI
container was mounted at the microscope in the beamline and
the sample with CHO-K1 cells was aligned to the beam. One of
the four wells was irradiated with 4 Gy of 20 MeV protons by
moving the sample in a position, where only the cells of one area
are irradiated. The second well was left unirradiated and served
as sham. The last two wells of cells were irradiated with 4 Gy at
different dose-rates and are not analyzed here. After irradiation,
the medium was removed and 6 ml medium was added. The
irradiated dose was measured using an ionization chamber. The
calibration from 33 independent dose measurements, where
the measured 4 Gy of the ionization chamber was calibrated
against gafchromic films, gave a mean dose of (3.9 ± 0.6) Gy. This
dose is in the following referred to as 4 Gy.
June 2021 | Volume 11 | Article 688333
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Irradiation and Sample Preparation for Generation of
Data for Training of the Algorithm
HeLa cells were seeded in LCI-containers on a scintillator
window. The scintillator window was coated with Cell-TAK
(Cat. No. 354240, Corning, USA) to improve cell growth. For
coating, 5 μg of Cell-TAK was solved in a 30x-Na-bicarbonate-
buffer, added on the surface of the scintillator window, and
incubated for 20 min at room temperature. Then, the Cell-TAK
solution was removed and the coated surface was washed with
sterile water. The samples were then completely dried for a
minimum of 2 h. An insert (micro insert 4 well FulTrac, Ibidi,
Germany) with small 4 round wells (diameter of 0.4 mm) was
placed on the coated surface. In each of the wells, 600 cells were
added in 10 μl. The samples were incubated at cell culture
conditions for 1 h. Afterward, the insert was gently removed
and 6 ml medium was added to the cells and they were incubated
for another 23 h at cell culture conditions. For irradiation, the
container was closed with polypropylene foil. The sample was
positioned in the beamline and aligned for irradiation with the
microscope. The issue of underrepresented dead cells in the
images was addressed by an additional type of irradiated
samples. These were irradiated with 55 MeV carbon ions,
which are known to induce a higher amount of cell death
compared to 20 MeV protons (49). One cell area on the
sample was irradiated with 1 Gy of 55 MeV carbon ions, the
second with 2 Gy, and the third area with 4 Gy. The last area was
left unirradiated as direct control. The carbon ions were detected
with a photomultiplier behind the sample as described
before (48).

Live-Cell Phase-Contrast Imaging
CHO-K1 or HeLa cells were imaged using a standard phase-
contrast microscope with a motorized stage (Axio Observer Z1,
Zeiss, Germany). Additionally, the microscope was equipped
with a stage top incubator (Tokai-hit STX, Tokai-hit, Japan). The
cells were kept at culture conditions during the observation.
Therefore, we were able to image for more than 5 days. Since the
incubator enriches the air within with over 95 % humidity and
prevents the sample from drying, the water in the incubator’s water
bath has to be refilled every day. Every second day the growth
medium in the sample was refilled to ensure optimal conditions for
the cell growth. The cells were imaged with a 10x objective (Plan-
Apochromat 10x/0.45 Ph1, Zeiss, Germany) and recorded with a
camera (AxioCam MRm, Zeiss, Germany) with a pixel size of
6.45 μm x 6.45 μm and a field size of 1388 x 1040 pixels. A 1x
adapter (60N-C 1” 1,0x Adapter, Zeiss, Germany) between camera
and microscope was used. HeLa cells were imaged with the
condenser annuli Ph 2 every 15 min for 5 days. CHO cells were
imaged with the condenser annuli Ph 1 every 5 min for 2 days.

Colony Forming Assay
For colony forming assay, 5 samples were irradiated and 5
samples serve as a sham. Immediately after irradiation, the
cells were trypsinized to be removed from the mylar foil and
counted two times in a Fuchs-Rosenthal chamber (C-Chip,
NanoEntek, South Korea). A total number of 400 to 700 cells
was counted for each sample. The cells of each sample were
Frontiers in Oncology | www.frontiersin.org 5
seeded in three 12-well-plates (Greiner, Germany). A seeding
density of 100 cells/ml was chosen for unirradiated cells and
400 cells/ml for irradiated cells to ensure similar colony density
on the 12-well-plates. In every well of the plates, 1 ml of the cell
solution was added. The cells were incubated for 5 days at cell
culture conditions in a water-jacketed incubator (Uniequip,
Germany). After five days the cells were rinsed with PBS
(D8537-500ML, Sigma Aldrich, Germany) and fixed with
Methanol (SupraSolv® Methanol, Merck, Germany) for 5 min.
They were stained with a 0.1 % crystal violet (Kristallviolett,
Merck, Germany) solution for 2 min and finally washed with
water and dried at room temperature for one day according to
(49). The plates were scanned with GelCount (Oxford Optronix
Ltd., UK) and counted manually. For evaluation, only colonies
were counted with a minimum of 50 cells. For the analysis, the
plating efficiency (PE) is defined as the percentage of cells that
have formed a colony of all seeded cells. To calculate the survival
fraction (SF) the PE value for a sample was divided by the mean
PE value of the unirradiated cells (PE0). The mean PE value for
the unirradiated cells in this study was 0.53 ± 0.04, where the
uncertainty (DPE) was the SEM (standard error of the mean)
among 5 samples. This measured PE value correlates to the PE of
previous experiments (49). The uncertainty of SF (DSF) was
calculated by using the Gaussian error propagation as

DSF = SF ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DPE
PE

� �2

+
DPE0
PE0

� �2
s

:

The results of the experiment were compared with a reference
measurement with 200 kV x-rays (49, 50). These data were fitted
by a commonly used linear quadratic curve

SF =   exp ( − (a · D + b · D2)),

where D denotes the irradiated dose and a and b are fitting
parameters. For the fit, the parameters a = (0.156 ± 0.045) Gy-1

and b = (0.0235 ± 0.0055) Gy-2 were derived from the results of
two independent experiments, performed by K. Ilicic (49, 50) at
comparable conditions as in the experiment described here.
Caspase3/7-Sytox Assay
Directly after irradiation of the cells, the medium was changed
and the cells were incubated for 24 h at cell culture conditions.
Then, the cells were trypsinized by keeping the supernatant of all
steps. Afterward, cells were stored at room temperature for
45 min while moving them to the analyzing laboratory. Finally,
the solution of trypsinized cells and the supernatant were mixed
and centrifuged at 500 g for 5 min at room temperature. After
centrifugation, the supernatant was removed to the last 1 ml of
the fluid, which also contained the cells. This solution was gently
vortexed to distribute the cells equally in the fluid. The cells in
the solution were stained with Caspase3/7 and Sytox
(CellEvent™ Caspase-3/7 Green Flow Cytometry Assay Kit,
Invitrogen, USA) by following the instructions of the
manufacturer. First 1 μl of CellEvent™ Caspase-3/7 Green
Detection Reagent was added to the solution to end up in a
final concentration of 500 nM of the reagent and the samples
June 2021 | Volume 11 | Article 688333
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were incubated at 37°C for 30 min. Finally, 1 μl of SYTOX™

AADvanced™ was added to the cell solution to obtain a
concentration of 1 μM and the solution was incubated for
another 5 min at 37°C. The stained cells were analyzed using the
FACSCalibur flow cytometer (BD Biosciences, USA). To detect the
Caspase 3/7, a 530/30 bandpass filter (FL1) was used to collect
the fluorescence emission after a 488 nm excitation and for Sytox a
690/50 bandpass filter (FL3) was used. The data analysis was
performed using CellQuest software (BD Biosciences, USA). Cells
with a positive Caspase 3/7 and positive Sytox staining were
classified as late apoptotic cells. Cells with a positive Caspase 3/7
and negative Sytox staining were classified as early apoptotic cells.
Cells with a negative Caspase 3/7 and positive Sytox staining were
denoted as necrotic cells and cells with no staining signal were
classified as vital cells.

Manual Labeling of Cells
For manual labeling, phase-contrast images were used. Images
containing several cells were uploaded in the open-source
browser-based software VGG image annotator (VIA) (51).
Here, cells were labeled using rectangular boxes, and
classification, as identified by eye by a human expert, was
added as a tag. Identification was based on the development of
cell morphology up to 25 frames before and after the labeled
frame, corresponding to changes within 4 hours.

CNN Algorithm
For classification, a CNNwith four convolutional layers based on the
architecture of LeNet-5 (52) was used. Each of the convolutional
layers was followed by a max-pooling layer to minimize the number
of learnable parameters. The first convolutional layer applied
32 filters to the images of the dataset, the second convolutional
layer had 64 filters and the last two convolutional layers applied
96 filters each. Two fully connected layers with 512 and
4 connections follow the convolutional layers. As activation
function ReLU (Rectified Linear Unit) was chosen, which is
commonly used in CNNs. ReLU was applied in all convolutional
layers and the first fully connected layer. In the second fully
connected layer, a softmax function was implemented as
activation. The network had a total number of 4,143,236 trainable
parameters. This algorithm is python based and was implemented
using the TensorFlow 1.12.0 backend. The CNN was trained on the
classification dataset. For this dataset the labeled boxes of the dataset
of CeCILE were cropped to obtain images containing only one
object. To tackle class imbalances, the images of the classes div and
round were upsampled via data augmentation methods. In the class
round every second image was vertically flipped and for the class div
the augmentation methods enhance brightness, contrast, and
sharpness, lower brightness and contrast were applied on the
images and on vertically flipped images to increase the number of
images in this class by a factor of 11. During training time the
augmentation methods random rotations, random zoom, random
width shift, randomhorizontal shift and horizontal flip were used for
all classes to make the training more robust and to improve the
generalization. For training and testing the CNN, the classification
dataset was randomly split into 75 % for training and 25 %
for testing.
Frontiers in Oncology | www.frontiersin.org 6
Faster RCNN Algorithm
The object detector is python based and implemented using the
TensorFlow Object Detection API (53) with TensorFlow version
1.12.0. The detailed configuration is described in (54). As a
backbone architecture, a ResNet101-CNN was used topped by a
classification head and a localization head as designed by Ren
et al. (43). The finetuned final parameters for CeCILE are shown
in Table 1 in the Supplementary.

Additionally, an algorithm for detecting the cells in a video
stream was developed using OpenCV 4 and TensorFlow 1.12.0.
The algorithm takes the object proposals from the TensorFlow
API and calculates positions and classes of the objects over the
video frames. CeCILE was trained on an Nvidia RTX 2080 Super
GPU. One training cycle took eight hours. To optimize the
algorithm 200 training cycles were performed, each with
varying parameters. For training and validation, the dataset
was split randomly in subset containing 75 % of the labeled
images for training and 25 % for testing.
RESULTS

Generation of the Dataset
A dataset containing images with marked locations of the cells and
their respective labels is needed for training and validation of the
model. We decided to use an easily applicable method to generate
the dataset by using rectangular boxes around the cells, so-called
bounding boxes. Hence, the dataset can be extended for applications
at different cell lines or microscopes. To get a more generalized
dataset, CHO-K1 and HeLa cells were used. Both cell lines are
epithelial cells, grow in a monolayer and are well established in
radiobiology. Furthermore, we imaged the cells with different phase-
contrast illuminations, resulting in a variation of brightness, inner
cell contrast, and edge contrast. Overall 329 images were manually
labeled containing 28,576 cells from 5 different samples with 2
different imaging conditions (imaging modality Ph 2 for HeLa cells
and Ph 1 for CHO cells). 46 % of all labeled cells were HeLa cells and
the other 53 % were CHO cells. In Supplementary Figure 1,
example images of both cell lines with their specific imaging
modalities are shown. This dataset serves as ground truth for
training and validation of CeCILE.

Our goal was to follow cells during the whole cell cycle and to
be able to detect them in every state. Throughout the cell cycle,
the morphology of a cell in culture changes. This change can, in
the first approximation, be assigned to three classes. The three
classes show a transition circle, which is shown in Figure 1A. In
the first state, the cell is attached to the surface of the cell culture
flask and shows a very flat “fried egg” like shape, where the cell
nucleus looks like the yolk and the surrounding part of the cell
containing the cell plasma and the organelles looks like the egg
white, as shown in Figure 1B. Cells of the same cell line can have
very different outlines in this stage depending on the environment
and mutations. All of them belong to the class living cell (liv). In
the second class, the cells are no longer attached to the surface and
show a round shape. Therefore, this class is called round cell
(round). This state occurs during mitosis shortly before cell
June 2021 | Volume 11 | Article 688333
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division or shortly after division. The round cell has, unlike the
living cell, a high contrast at its edges, as shown in Figure 1C.
Since the transition between living cell and round cell state is
smooth, a cell is labeled as round cell when most of the cell edges
show this high contrast and therefore, most of the cell is no longer
attached to the surface. The third class is named cell division (div)
and contains cells that undergo cell division, as shown in
Figure 1D. A cell is counted as div if it is no longer round, the
ongoing separation can be seen and as long as the two daughter
cells are not completely separated from each other. These three
classes describe vital cells. However, cells can die at any stage of the
cell cycle (cf. Figure 1A). Therefore, we included a fourth class
(dead) in our algorithm, which contains all dead cells. Dead cells
Frontiers in Oncology | www.frontiersin.org 7
typically turn dark inside during the dying process and form
bubbles, as shown in Figure 1E.

At normal conditions, approx. 80 % of the labeled cells in an
image belong to the class liv. This leads to a high imbalance of the
dataset. To combat this problem, additional data were acquired,
where HeLa cells were irradiated using 55 MeV high-LET carbon
ions, increasing the number of dead cells. Overall, the whole dataset
including CHO-K1 and HeLa samples contained 65.7 % of the cells
in the class liv, 10.6 % in the class round, 0.4 % in the class div, and
the last 23.3 % belong to the class dead. All specifications of the
dataset are summarized in Table 2 in the Supplementary. An
imbalance is still visible in the dataset with an underrepresentation
of the classes round, div, and dead. The used algorithms give
A

B D EC

FIGURE 1 | In (A) all possible transitions between the classes are depicted. Example images of cells of the dataset in the four states are shown in (B–E) defining the
classes for training. The contrast of the raw data images was enhanced for better visibility and raw data can be found in the Supplementary Figure 2.
June 2021 | Volume 11 | Article 688333
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system-specific methods to compensate for this imbalance and will
be explained later on for each case separately.

CNN Algorithm to Classify Cells
In our first step of developing an algorithm for object detection,
we started with a classification task using a simple CNN based on
LeNet-5 (52) instead of a more advanced CNN like ResNet-101,
because of the much shorter training time. The boxes of the
manually labeled images of the dataset were snipped out to get
images containing only one object and the algorithm learned to
assign class labels to these images. To counteract the imbalance
of the dataset, the minor classes were upsampled as described in
Methods Section CNN Algorithm by using the different
augmentation methods to obtain 1,320 images in the class div
and 4,617 images in the class round forming the classification
dataset. In training time additional augmentation was applied on
all classes. The augmentation only adds minor changes to the
images, which do not affect the appearance of the cells
themselves, but for the algorithm, it results in completely new
images. A further advantage of augmentation is that these
changes make the algorithm more robust and prevent
overfitting (55). However, if too many augmentation methods
are applied the algorithm tends to overfit and will then not be
able to generalize well for analyzing completely new images.
Hence, careful evaluation of the classification was performed at
each step of training.

One important evaluation step is to analyze the confusionmatrix
on the test dataset (containing 25 % of the classification dataset)
depicted in Figure 2. The confusion matrix shows the correlation
between the manually labeled classes (True Class) of the training
dataset and the prediction from the algorithm (Predicted Class) for
all cells. The better the algorithm, the more entries are on the main
diagonal. Figure 2 shows that in our case most of the entries are on
the main diagonal and therefore most of the images of the test
dataset were classified correctly. Overall 5.5 % of the cells were
classified in the wrong class. 5.1 % of the dead cells, 1.6 % of the
Frontiers in Oncology | www.frontiersin.org 8
dividing cells, 3.8 % of the living cells, and 13.0 % of the round cells
were predicted wrong. The largest error of the algorithm is between
the classes round and liv, where 237 cells were predicted wrong.
This corresponds to 5.0 % for the class liv and 20.4 % for the
class round.

Another evaluation of the algorithm in classification tasks is
performed by the scores precision, recall, and f1score defined as

precision =  
TP

TP + FP
,

recall =  
TP

TP + FN
 and

f 1score =  
2 · recall · precision
recall + precision

TP indicates the true positives representing the number of cells
that are correctly predicted. FP are the false positives. These are
all images that are falsely predicted to the considered class. The
last group are the false negatives (FN). They would belong to the
considered class but were falsely categorized to another class.
These scores must be calculated for each class separately. The
precision gives the proportion of correctly predicted positive
identifications to all positive identifications. It tells how precise
are the predictions one gets. Recall, on the other hand, is defined
by the proportion of actual positives that were correctly
identified. This generates the sensitivity of finding positive
predictions and how many predictions are missed. The f1score
gives the harmonic mean of precision and recall and therefore
provides the quality of the algorithm for each class. All three
values are 1.0 for an ideal algorithm.

Table 1 lists the precision, the recall, and the f1score of all
classes. The precision and recall scores for all classes lied between
0.87 and 0.98. The classes dead, liv and round have similar
precision and recall scores, while the recall score of the class div
(0.98) is higher than its precision score (0.90). The class liv shows
the highest score with an f1score of 0.96 followed by dead and div
with f1score of 0.95 and 0.94, whereas the class round has the
smallest f1score of 0.87. The mean f1score of all classes is 0.93,
which is a very good value and proofs the successful classification
using the four classes and acquired dataset.

CeCILE - An Algorithm for Cell Detection
on Microscopic Videos
After the successful proof of cell classification with the
used classes and acquired data, the next step is to set up an
June 2021 | Volume 11 | Article 688333
FIGURE 2 | The confusion matrix of the classification of the dataset on a
simple CNN.
TABLE 1 | Evaluation of the classification by a simple CNN on the upsampled
dataset.

precision recall f1score

dead 0.96 0.95 0.95
div 0.90 0.98 0.94
liv 0.97 0.96 0.96
round 0.87 0.87 0.87
mean over all classes 0.93 0.94 0.93

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Rudigkeit et al. CeCILE
object detection. For this study, a detector based on a faster
RCNN was designed. The basic idea is to use a backbone fully
convolutional neural network to extract the features from an
image and to predict the bounding boxes and the classes of the
objects in two separate heads. A detailed description of the basic
architecture of the faster RCNN can be found elsewhere (43). To
save computational time, transfer learning with a pretrained
ResNet-101 model trained on the COCO dataset (56) from the
TensorFlow 1 Model Detection Zoo was used. Transfer learning
provides the basic low level features. For identification of the cell
specific appearance, classification, and location, CeCILE was
trained on the dataset described in this study. The model was
finetuned while training on our dataset with the four classes. The
data preparation and training pipeline for faster RCNN is
implemented as described by Rosebrock (54) with modifications
due to the input data.

In the first step of the faster RCNN, the image is fed into the
backbone convolutional neural network. This gives a
representation of image features, the so-called feature map.
Afterward, a set of boxes, called anchors, with different aspect
ratios and scales is placed around each pixel in the input image.
We used aspect ratios of 1:1, 1:2 and 2:1 on four scales of 0.25,
0.5, 1.0 and 2.0. Here, 1.0 equals a size of 256 x 256 pixel. For
each anchor, the model infers whether an object is inside or not.
The anchor which suits best for each object is finetuned to the
position of the object and forwarded as a bounding box. The
bounding box defines the object location and extension and is
compared for validation to the manually labeled ground truth
boxes later. The classification head infers the class label to each
bounding box and calculates a confidence score of the algorithm
for the respective prediction. In Figure 3, a scheme of the design
of faster RCNN is displayed. Crowded areas can lead to
overlapping bounding boxes of different objects. To account
for this, a method called NMS (Non-maximum Suppression) is
used, where only bounding boxes are kept with an IoU
(Intersection over Union) score smaller than a chosen
threshold. The IoU is calculated by dividing the intersection
Frontiers in Oncology | www.frontiersin.org 9
area of two boxes by the union area of the two boxes and is
therefore a score for the overlap of two bounding boxes in an
image. To increase the generalization of the model, three data
augmentation methods were used during training: random
image horizontally flips, random brightness, and random
contrast adjustments. To compensate for the imbalance of the
classes, class weights were implemented. The class liv, containing
the majority of the cells, gets the smallest weight of 0.25. The
class div gets a four times higher weight and the other two classes
both get the medium weight of 0.5. The object detector is trained
and optimized for the best classification and detection (cf.
Supplementary Table 1) in a single image. It was then
extended to detect the cells in a video stream forming the final
CeCILE algorithm.

Validation of CeCILE
The performance of CeCILE is qualified using the experimental
data of this study. In this study, CHO-K1 cells were in the first
sample irradiated with (3.9 ± 0.6) Gy 20 MeV Protons, referred
in the following as 4 Gy, and in the second sham irradiated. After
irradiation, the cells were imaged via phase-contrast for 2 days
every 5 min. Between irradiation and observation, no treatment
was applied and the cellular behavior can be investigated without
disturbing the cells by any other treatment besides the irradiation.
The videos were analyzed by the deep-learning based object detector
CeCILE. Additionally, 14 frames in each video were analyzed by a
human expert, in the following denoted as ground truth, and the
results of both methods were compared. The predictions of CeCILE
for both videos are listed in Supplementary Tables 5 and 6, from
the ground truth in Supplementary Tables 7 and 8. The videos with
the boxes predicted by CeCILE are shown in Supplementary
Videos 1 and 2. In order to improve the performance of CeCILE
on the videos of the study and to make the image analysis more
reliable, 11 frames from the ground truth data from each video were
included in the dataset. The frames 288, 432 and 576 were not
included here as they contain more than 100 cells. The dataset was
split randomly into 75 % for training and 25 % for testing.
FIGURE 3 | The schematic design of faster RCNN as object detector.
June 2021 | Volume 11 | Article 688333
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The generalization of CeCILE was validated on the test data set and
on unknown video data.

To quantify the performance and therefore qualify the
algorithm the mAP (mean Average Precision) score, which is
commonly used to qualify object detection algorithms (39, 53,
57), is used. In this score, a bounding box is indicated as true
positive if the class is predicted right and the predicted box and
the ground truth box, i.e. the manually labeled box, overlap by at
least a certain percentage defined by the IoU threshold. A
bounding box is false positive if either the class is predicted
wrong or the box has a smaller overlap with the ground truth box
than the IoU threshold. False negative is an object that is not
detected at all. The average precision (AP) score is the area under
the interpolated precision-recall curve, indicated as light blue
area in Figure 4. Here, the AP was calculated for the class liv and
has a value of 89.15 %. To achieve the precision-recall curve, all
boxes of one class are sorted by their confidence score and for
each score, the precision and the recall are calculated. Finally, the
precision is plotted against the recall and the interpolated area
under this curve is calculated as AP. The average AP for each
class ½AP(class)� is calculated as the mean of each AP at different
IoU thresholds from 50 % to 95 % in 10 steps (# IoU) of 5 % as

AP(class) =  
S95%
IoU= 50% in 5% steps AP(IoU)

#   IoU

This is done for every class separately and the mAP

mAP =
Sclasses(liv,  round,  div,  dead)AP(class)

#   class

is calculated as the mean of all AP(class) over all four classes
(# class). For an ideal algorithm, the mAP equals 100 %.

In Figures 5A, B the boxes of the ground truth and the boxes
predicted by CeCILE are shown on a phase contrast image for
Frontiers in Oncology | www.frontiersin.org 10
visualization. The overlap of the ground truth boxes and the
boxes predicted by CeCILE are depicted in Figure 5C. From such
an overlap now the mAP-score can be calculated.

Figure 6A depicts the mAP-score for each analyzed frame of
the two samples, one irradiated (red curve) and one sham
irradiated control (black curve). The mAP-score in this study
was calculated according to (58). For the irradiated sample, the
detector gains scores higher than 98 % until frame 200, except
from frame 1 (49 %) and frame 40 (90 %). For higher frame
numbers, the mAP-score dramatically decreases to scores of
30 % (frame 432) – 60 % (frame 288). In the sham sample, the
mAP-scores are higher than 98 % until frame 60. Then, the
mAP-score drops to 55 % at frame 80 followed by an increase to
98 % at frame 120. For frames between 140 and 200, the mAP-
score is between 83 % and 92 % and decreases after frame 200
quickly to a score of 9 % at frame 576, which corresponds to 48 h
after irradiation. The mean mAP-score of the frames of both
samples containing less than 100 cells is (91 ± 3) %. The
uncertainty is here given by the standard error of the mean.
For a better visualization of how the here described mAP-scores
were composed, the AP(class)-scores of the four classes in the
here analyzed frames are listed together with the mAP-scores in
Supplementary Table 9.

In Figures 6B–D the number of either predicted cells by
CeCILE (P) or manually labeled cells as ground truth (GT) for
the four classes are shown in stacked bar graphs. In each graph,
the results are shown for one frame. For visualization, frames 1
(Figure 6B), 200 (Figure 6C) and 576 (Figure 6D) are chosen. In
the graph for frame 1, the bars in both samples for both the
prediction and the ground truth have almost the same height
(56 cells and 55 cells in the sham sample and 45 cells in the
irradiated sample). For the sham sample, the same number of
living cells (36 cells) and of dead cells (1 cell) is determined from
both the ground truth and CeCILE, while 1 round cell less is
predicted by CeCILE than by the ground truth in this case. On
this frame, no cell division is visible. The mAP for this frame in
the sham sample is 98 %. In frame 1 of the irradiated sample,
CeCILE predicts 6 living cells more than the ground truth and 5
round cells less. The dead cell from the ground truth is not
predicted. This discrepancy in classification results in an mAP of
48 %. In frame 200 for both samples, the same cell number is
predicted. The cell numbers in the classes round and div coincide
between the ground truth and prediction. Whereas, in the class
liv, CeCILE predicts 1 cell more than the ground truth and in the
class dead CeCILE predicts 1 cell less than the ground truth. This
results in an mAP of 91 %. In the irradiated sample, CeCILE
predicts the same number of cells for all classes as the ground
truth, resulting in an mAP-score of 100 %. At frame 567, CeCILE
predicts overall 77 % less cells in the sham sample than the
ground truth and 53 % less cells in the irradiated sample. In the
sham sample, CeCILE predicts 24 % of the living cells, 33 % of
the round cells, and 13 % of the dead cells determined by the
ground truth. The cell division is not detected by CeCILE. This
results in an mAP-score of 9.23 %. In the irradiated sample, 48 %
of the living cells, 77 % of the round cells, and 8 % of the dead
cells are predicted by CeCILE compared to the ground truth.
FIGURE 4 | Precision-recall curve (blue dotted line) to calculate the AP of
class liv as example. The AP is calculated as the area of the interpolated
precision-recall curve colored here in light blue and corresponds to 89.15 %.
June 2021 | Volume 11 | Article 688333
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The mAP-score is 32 %. The decreased mAP-scores in frame 576
in both samples are not due to the wrong classification as in
frame 1 in the irradiated sample, but due to too few detected cells
by CeCILE. Therefore, the frames with low mAP-scores can be
sorted into these two groups, either with low classification
accuracy or low detection efficiency. The decreased performance
of CeCILE after frame 200 originates from a problem caused by
the algorithm (56), that was used as a basis of the model via
transfer learning. In this model, the maximum detections which
Frontiers in Oncology | www.frontiersin.org 11
can be performed on an image are limited to 100 objects.
Therefore, our model fails to detect all objects in images with
more than 100 objects, which is the case for the frames after frame
200. Solving this problem is currently work in progress.

CeCILE performed very well on partly known video data with
frames containing < 100 cells. The generalization of an algorithm
provides the performance of the algorithm on unknown data.
Here, the generalization is measured on the one hand on the
test dataset and on the other hand on unknown video data.
A B C

FIGURE 5 | The ground truth boxes are shown in (A) and in (B) the boxes predicted by CeCILE. White frames label round cells, green frames living cells and orange
frames dead cells. In (C) the box areas from the ground truth are depicted in green and the box areas of CeCILE in magenta. The overlap of the boxes from CeCILE
and the ground truth is shown as white areas.
A B

DC

FIGURE 6 | (A) shows the mAP scores of the irradiated and the non-irradiated (sham) sample over all frames. In (B–D) the number of cells (CHO-K1) in each class are
depicted by the bars for frame 1, 200 and 576, respectively. Here, the number of cells of the ground truth labeling (GT) and the prediction of CeCILE (P) are compared.
June 2021 | Volume 11 | Article 688333
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CeCILE achieved a mAP of 38.14 % on the test dataset. Since in
the test dataset are also images containing more than 100 cells,
this might lower generalization than it actually is. Therefore, we
retrained CeCILE on our dataset after excluding the ground truth
data of the videos of the here described study. Then, the videos
were again analyzed by the unknowing CeCILE and the mAP was
calculated based on 22 frames of both videos, which are part of the
ground truth data. Here, unknowing CeCILE achieved a mAP of
51.51 %. While cells of the class liv and round were predicted
reliably with mean AP(class)-scores of 74.10 % and 70.87 %, the
generalization was very low for the classes dead and div with mean
AP(class)-scores of 6.48 % and 16.67 %. The here calculated mAP-
scores for each frame are listed in Supplementary Table 10.

Cellular Response to Radiation Evaluated
With CeCILE
In the next step, we analyze the cellular response to irradiation
with 4 Gy 20 MeV Protons using the phase-contrast videos,
which were also used for validation on the section before. For the
biological analysis of the videos, the frame number is replaced by
the acquisition time with frame 1 being timepoint 5 min and the
time between the frames equals 5 min.

The initial cell number at 5 min is 56 cells (36 liv, 19 round, 0
div, and 1 dead) at the sham sample and 45 cells (30 liv, 14
round, 0 div, and 1 dead) at the irradiated sample. For
quantitative analysis, the cell numbers at each timepoint are
normalized by the initial cell number in the corresponding
sample and are displayed in Figure 7. The results of the sham
sample are shown in black and in red for the irradiated sample.
For comparison, the predictions of CeCILE (P) are shown by
continuous lines, while the ground truth (GT) is visualized by
dashed lines. In Figure 7A, the fraction of all vital cells, i.e.
combination of classes liv, div, and round, is shown.

The ground truth shows a phase of constant cell numbers at the
beginning of the imaging period up to 5 h. This phase originates
from a cell cycle arrest due to the stress of handling during the
experiment. At 48 h, the number of cells in the sham sample is
6.4 ± 0.6 times higher compared to the start. A factor of 4.7 ± 0.5 is
reached in the irradiated sample, corresponding to 73.4 % growth
of irradiated cells compared to sham irradiated controls. These
results are statistical different (p < 0.05, unpaired t-test).

For automatic detection using CeCILE in the first 5 h of
observation, also here the number of cells stays constant and
after that, both populations start to grow with comparable results
to the ground truth until 20 h when the normalized number reaches
1.5. For later time points, CeCILE gives no reliable results as already
explained above. Therefore, no analysis is done here. In Figure 7B,
the normalized number of cell divisions is shown. In the irradiated
sample, CeCILE detects 6 cell divisions until 20 h with a maximum
of 1 div per timepoint and in the sham sample 125 cell divisions
until 20 h with a maximum of 3 div per sample. Therefore, cell
divisions are detected 21 times more often in the sham sample than
in the irradiated sample in the first 20 h. After 20 h, in the ground
truth of the irradiated sample no more than 1 cell division per
timepoint is observed, whereas, in the sham sample, a maximum of
2 div is detected by the ground truth. The form of the graphs for the
Frontiers in Oncology | www.frontiersin.org 12
living cells (Figure 7C) is very similar to the graphs of the vital cells
between 10 h and 48 h. Until 3 h, the normalized number of living
cells in the sham sample decreases by 36 % from 0.64 to 0.41. After
that, it increases steadily to a value of 6.0 at 48 h. The living cells in
the irradiated sample decrease by 13%within the first 5 h from 0.67
to 0.58. From 5 h till the end, it increases steadily to a value of 4.4.
Between 3 h and 5 h, where the living cells show their minimum in
both groups, the normalized number of round cells in Figure 7D
increases from 0.32 to amaximum of 0.55 at 5 h in the sham sample
and from 0.32 to a maximum of 0.44 at 3.5 h for the irradiated
sample. From there, the normalized number of round cells
decreases until a minimum is reached for the irradiated cells at
24 h and 37 h for sham cells. Finally, the number of round cells
increases to 0.3 at 48 h for both groups. In Figure 7E, the
normalized number of dead cells is shown. The normalized
number of dead cells chitters until 24 h between 0 and 0.044 in
the irradiated sample and between 0 and 0.07 in the sham sample.
Between 24 h and 48 h, the normalized number of dead cells
analyzed by a human expert increases to 0.27 for both groups.

Cell Survival After Irradiation Using CFA
The colony forming assay is a commonly used assay and is also
often referred to as the “gold standard” in radiobiology for
addressing cell survival. The cell survival in this assay is
determined by the number of cells, which were able to form a
colony containing more than 50 cells. In our experiment, the
colony forming assay of CHO-K1 cells after irradiation with
(3.8 ± 0.7) Gy, referred later as 4 Gy, using 20 MeV protons was
used. The results are shown in Figure 8.

The SF for the irradiated cells of (56 ± 5) % is significantly
smaller than for the unirradiated cells. The results are comparable
within the uncertainty range of a reference measurement using
x-rays (49, 50), fitted by a common linear quadratic curve, which is
indicated by a black line in Figure 8. All results are listed in
Supplementary Table 3. The overlap between the mean SF for the
cells irradiated with 4 Gy protons with the reference measurement
is decreased when the data point of sample 5, which received only
a dose of 2.29 Gy, was excluded. But as this exclusion does not
change the meaning of the result we decided to take this data point
into account for evaluation.

Apoptosis and Necrosis After Irradiation
Using a Caspase3/7-Sytox Assay
In the second experiment, we measured the number of dead cells
and the type of ongoing and completed cell death of irradiated
cells. The cells were irradiated with (3.8 ± 0.7) Gy of 20 MeV
protons, referred to later as 4 Gy. 24 h after irradiation, all cells
were fluorescently stained with a Caspase3/7 and Sytox staining
kit. Caspases 3 and 7 indicate if a cell undergoes apoptosis, while
Sytox accumulates only in cells with a damaged membrane (59).

In Figure 9, the results of the Caspase3/7-Sytox assay are
shown. The group dead cells includes all cells, which are late
apoptotic or necrotic. In the irradiated group (3.4 ± 0.5) % of the
cells are in early apoptosis, (4.5 ± 0.6) % of the cells are in late
apoptosis and (0.010 ± 0.004) % died due to necrosis. Whereas,
(1.59 ± 0.24) % of all cells in the unirradiated group are early
June 2021 | Volume 11 | Article 688333
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apoptotic, (2.7 ± 0.6) % of all cells are late apoptotic and
(0.008 ± 0.001) % died due to necrosis. Therefore, 43 % of the
apoptotic cells in the irradiated group are early apoptotic and
57 % are late apoptotic, while in the sham samples 37 % of the
apoptotic cells are early apoptotic and 63 % are late apoptotic. In
the irradiated sample, the percentage of late apoptotic cells is
1.6 times higher than in the sham sample and the percentage of
early apoptotic cells is 2 times higher. There is only a small
number of necrotic cells (between 0 % and 0.01 %) in the
Frontiers in Oncology | www.frontiersin.org 13
experiment both in irradiated and sham samples. All results
are listed in Supplementary Table 4.

Comparison of Clonogenic Survival
Between Imaging Analysis and
Conventional Methods
Next, we wanted to know, whether the new method based on
live-cell phase-contrast imaging gives comparable results to
conventional radiobiological assays.
A B

D

E

C

FIGURE 7 | Results for the normalized cell number of the different classes. The number of cells is normalized by the number of cells on the first frame. The classes
are vital cells (A) containing cells from the three classes cell divisions (B), living cells (C), round cells (D), and the last class is dead cells (E). The results for the sham
sample and the irradiated sample are visualized in black and in red, respectively. The predictions of CeCILE (P) are shown by continuous lines for 20 h and the
ground truth (GT) by dashed lines for 48 h.
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The growth, derived by time lapse imaging from ground truth
data follows an exponential function, which is fitted to all data
points to model the cell growth. The fit function of the number of
normalized cells n(t) = N(t)

N0
for t > t0 is defined as
Frontiers in Oncology | www.frontiersin.org 14
n(t) = (1 − A) + A ∗ exp
t − t0
t

� �
A is the amplitude, which is added to the initial number of 1. t0 is
the offset, defined by the cell cycle arrest. t gives the growth
constant. The fit parameters for the irradiated sample results are
t0,irr = (5.8 ± 1.4) h, Airr = 0.37 ± 0.11 and tirr = (17 ± 2) h and
t0,sham = (5.7 ± 1.0) h, Asham = 0.37 ± 0.12 and tsham = (15.3 ± 0.9) h
for the sham sample. The goodness of the fit was X2 = 0:0008,
R2
cor = 0:97896, andX2 = 0:004,R2

cor = 0:99239, respectively. This
fit shows different growth constants of (15.3 ± 0.9) h for the faster-
growing sham population and (17 ± 2) h for the slowed-down
irradiated population. The fits to the data are shown in
Figure 10A. The cell growth defined cell survival (CGSF) was
evaluated at t = 24 h and t = 48 h after 4 Gy irradiation by dividing
the corresponding normalizednumber of vital cells of the irradiated
sample by the correspondingnormalizednumber of vital cells of the
sham sample resulting in CGSF24h = (91 ± 4) % and CGSF48h =
(74±4)%, respectively,where theuncertainties arederived fromthe
63 % confidence band.

Since the evaluation of the videos are limited due to the fact
that CHO cells can grow so densely that they are hard to
differentiate and identify, what was the case after 48 h in the
sham sample, a longer evaluation of the cells was not possible.
However, it was checked whether CGSF values extrapolated to 5
days can serve as a substitute to cell survival obtained from
colony formation in future. We, therefore, quantified the
maximum number of occurred cell divisions per cell, shown in
Figure 10B. For example, four cell divisions per cell means that
at least one daughter cell is from the fifth generation. Analysis
shows significant higher numbers of non-dividing cells in the
irradiated sample (p < 0.05) compared to sham sample. Whereas,
the majority of cells undergo several divisions in both cases with
a maximum of four divisions. The sham sample shows significant
higher numbers of cells with four cell divisions compared to the
irradiated sample (p < 0.05). CHO-K1 cells show a cell cycle
duration of 12 h - 16 h, which would give three to four divisions
in 48 h. This is also reflected by the data, measured here.

Colony forming assay shows a cell survival of (56 ± 5) % for
4 Gy 20 MeV proton irradiation. The cells were harvested 5 days
after irradiation. When using the derived exponential growth
curves an expected CGSF at 5 days of (40 ± 22) % can be
estimated originating from different speeds of the irradiated and
the sham sample in cellular growth and the cell death occurring
in the first days after irradiation. Within the error bars, these two
values coincide. Furthermore, it also matches the error band
derived in the dose-response curve of the reference measurement
with x-rays, which shows an SF of (37 ± 10) % at 4 Gy.

Comparison of Cell Death Analyzed by
CeCILE and a FACS-Based Assay
To be able to compare the data achieved using CeCILE and the
FACS data for cell death, a closer look at the FACS analysis
working principle is necessary. FACS analysis was performed at
24 h after irradiation, but all cells were counted. Especially the
medium was also analyzed to keep all cells that died in the last
24 h for the analysis. For comparison, it is, therefore, necessary to
FIGURE 8 | Cell survival curve of CHO-K1 cells obtained after irradiation with
20 MeV protons. The black line denotes a common linear quadratic fit to
reference measurements with x-rays with a = (0.156 ± 0.045) 1/Gy and b =
(0.0235 ± 0.0055) 1/Gy2. The dashed lines indicate the uncertainty range of
the fit. The mean over all samples irradiated with a dose of 4 Gy is indicated
in red and the mean over the sham samples is indicated in blue. The dose
error is the standard error of the mean of the irradiated doses and the SF
error is obtained as described in the Methods section.
FIGURE 9 | The analysis of dead cells 24 h after irradiation with 4 Gy of 20
MeV protons with a Caspase3/7-Sytox assay. * indicates a p-value < 0.1 and
** a p-value < 0.05. The uncertainties shown as error bars are the standard
errors of the respective means.
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collect all dead cells in the phase-contrast video as well as to track
every dead cell, and count the total number of dead cells in the
first 24 h. The tracking was done by hand from the images
labeled by the algorithm. Dead cells were followed throughout
the video until 24 h to make sure that every dead cell is only
counted once. In the sham irradiated control, 5 cells died in the
first 24 h resulting in a fraction of (4.6 ± 2.1) % (5 out of 108),
whereas in the irradiated sample (6.0 ± 2.4) % (5 out of 83) of the
cells died. The uncertainties derived from Poisson statistics are,
due to the small numbers of dead cells, very high (46 % and 40 %).
The differences obtained by CeCILE are, therefore, not statistically
significant. Nevertheless, the dead cell fractions are similar but in
both cases slightly larger than the results obtained from FACS
analysis, where in the irradiated group (4.5 ± 0.6) % of the cells
were late apoptotic or necrotic and can therefore be considered as
dead. In the sham sample, this fraction is (2.7 ± 0.6) %. Both assays
show a trend that irradiated samples show more dead cells than
sham samples. The image based data are considered to be not
statistically different to FACS data, when comparing irradiated and
sham samples of both assays. But a significant difference is visible
between the fraction of dead cells when the data for non-irradiated
sample analyzed using FACS is compared to irradiated sample
from both analysis methods (p < 0.1).
DISCUSSION

The aim of this study was to demonstrate a novel method
for investigating the effects of radiation on eukaryotic cells.
Frontiers in Oncology | www.frontiersin.org 15
This novel method is based on observing the cells for several
days after irradiation via live-cell phase-contrast microscopy and
analyzing the obtained data with an algorithm based on artificial
intelligence. The introduced algorithm called CeCILE can detect
cells on microscopic videos and classify them into four cell states
depending on their morphology. For the first time, an artificial
intelligence based algorithm is presented for the analysis of the
response of cells to radiation on live-cell phase-contrast videos.
In this study we present the whole process of developing such
an algorithm.

First, we needed to set up a dataset of labeled cell images,
which can be used to train the algorithm. We separated cells into
vital and dead and defined three subclasses by differentiating vital
cells further into living, round, and dividing cells. We labeled the
cells by surrounding each cell with a rectangular bounding box
and tagging the box with the label of the cell class. In the dataset
images of two different cell lines, CHO-K1 and HeLa, are
included to increase the generalizability and to widen the
window of possible applications. We started here for a proof of
principle study with these two cell lines, which were often used in
radiobiology. For a better generalization, the dataset should be
extended with more cell lines depending on the application.
However, it has to be tested how good CeCILE generalizes on
different cell lines. But as our data set can be quickly extended,
CeCILE can be quickly adjusted to different needs. We tested
whether our dataset was suitable for training a deep-learning
based neuronal network using a simple CNN algorithm, which
was trained to classify the cells. The quality is measured with the
so-called F1score, which combines the precision and the recall of
the algorithm and has a maximum of 1.00. We achieved an
A B

FIGURE 10 | In (A) the normalized cell numbers of the vital cells of the ground truth data are shown with dots, the black rectangular dots for the sham sample and
red circular dots for the irradiated sample. The data were fitted by exponential growth and indicated as lines. In light red and grey the 63 % confidence band is
shown. In B the number of cell divisions per each cell on the two videos followed for 48 h is shown. The results for the irradiated sample are indicated with red bars
and for the sham sample with black bars. Errors in (A, B) were derived from Poisson statistics. * indicates a p-value < 0.05.
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F1score of 0.93 with precision of 0.93 and recall of 0.94. The largest
error is made in the class round, where the precision and recall is
0.87. This means that 13 % of the round cells were not classified
as such. This problem occurs since there is a fluent transition
between living, round and dividing cells. Therefore, it is difficult
for the human expert as well as for the algorithm to sort a cell in
the right class when it is directly at the transition step. To
minimize the labeling error, the human expert takes the time
information into account and looks at the cell morphology
several frames before and after the labeled frame. The algorithm
instead only gets the single frame image for classification. Therefore,
a discrepancy between the human expert decision and the
classification from the algorithm is expected. Nevertheless, the
most occurring false predictions were round cells classified as
living cells or the other way around. Since the transition between
the two classes is very continuous, some cells can be classified for
both classes and the occurring errors between these classes are
negligible. The inaccuracy of the other classes is 5 % for dead cells
and much below 5 % for cell divisions and living cells.

The results from classification looked promising so we went
further and implemented object detection. CeCILE was developed
based on a faster RCNN algorithm, which was headed by a
classification and localization head. With this algorithm, it
should be possible to detect, locate, and classify every single cell
in each frame of a phase-contrast live-cell video, with sufficient
accuracy. We faced two major problems developing the algorithm.
The algorithm is only able to detect a certain number of cells.
When the number of cells in an image exceeds this limit the
additional cells are not detected at all. For our algorithm, we used
transfer learning meaning that we used a pretrained model (56)
which was already able to detect objects in images. In the basic
programming architecture of this model, a maximum number of
detectable objects is defined. Therefore, we were not able to use
images with more than 100 cells. To solve this problem, the basic
architecture of the algorithm must be changed which could not be
accomplished up to now due to limited resources. The second
problem is that the generalization of CeCILE is not yet sufficient.
The generalization and performance is measured with the mAP-
score, which compares the ground truth (manually labeled cells)
with the detection from CeCILE, regarding detection and
classification of the cells as well as location and shape of the
bounding box. CeCILE achieves a mAP-score of 38.14 % by
evaluation on the test dataset and 51.51 % for the evaluation of
the unknowing CeCILE on 22 frames of the ground truth data of
the two videos of this study. The generalization measured on the
test dataset is smaller, because in the test dataset are also images
included containing more than 100 cells, therefore the
generalization on video data of this study by unknowing
CeCILE is here taken into account. For classes liv and round,
here, quite high mean AP(class)-scores of over 70 % were
achieved. But for the classes div and dead the generalization was
very low, as the mean AP(class)-scores were 16.67 % and 6.48 %.
This low generalization for the two classes came from the fact, that
either dead and dividing cells are much less represented in the
images as round and living cells. So, here a further extension of the
dataset is necessary, preferably with images containing many dead
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cells as for example after high-LET irradiation or irradiation with
x-rays with doses above 10 Gy and images containing many cell
divisions, which can be achieved by synchronization of the cell
population. Additionally further finetuning of the model will also
improve the generalization. To improve the performance on the
videos of this study and, therefore, make the analyzation of the
videos more reliable, 11 frames in each video were labeled
manually and were included in the dataset used for training and
testing CeCILE. By giving the algorithm hints by providing ground
data is not a new approach and is also used for One-Shot Video
Object Segmentation (60). The generation of ground truth data
and the retraining of CeCILE is very time consuming. So, this
approach limits the applicability in radiobiology and, therefore,
our goal is to increase the generalization to be able to analyze
unknown videos with CeCILE in future. However, the actual
version of CeCILE contained everything for this first proof of
principle study when using partly known images that contain less
than 100 cells. In our experiment, this corresponds to
approximately the first 20 h of imaging. For later timepoints, we
based our analysis on the ground truth labeled by a human expert.
In the following versions of CeCILE that are under progress, it is
planned to extend the number of detectable cells and increase the
generalization to use the algorithm routinely in radiobiological
analysis. Nevertheless, this basic version of CeCILE already
demonstrated the potential of this new analysis method.

We qualified also the performance of the algorithm using the
mAP. As expected at times larger than 20 h, the mAP-score
decreases as the larger the cell numbers get the more cells are not
detected. We, therefore, decided to trust the algorithm only
below 20 h. Here, a mean mAP-score of (91 ± 3) % was
achieved overall analyzed frames of both the irradiated and the
non-irradiated sham sample, containing less than 100 cells. This
is a very good result compared e. g. to best performing algorithm
on the VOC 2012 test set reaches a mAP of 85 % (61). We
conclude that CeCILE in this early stage of developing is very
much suited to detect cells in partly known non-labeled phase-
contrast live-cell videos.

The next step of development should contain the extension to
the detection of non-limited cell numbers, the improvement of
the generalization, and the tracking of cells through the videos.
This would give the unique opportunity to follow every single cell
over several cell divisions and track all changes individually.
From this information, the history of each single cell after the
irradiation can be evaluated. Thus, occurring cell deaths could
also be combined with the cells’ cell-cycle state. This information
tells us more about the cause of cell death than the type of cell
death (apoptosis, necrosis, etc.) (62) and is, therefore, an
important endpoint in radiobiology. The tracking itself can
also improve the classification if combined with a logic. For
example, a missed cell division could be assigned accordingly, if a
second round cell suddenly occurs in the proximity of another
round cell in the video. Therefore, the implementation of a
tracking method will improve the results further and will
increase the evaluation possibilities a lot.

An important step in the qualification of a new analysis
method is the comparison to established methods. Therefore,
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we contrast the detection with the state-of-the-art methods
colony forming assay (CFA) for cell survival and FACS
analysis for cell death. The assessment of cell survival is based
on different principles for CFA and our method. While in the
colony forming assay the number of colonies containing more
than 50 cells is evaluated 5 days after irradiation, in the
microscopic videos the normalized cell numbers in total were
recorded. As the performance of CeCILE is in the moment
limited we extended the analysis done by CeCILE with a
manually analysis of the microscopic videos to show the full
potential of our new approach. In future, we plan to improve
CeCILE to achieve a fully automated analysis. The evaluation of
the image-based analysis shows that up to four cell divisions
occur in the analyzed time. Our assay at the moment only counts
the number of cells rather than showing a family history of each
cell which would be a perfect surrogate for cell survival. We are
aware that therefore at the moment the comparison of our data
with CFA data has to be taken with caution. This limited
comparability of assays reflecting proliferation in some way
such as MTT were already addressed in several studies (63–
66). One major result of these studies is that under certain
circumstances proliferation assays can be used to address the cell
survival, as done by CFA. The two major criteria are, that the
cells are in exponential growth phase and that a sufficient
number of cell divisions is used in the analysis. Both criteria
are fulfilled here, which gives a hint that calculations performed
here could be used as a prediction for cell survival in the first
order. Nevertheless, we think that the analysis performed here
can only be a guide to the potential of the algorithm when used
on images with the corresponding length, and also when the
tracking of each cell through time is possible. Furthermore, the
results by CeCILE show the development of the cell population
over time. For example growth stagnation in the first 5 h after
irradiation could be detected, which can be connected to the
enhanced stress of the cells by the handling during the irradiation
treatment. This enhanced stress can also be seen in the increased
amount of round cells in both populations at this time. So,
CeCILE provides additional information besides cell number.
We, therefore, conclude that this proof-of-principle was a success
but the implementation of a true cell survival measurement
needs much more data which are analyzed quantitatively and
with more detail in the future. To do so further improvements on
CeCILE are necessary. At the moment the limiting factor in the
analysis of the videos is the increasing cell density over time on the
sample until the cells could no longer be properly distinguished on
the videos. In future experiments, a smaller initial cell density and a
larger observation field can lead to a longer recording time and
therefore to a better analysis by CeCILE. To further improve the
measure of cell survival by CeCILE a tracking method will be
implemented, that will measure the proliferation on a single-cell
level andwill also be able to quantify the cell cycle of each single cell.
With this approach also events like cell death can be correlated to
the cell cycle and the cellular history and lineage.

By looking at the analysis of cell death within 24 h after
irradiation, similar results within the uncertainty range were
achieved by the Caspase3/7-Sytox assay and the analysis by CeCILE.
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While the results of the FACS analysis were statistically different
by a p-value of 0.1, the results of CeCILE were not significantly
different, because of the high uncertainty coming from Poisson
statistics and the low initial cell number. To decrease these
uncertainties we plan to increase the observation field on the
samples in future experiments. In the next version of CeCILE it is
planned to overcome the limitation of detectable cells. Therefore,
the numbers of analyzed cells will be dramatically increased,
which leads to a significant decrease of the error. Nevertheless,
the fact that results of both methods are in the same range, shows
the potential of our new method. Another aspect is, that the
Caspase3/7-Sytox assay can additionally differ between necrosis,
late and early apoptosis. However, differing between different cell
deaths doesn’t answer the question of the cause for cell death. So
here an approach, which investigates the circumstances of cell
death would provide more information for the radiobiologic
research (62). Extending CeCILE with a tracking method will
allow to analyze this endpoint.

To conclude, we introduced a new analysis method to
automatically detect and quantify the radiation response of
single cells in live-cell phase-contrast images using the deep-
learning based algorithm CeCILE. This algorithm shows great
potential for application in radiobiology. It is easy to use and it
shows already a high accuracy when compared to manual
assignments. CeCILE has the potential to analyze the same
endpoints as state-of-the-art assays. Besides, it can give
information on cell status, cell cycle duration, and once
finalized about the lineage of every single cell. It furthermore
exceeds conventional radiobiological methods as cells are
observed and analyzed under physiological conditions and
additional time information can be gathered. We conclude that
this new method enables fast evaluations of phase-contrast
microscopic data to gain new and deeper insights in the field
of radiobiology.
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