AUTHOR=Wang Yongren , Rui Yaoyao , Shen Ying , Li Jian , Liu Poning , Lu Qin , Fang Yongjun TITLE=Myeloid Sarcoma Type of Acute Promyelocytic Leukemia With a Cryptic Insertion of RARA Into FIP1L1: The Clinical Utility of NGS and Bioinformatic Analyses JOURNAL=Frontiers in Oncology VOLUME=11 YEAR=2021 URL=https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2021.688203 DOI=10.3389/fonc.2021.688203 ISSN=2234-943X ABSTRACT=Background

Acute promyelocytic leukemia (APL) is characterized by the presence of coagulopathy at onset and translocation t (15; 17) (q22; 21), meanwhile, other translocation variants of APL have also been reported. The FIP1L1–RARA fusion gene has recently been reported as a novel RARA-associated fusion gene.

Objectives

We report a case of de novo myeloid sarcoma (MS) type of APL with FIP1L1–RARA found by next-generation sequencing (NGS) that was not detected by conventional analyze analysis for RARA translocations.

Methods

We performed typical morphological, magnetic resonance imaging (MRI), conventional tests for PML–RARA dual-fusion translocation probe, high-through sequencing and NGS. Meanwhile, bioinformatics analyses were done by using public repositories, including ONCOMINE, COSMIC, and GeneMANIA analysis.

Results

A 28-month-old girl with a complex karyotype that includes 46,XX,t(4;17)(q12;q22)[9]/46,idem,del(16)(q22)[3]/45,idem,-x,-4,-9,-15,del(16)(q22),+marl,+mar2,+mar3[7]/46,xx[3], c.38G>A (p.Gly13Asp) in the KRAS gene, and a cryptic insertion of RARA gene into the FIP1L1 gene was diagnosed with APL complicated by the de novo MS.

Conclusion

We report a FIP1L1–RARA fusion in a child with APL who presented with an extramedullary tumor in the skull without the classic karyotype using NGS, whom we treated with good results. NGS analysis should be considered for APL variant cases. Further experimental studies to the association between the mutation in KRAS gene and FIP1L1–RARA fusion on the clinical phenotype and progression of APL are needed to identify more effective therapeutic targets for APL.