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Nanozymes, a new generation of enzyme mimics, have recently attracted great attention.
Nanozymes could catalyze chemical reactions as biological enzymes under
physiologically mild conditions with higher-efficiency catalytic activities. Moreover,
nanozymes could overcome the shortcomings of natural enzymes, such as easy
inactivation, high cost, and low yield. With the development of more and more smart
and multi-functional nanosystems, nanozymes display great achievement in tumor
biology. In this review, we outline the recent advances of nanozymes in tumor and
tumor microenvironment diagnosis, therapy, and theranostics.
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INTRODUCTION

Despite the great achievement of traditional cancer treatment, such as chemotherapy and
immunotherapy, tumors continue to be a major cause of morbidity and mortality. The crosstalk
between tumor cells and the tumor microenvironment (TME) is a critical factor for therapy
resistance, relapse, and metastasis (1). Therefore, it is important to explore novel strategies to
enhance tumor treatment sensitivity by targeting both cancer cells and TME.

Nanomaterials have recently received great interest in enhancing the outcome of cancer therapy,
especially nanozymes. Natural enzymes are the proteins or ribonucleic acid (RNA) with highly
specific and catalytic ability to their substrates produced by living cells. However, the intrinsic
characteristics of natural enzymes, such as storage difficulty, easy deactivation, and high cost, limit
their further clinic application (2). With the unexpected discovery of horseradish peroxidase (HRP)
activity of Fe3O4 magnetic nanoparticles (Fe3O4 MNPs) in 2007, the artificial nanozymes that
display similar catalytic mechanism and efficiency to natural enzymes gradually become research
hotspots (3). Nanozymes were firstly identified as nanomaterials possessing intrinsic enzyme-like
activities (3). Recently, with the development of chemistry and biology, nanozymes are now termed
inorganic or organic nanomaterials possessing intrinsic enzyme-like catalytic activities with
abundant advantageous properties compared to natural enzymes, such as lower cost, more facile
preparation, higher operational ability, and multi-functionalization (4–7).

Based on the rapid development of nanotechnology, the majority of nanoparticles, such as
magnetic nanomaterials, cerium oxide nanoparticles (nanoceria), carbon nanotubes (CNTs),
graphene oxide (GO), and gold nanoparticles (Au NPs), have demonstrated their intrinsic redox
catalytic activities (3, 8–16). Due to the unique properties of nanozymes and the specific
characteristics of tumor and TME, deeper and wider applications of nanozymes in tumor
diagnosis, therapy, and theranostics are becoming more and more possible. In this review, we
firstly briefly summarize the classification of the most common nanozymes and then discuss the
promising applications and challenges of nanozymes in the field of tumor theranostics.
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CLASSIFICATION OF NANOZYMES

Nanozymes mainly include the following subtypes: peroxidase
(POD), oxidase (OXD), catalase (CAT), and superoxide
dismutase (SOD) (Figure 1). More importantly, great efforts
must be devoted to the exploration of novel nanozymes. In this
section, we discuss only a few parts of representative nanozymes
based on their compositions.

Carbon-Based Nanozymes
Carbon-based nanomaterials, including carbon nanotubes
(CNTs), graphene oxide (GO), carbon nanospheres, and
carbon nanodots (C-Dots), have been proved as the POD
mimic catalytic enzyme (11, 15, 17–23), while fullerene and its
derivatives perform the SOD-like activity (4).

Combining the ability of hemin to catalyze various oxidation
reactions and the large open surface area and rich surface
chemistry of graphene, the nanoplatform-modified hemin onto
the surface of graphene through the p−p stacking can serve as
POD enzymes and display stable geometric support and efficient
molecular loading ability (19, 20).

The carboxyl-modified graphene oxide (GO-COOH) with the
intrinsic POD property could catalyze the peroxidase substrate
3,3’,5,5’-tetramethylbenzidine (TMB) in the presence of
hydrogen peroxide (H2O2) (15). The accompanying blue color
reaction makes them capable to be developed for a cheaper and
more sensitive glucose detection (15).
Frontiers in Oncology | www.frontiersin.org 2
CNTs can be distinguished as single-wall carbon nanotubes
(SWNTs) and multi-wall carbon nanotubes (MWNTs)
according to the number of graphene layers (24). SWNTs
could catalyze the substrate of TMB, which have been
developed to target dsDNA efficiently (11). Moreover, it
has been confirmed that the enzymatic activity of carbon
nanotubes strongly depended on pH, temperature, and H2O2

concentration (11).
Based on the superior enzyme activities of nitrogen-doped

carbon nanomaterials (N-CNMs), N-doped porous carbon
nanospheres (N-PCNSs) possess excellent mimic activities,
including OXD-, POD-, CAT-, and POD-like activities (25).
These activities are positively correlated with the concentration
of N dopant and can also be tunable by pH and temperature (25,
26). Additionally, the B/Fe-doped carbon nanoparticles can also
function as POD catalysts (26, 27).

Metal-Based Nanozymes
With the high glucose conversion ability, gold nanoparticles (Au
NPs) have been discovered to perform POD- and OXD-like
activities (13, 14). Mesoporous silica nanoparticles (MSN) or
bovine serum albumin (BSA) can be assembled on the surface of
Au NPs for the detection of glucose or dopamine (DA) by the
distinguished GOx- and POD-like activities of Au NPs (28, 29).
However, high temperature can result in the poor catalytic
performance of Au NPs due to the instability of enzymatic
product ABTS•+, which can be improved by ionic liquid (30).
FIGURE 1 | Nanozyme reaction formulas.
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The stable platinum nanoparticles (Pt NPs) have the ability to
scavenge H2O2, superoxide anion (O−

2 ), and singlet oxygen (1O2),
simulating CAT-, SOD-, and OXD-like activities. The specific
catalytic enzyme activities of Pt NPs are tightly dependent on
temperature and pH (31, 32). Under the low pH environment, Pt
NPs mostly possess POD-like activity, while Pt NPs exhibit
CAT- and SOD-like activities under neutral conditions (31,
32). Moreover, there is a positive correlation between enzyme
activities and Pt content. Escapsulating apo-ferritin on the Pt
NPs (PtNP@apo-ferritin), this system exhibited more
outstanding SOD-like activity and longer-term stability (32, 33).

Metal Oxide-Based Nanozymes
Nanoceria and iron oxide magnetic nanoparticles (Fe3O4 MNPs)
are the most widely utilized metal oxide catalysts among the
metal oxide-based nanomaterials (5, 8–10, 16, 34, 35). Nanoceria
exists in a mixed valence state (Ce3+and Ce4+) (9, 36–38). The
ratio of Ce3+ and Ce4+ determines the catalytic enzyme activity of
nanoceria. Nanoceria mainly performs SOD-like activity with a
high Ce3+/Ce4+ ratio, while performing CAT-mimic activity with
a low Ce3+/Ce4+ ratio (7). Moreover, the activity of nanoceria and
Fe3O4 MNPs can be controlled by pH. Under the low pH
environment, nanoceria possesses an intrinsic OXD-like
activity (9). Fe3O4 MNPs display a POD-like activity under
acid conditions, while showing CAT-like activity in a neutral
environment through the decomposed H2O2 (39–41). The
manganic oxide nanoparticles (MnO NPs) behave as the SOD,
CAT, and GOx enzymes, inducing the elimination of hydroxyl
radical (·OH), maintaining redox homeostasis, and protecting
cells from neurotoxin-induced damage (42).

Metal Chalcogenide Nanozymes
Copper monosulfide (CuS) nanoparticles (CuS NPs) have been
demonstrated to perform POD-mimic activity by catalyzing the
peroxide substrate 3,3’,5,5’-TMB in the presence of H2O2 (43–
47). Moreover, with the CuS NPs further covered on the
graphene, the CuS-graphene nanosheets (CuS-GNSs) possess
higher intrinsic POD- and GOx-like activity than CuS or
graphene, respectively, which have been employed to detect
H2O2 concentration and monitor the human blood glucose
level (44). CuS concave polyhedral superstructures (CuS CPSs)
possess superior POD-like activity compared to either the initial
formed spherical CuS superstructures or convex CuS
microspheres, due to the fact that the concave structures
constructed by the thinner nanoplates have a hollow/porous
structure that led to a higher surface area (43, 48).

It has been proved that several iron chalcogenides can serve as
POD-mimic enzymes. FeS2 nanosheets (FeS2 NSs) possess the
ability to oxidate the peroxide substrate TMB due to the Fe ion
located in the active site (49). Simultaneously, the peroxidase
activity of FeS2 NSs can be tunable by pH and temperature (49).
The FeS2/SiO2 double mesoporous hollow spheres (DMHSs) not
only exhibit a more outstanding POD-like activity than both
Fe3O4 NPs and FeS2 NSs, but also are more susceptive to the
detection of H2O2 and glutathione (GSH) (50). The sulfur
vacancies in magnetic greigite (SVs-Fe3S4) NSs have
demonstrated a distinguished POD-mimic activity resulting
Frontiers in Oncology | www.frontiersin.org 3
from the abundant SVs, which have been developed for the
colorimetric detection of glucose in human serum (51).

The MoS2 nanosheets have been developed for the regulation
of oxidation stress due to their intrinsic multi-enzyme-like
activities under physiological conditions, including SOD-,
CAT-, and POD-mimicking activities (52). MoS2 nanosheets
can efficiently remove several kinds of reactive oxygen species
(ROS) through the Mo6+/Mo4+ redox couple and accelerate the
electron transfer between TMB and H2O2 (52).

The reason why nanozymes are considered to have enzyme-
like catalytic activities is that they own high catalytic activities
and can catalyze the same chemical reactions as biological
enzymes. In addition, compared to biological enzymes,
nanozymes have superior biocompatibility, stability, and
targeting ability, and play corresponding catalytic activities in
different environments. The application of nanozymes in tumor
diagnosis and treatment depends on their closer integration of
nanotechnology and biomedicine for the.
NANOZYMES IN TUMOR DIAGNOSIS,
THERAPY, AND THERANOSTICS

Solid tumors consist of cancer cells and their living environment,
also termed tumor microenvironment (TME). Previously,
traditional cancer therapy avenues were mostly focused on
cancer cells. Recently, more and more lines of evidence have
uncovered that the TME is also critical on tumor malignant
behaviors. Therefore, targeting both cancer cells and TME is
becoming a promising cancer therapy method. TME includes the
various soluble substance and stromal cells, such as fibroblasts,
immune and inflammatory cells, glial cells, and other cells, as
well as nearby micro-vessels and various biological signal
molecules (53, 54). The “interactive cooperation” between
stromal cells and cancer cells facilitates the progression of
tumor and contributes to the dramatic dynamic changes and
the heterogeneity of TME (53). In addition, cancer cells could
also remodel the TME, ultimately resulting in the immune
escape, metastasis, and even relapse of tumor (55). The
characterized metabolism manner, rapid growth, and strong
reproduction ability of cancer cells determine their higher
demands for oxygen and glucose than normal cells. Cancer
cells compete with stromal cells to take advantage of glucose
for aerobic glycolysis. Also, abundant lactic acid secreted into the
extracellular environment ultimately forms the acid and
immunosuppressed TME (56–58). The broken balance
between oxygen consumption and supply resulted in the messy
growth and irregular distribution of tumor vasculature systems,
which, in turn, eventually enhanced the degree of permanent or
temporary hypoxia and further increased the osmotic pressure
of TME (59). Therefore, low pH, hypoxia, excessive H2O2

and GSH, high osmotic pressure, and immunosuppressive
microenvironment are the outstanding hallmarks of solid
tumors (Figure 2) (53, 56, 58). These characteristics are
mutually causal, finally contributing to the rapid progression of
tumor. Targeting and normalizing TME seem to be a new and
October 2021 | Volume 11 | Article 666017

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Ma et al. Nanozymes in Solid Tumor Theranostics
effective method for tumor diagnosis and treatment. Recently,
more and more nanozymes have been constructed to target the
diagnosis and treatment of TME.

Nanozymes in Tumor Cells and Tumor
Microenvironment Target Diagnosis
Nanotechnology-based tumor target diagnosis and therapy
include passive target and active target. Active target greatly
relies on the recognition of the specific receptors overexpressed
on cancer cells and the ligand-directed binding on the surface of
nanosystems (60). Loaded with special markers on the cancer cell
surface, such as transferrin, growth factors, peptides, folate,
antibodies, or antibody fragments, nanozyme systems not only
recognize tumor more sensitively, but also result in drug delivery
more specifically (61). The nanozymes modified with folic acid
can actively target the folic acid receptors on the cancer cell
surface and further can serve as oxidants to promote cancer cell
death (9, 17). Porous platinum nanoparticles on graphene oxide
(Pt NPs/GO) can function as peroxidase mimetics. which enable
them to detect cancer cells by the color reaction of TMB (62).
Furthermore, by loading folic acid on the Pt NPs/GO, this
nanosystem can distinguish a total of 125 cancer cells more
broadly than naked-eye observation (62). Prostate-specific
antigen (PSA), a special tumor biomarker, can be attached by
the immune complexes based on the intrinsic POD-like activity
of GO, and then the PSA concentration could be directly
Frontiers in Oncology | www.frontiersin.org 4
detected with the colorimetric reaction (63). Ultra-small gold
nanoclusters (Au NCs) can serve as POD-like catalysts for
disproportionation and decomposition of H2O2, which make
them sensitive probes for tumor imaging in vivo (64). The
multifunctional protease nanosensor constructed by Au NCS
not only can determine whether the tissue is cancerous through
the catalyzed reaction of Au NCS according to the color reaction,
but also is non-toxic and can be completely eliminated by liver
and kidney excretion (64). Furthermore, the magneto-ferritin
nanoparticles (M-HFn) are composed of iron oxide and heavy-
chain ferritin (HFn) shell (65). Due to the ability of targeting
transferrin receptor 1 (TfR1) overexpressed on cancer cell
surface and the color reaction in tumor site resulting from the
POD-like activity of the iron oxide core that could catalyze the
abundant H2O2 in TME, M-HFn could visualize cancer tissues
sensitively and specifically (65). Similarly, HFn-N-PCNSs-3 can
also specifically identify the cancer cells and effectively reduce the
tumor volume dependent on the special binding of TfR1 on
cancer cell surface and the multi-enzyme mimic activities of
N-PCNSs-3 (25). Besides, angiopep-2, a specific ligand of
lipoprotein related protein-1 (LRP1), anchored on the surface
of Au NPs can penetrate through the blood–brain barrier (BBB)
and further actively target glioma cancer cells (66, 67).

Magnetic resonance imaging (MRI) contrast agents based on
the ROS-stimulated responses, such as superoxide ions, H2O2,
and hydroxyl radicals, have been promising tumor diagnostic
FIGURE 2 | The characteristic of tumor microenvironment.
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and imaging markers due to their extensive accumulation and
persistent presence in TME (68–70). Prussian Blue nanoparticles
(PBNPs, KFe3+[Fe2+(CN)6]) perform CAT-like activities under
the neutral pH condition (71). The core Fe3+ with water
coordination can form paramagnetic oxygen bubbles, which
are conducive to shorten the MRI T1-weighted image (T1WI)
relaxation time and then enhance the MRI contrast (72).
Based on the previous pioneering work of PBNPs, SPIO@GCS/
acryl/biotin-CAT/SOD-gel (SGC), a dual-enzyme-loaded
multifunctional hybrid nanogel probe, has been developed to
strengthen the ultrasound imaging and the imaging contrast of
T2WI (73). In recent years, the PB@Au core-satellite
nanoparticles (CSNPs) have been constructed to explore
multiple diagnostic and therapeutic strategies of tumors (72).
CSNPs can achieve dual-model imaging due to the PB NPs that
acted as MRI T1WI contrast agents and the enhanced computed
tomography (CT) imaging efficiency by AuNPs (72). Besides, the
MnO NPs exposed to the superoxide radicals could enhance the
MRI signal and simultaneously treat the catalytic-induced tumor
progression due to their intrinsic SOD-mimic ability (74).
Moreover, the CAT-like nanoparticles are gradually utilized
as coupling or contrast agents of ultrasound (US) and MRI
owing to the enhanced catalyzed H2O2 into O2 molecules
(71–73).

Early diagnosis of tumor makes it possible to obtain
outstanding tumor clearance and satisfactory clinical prognosis
by local treatment. Nowadays, the early detection of tumor
mainly depends on the blood tumor markers and imaging
manifestations. However, the extremely low abscission rate of
early tumor markers or the lack of specificity of imaging findings
limits the accuracy and sensitivity of early tumor detection in
clinical. The emergence of nanozymes provides new ideas and
methods for the early diagnosis of tumor and the visualization of
tumor tissues, which greatly improve the specificity and
sensitivity of early diagnosis of tumor.

Nanozymes in Synergistic Tumor Therapy
Nanozymes can achieve anti-tumor effects by improving TME.
For example, the highly ordered MnO2@PtCo nanoflowers are
developed as a ROS generation nanoplatform for tumor therapy
by targeting the hypoxia and the acidic pH of TME (75, 76).
Cooperating with the OXD-like activity of PtCo and the CAT-
like activity of MnO2, the MnO2@PtCo nanozymes not only
could supply O2 to overcome the hypoxic TME, but also catalyze
ROS formation, which further induces the admirable tumor
apoptosis (75). Similarly, the DMSN-Au-Fe3O4 composited
nanoplatforms could make the TME-responsive tumor vanish
owing to the GOx-mimic activity of Au NPs and the POD-like
activity of the Fe3O4 nanoparticles. The DMSN-Au-Fe3O4

nanozymes are capable of catalyzing b-D-glucose oxidated into
gluconic acid and subsequently produce high-toxic hydroxyl
radicals for tumor regression (41). Based on the abundant
GSH detained in TME, pyrite nanozymes and FeS2 with
ultrahigh H2O2 affinity promote the glutathione oxidation due
to their OXD-like activity and the generation of •OH by their
POD-like activity, resulting in the ferroptosis and apoptosis of
tumor cells consequently (35). Recently, a novel nanosystem,
Frontiers in Oncology | www.frontiersin.org 5
polyethylene glycol (PEG)-ylated iron manganese silicate
nanoparticles (IMSN) loaded with TGF-b inhibitor (TI)
(IMSN-PEG-TI), has also been constructed to regulate the
tumor immune microenvironment and advance the tumor
therapeutic modality through the intrinsic POD- and CAT-like
activities of IMSN nanozymes under the acidic TME (58).

Additionally, nanozymes can synergistically enhance the anti-
tumor effects of tumor therapy avenues that deeply depend on
the oxygen level, such as photodynamic therapy (PDT),
photothermal therapy (PTT), sonodynamic therapy (SDT),
radiotherapy (RT), and chemotherapy (1, 77). Moreover,
consumption of O2 and tumor vasoconstriction can further
exacerbate hypoxia and limit the efficiency of the above tumor
therapies, which finally form a positive feedback (78–81).
Nanozymes are used more and more widely in enhancing the
efficiency of these therapies.

Nanozymes in Synergistic Phototherapy
Phototherapy relies on light radiation to induce the death of
cancer cells, including PDT and PTT. PDT firstly transforms
light energy to the surrounding O2 and then produces a high
concentration of cytotoxicity of ROS to further oxidize
biomacromolecules and induces their dysfunction (77, 82–84).
PTT induces the death of tumor cells depending on the local
thermal damage (77, 84, 85). Although the photosensitizers and
photothermal agents could enhance therapy efficiency and
reduce the side effect of PDT and PTT under near-infrared
(NIR) laser irradiation, they convert to excited single states and
then return to the ground states by collisions between
surrounding molecules. Accompanied by the increased kinetic
energy, they consequently result in the heating of the
surrounding microenvironment (77, 85).

Although the metal-organic frameworks (MOFs) assembled
with photosensitizers can induce the death of tumor cells by the
conversion of oxygen into 1O2, the efficiency of PDT is still
limited owing to the hypoxia of the TME (80, 81, 86). The novel
Pt nanozymes have been placed on the photosensitizers
integrated with MOFs to break the limitation of hypoxia. This
nanoplatform not only possesses higher stability, but also
performs CAT-like activity leading to the additional 1O2

formation and further enhancing the efficiency of PDT (81).
CAT-mimicking Pt NPs are sandwiched into the dual-

nanozyme-engineered porphyrin metal organic frameworks
(PCN); furthermore, the outer GOx-mimicking Au NPs
coordinate with folic acid (Pt@P-Au-FA) (87). The Pt@P-Au-
FA NPs can enhance O2 generation by catalyzing H2O2, which
further enhances PDT efficiency. What is more, Au NPs
strengthen the depletion of glucose and the self-produced
H2O2 serve as substrates of Pt NPs, cooperating with glucose
depletion-induced starving therapy and achieving remarkable
anti-tumor effects (87).

The nanozyme PEG/Ce-Bi@DMSN is constructed by
dendritic mesoporous silica coated with uniform Bi2S3
nanorods (Bi2S3@DMSN) and further by ultrasmall ceria
placed into the large mesopores of Bi2S3@DMSN, which
possesses dual mimic catalytic activities (including POD- and
CAT-mimic activities) under primary acidic TME resulting in
October 2021 | Volume 11 | Article 666017
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elevated oxidative stress and relieved hypoxia (88) (Figure 3).
Additionally, PEG/Ce-Bi@DMSN allowed the enhanced GSH
consumption to be overexpressed in TME. The NIR laser
irradiation could strengthen the catalytic activities and GSH
depletion of PEG/Ce-Bi@DMSN nanozymes, which further
synergistically enhance the tumor ablation effect of PTT (88).

The platinum-doped Prussian blue (PtPB) nanozyme was
developed to improve the photothermal property in a large
wavelength range during the process of PTT (89). On the other
hand, the PtPB nanozyme is endowed with superior CAT and
SOD-like catalytic activities by Pt doped with PB nanotubes,
which contributed to the relieved inflammation caused by
PTT, along with significant tumor inhibition (89).

Nanozymes in Synergistic Sonodynamic Therapy
Ultrasound (US)-triggered sonodynamic therapy (SDT) consisting
of a low-intensity ultrasound and a chemotherapeutic agent
(sonosensitizer) is a promising alternative tumor therapeutic
modality (90–93). US not only is more accessible and
noninvasive in reaching deep-seated tumor tissues, but also can
activate sonosensitizers to produce toxic ROS molecules for tumor
eradication (90, 91, 94). However, the therapeutic efficiency of
SDT is still restricted by severe hypoxia in TME to a great extent
(90, 95).
Frontiers in Oncology | www.frontiersin.org 6
The hollow Pt-CuS Janus can overcome the hypoxia
environment due to the mimetic enzyme activity of Pt that
decomposes the endogenous overexpressed H2O2 into O2 (47).
The hollow Pt-CuS Janus has superior photothermal
performance, which not only elevates the Pt enzyme activity
for O2 production, but also augments the SDT-induced tumor
cell death by higher ROS level simultaneously (47). Hence, the
synergistic efficiency of PTT and the catalysis-improved SDT can
achieve complete tumor elimination.

The nanoprobe (CDP@HP-T), constructed by Pt-embedded
hollow polydopamine (P@HP) nanoparticle, co-loaded with
doxorubicin (DOX) and chlorine e6 (Ce6) and further
modified with the mitochondrial-targeting molecule triphenyl
phosphonium (TPP), can be used to achieve enhanced
combination therapy of chemotherapy and SDT for tumors
(94). As a pH-responsive nanoprobe, the CDP@HP-T could
realize the abundant O2 generation and alleviate the hypoxia of
tumor sites responsible for the CAT-like activity of Pt and
endogenous overexpressed H2O2 under weakly acidic TME,
which further enhances the efficacy of SDT (94) .
Concomitantly, with DOX and TPP, this nanoprobe could
achieve tumor eradication by inhibiting cellular DNA
replication, further enhancing the combined therapeutic
efficacy of chemotherapy and SDT (94).
FIGURE 3 | Schematic illustration of the PEG/Ce-Bi@DMSN nanozymes enhancing the efficiency of PTT. Reproduced with permission (88). Copyright 2020,
Wiley-VCH.
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Analogously, the ultrafine titanium monoxide (TiO1+x)
nanorods modified with PEG (PEG-TiO1+x NRs) enable higher
tumor elimination outcome in synergistic chemotherapy and
SDT (Figure 4) (96). The TiO1+x NRs possess POD-like activity
for the decomposition of H2O2 in TME (96). Notably, the PEG-
TiO1+x NRs could generate superior US-induced ROS due to the
oxygen-deficient structures within TiO. On the other hand, the
PEG-TiO1+x NRs could serve as Fenton-like agents for ROS
generation in the presence of Ti3+ (96).

Nanozymes in Synergistic Radiotherapy
Radiotherapy (RT) has been widely used as the first-line
treatment modality of various solid tumors in clinics (97–101).
However, the TME complex leads to the ultimate resistance to
RT and even the recurrence and metastasis of tumors (98).
Normalizing the TME to enhance the effectiveness of RT, to
improve hypoxia and increase intratumoral oxygen
concentration, and to further promote radiation-induced DNA
damage is one of the most common strategies.

Several nanomaterials are designed to enhance tumor
radiation sensitivity and attenuate hypoxia by catalyzing the
generation of O2 (102, 103). The high reactivity, stability, and
specificity of the albumin complex and MnO2 NPs (A-MnO2

NPs) towards H2O2 could simultaneously modulate hypoxia
Frontiers in Oncology | www.frontiersin.org 7
and acidosis TME with regulated pH (102). Furthermore, A-
MnO2 NPs could normalize tumor blood vessels by the
downregulated hypoxia-inducible factor-1a (HIF-1a) and
vascular endothelial growth factor (VEGF) (102). Taking
advantage of the engineered multifunctional A-MnO2 NPs,
the tumor response to radiation can be enhanced
significantly (102).

Based on the perfect RT responsiveness of MnO2, gold and
manganese dioxide (Au@MnO2) core-shell nanoparticles coated
with PEG formed Au@MnO2-PEG (104). Au@MnO2-PEG,
using the Au core, functioned as a RT sensitizer and MnO2

shell as CAT mimics that mediate the decomposed H2O2 could
not only overcome tumor hypoxia but also enhance the
tumor sensitivity to RT (75, 104). More importantly, the
Au@MnO2-PEG displays more satisfactory tumor inhibition
than the outcome of Au-PEG or MnO2-PEG and has good
biocompatibility and biosecurity (104).

Nanozymes in Synergistic Chemotherapy
Chemotherapy, as the most commonly applied cancer treatment
modality, induces cancer cell death partly through regulating the
formation of ROS (105). Abundant nanozymes loading
chemotherapy drugs have been applied in tumor treatment
depending on enhancing the generation of ROS (106).
FIGURE 4 | Schematic illustration of PEG-TiO1+x NRs that served as sonosensitizers in the synergistic chemotherapy and SDT. Reproduced with permission (96).
Copyright 2020, American Chemical Society.
October 2021 | Volume 11 | Article 666017
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Iron oxide nanoparticles (IONPs), with the POD-like activity,
could decompose H2O2 into hydroxyl radicals under acidic or
neutral conditions (73). The super-paramagnetic iron oxide
nanoparticles (SPION) with inherent POD-like activity are
proved to reduce H2O2 in human mesenchymal stem cells
(hMSCs) in a dose-dependent manner, and further promote
Frontiers in Oncology | www.frontiersin.org 8
cell proliferation and growth (107). SPION can also be degraded
in lysozymes and produce iron ions, which further accelerates the
process of cell cycle (106). In addition, the combination of
SPION with b-lapachone, an anticancer drug, significantly
enhances the intracellular ROS levels and tumor-killing
efficiency in non-small cell lung cancers (NSCLCs) (106).
TABLE 1 | Nanozyme Classification and Applications.

Nanozyme system Mimetic activities Applications References

Carbon-Based
SWNTs POD Drug delivery; Human SNP DNA detection (11, 24)
GO POD Tumor visual detection (63)
GO-COOH GOx; POD Glucose detection (15)
GFH POD Tumor detection (17)
C-Dots POD Glucose detection (22)
HFn-N-CNMs-3 POD; OXD (acidic pH values) Tumor catalytic therapy (25)

SOD; CAT (neutral pH values) Anti-oxidant therapy (25)
Metal-Based
Au NPs GOx Self-limiting nanomedicine; Biomedical probe (14, 111)
EMSN-AuNPs GOx; POD Self-activated cascade catalysis (28)
AuNCs POD Tumor detection (64)
BSA-AuNCs POD A dual fluorometric and colorimetric sensor for dopamine (29)
Au/SiO2 nanocomposites POD Realizing high-temperature catalytic reactions (30)
AuNCs-NH2 CAT Enhancing PDT efficiency (83)
Carbon-gold hybrid nanoprobes CAT Real-time imaging, enhancing PTT and PDT efficiency (111)
Au2Pt-PEG-Ce6 CAT; POD Synergistic chemotherapy and phototherapy (112)
Pt NPs CAT Enhancing RT efficiency (113)
Pt NPs/GO POD Tumor detection (62)
PtPB CAT; SOD Enhancing PTT efficiency (89)
Pt-MOFs hybrid system CAT Enhancing PDT efficiency (81)
Pt-Carbon nanozyme CAT Enhancing PDT and PTT efficiency (84)
P@Pt@P−Au−FA CAT; GOx Synergistic starving-like therapy and PDT (87)
Pd@Pt-T790 CAT Enhancing SDT efficiency; anti-bacterial infection (92, 93)
CDP@HP-T CAT Synergistic chemotherapy and SDT (94)
AFeNPs Fenton reaction Enhancing MRI contrast and chemotherapy effects (105)
Fe@BC POD Anti-bacterial infection (27)
Rh-PEG NDs CAT Anti-inflammation and anti-tumor (46)
OxgeMCC-r SAE CAT Enhancing PDT efficiency (114)
IMSN-PEG-TI POD; CAT Anti-tumor (58)
Metal Oxide-Based
Fe3O4 MNPs/IONPs POD (acidic pH values) Detection of organophosphorus pesticide and nerve agent (3, 16, 39)

CAT (neutral pH values) Anti-oxidant (39)
PtFe@Fe3O4 POD; CAT Synergistic tumor catalytic therapy and PTT (109)
DMSN-Au-Fe3O4 NPs POD; GOx Anti-tumor (41)
Nanoceria SOD (neutral pH values) Against radiation damage, oxidative stress and inflammation (9, 10, 38)

Fluorogenic detection of cancer
Folate-conjugated Nanoceria OXD (acidic pH values) Cancer detection (9)
PEG-CNPS SOD Radical scavenger with tunable redox chemistry (36)
A-MnO2 NPs CAT Modulating TME and enhancing RT responses (102)
MnO NPs SOD Enhancing MRI contrast (74)
Au@MnO2-PEG CAT Enhanced RT via improving the tumor oxygenation (104)
Mn3O4 NPs SOD; CAT; GPx Anti-inflammation (76)
MnO2@PtCo OXD; CAT Anti-tumor (75)
rMGB CAT Enhancing starvation and PDT against hypoxic tumor (110)
Ru@CeO2-RBT/Res-DPEG CAT Enhancing dual chemotherapy combined with PTT (108)
PEG-TiO1+x NRs POD Enhancing dual chemotherapy combined with SDT (96)
Metal Chalcogenide
CuS-GNSs POD; GOx Detection of H2O2 and human serum glucose level (44)
Hollow Pt-CuS Janus POD Synergistic PTT and SDT (47)
DMHSs-FeS2/SiO2 POD Detection of H2O2 and GSH for anti-tumor (50)
SVs-Fe3S4 POD Detection of human serum glucose level (51)
FeS2 OXD; POD Anti-tumor (35)
PEG/Ce-Bi@DMSN POD; CAT Synergistic tumor catalytic therapy and PTT (88)
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Hollow Ru@CeO2 yolk shell nanozymes (Ru@CeO2 YSNs)
loaded with anti-tumor drug ruthenium complex (RBT) and
resveratrol (Res), and then modified with PEG, formed the Ru@
CeO2-RBT/Res-PEG nanozyme system (108). Ru@CeO2-RBT/
Res-DPEG could achieve oxygen supply in situ and enhance the
anti-tumor responses of both chemotherapy and PDT.
Moreover, it can also limit the metastasis and recurrence of
tumors (108).

Nanozyme Systems for Tumor Theranostics
Based on the development of nanotechnology, more and more
multi-functional nanozyme platforms are designed, with the
ability of multi-model therapy, multi-model imaging, or
simultaneously realizing tumor diagnosis and therapy.

The novel PtFe@Fe3O4 nanozyme, with outstanding POD-
and CAT-like activities in the acid TME, could overcome the
hypoxia in tumor and enhance the effects of PDT. Moreover,
PtFe@Fe3O4 could be used as MRI T1WI negative contrast
agents (41, 109). The biomimetic hybrid nanozyme (rMGB),
integrated with GOx and MnO2, could realize the self-catalytic
reaction products under TME stimulation, resulting in enhanced
O2 generation and improving the efficiency of starvation therapy
and PDT (110). Also, rMGB could be used as the MRI T1WI
contrast agents.

Based on the POD-like and ROS-regulated activity of Au NPs
under an acid environment, the carbon–gold hybrid (OMCAPs@
rBSA-FA@IR780) nanoprobes not only reveal excellent tumor-
targeting imaging ability, but also offer outstanding
tumor therapeutic performance (111). Besides, the Au2Pt-PEG-
Ce6 nanoplatform was developed through Ce6 linked to Au2Pt
nanozymes covalently (112). Contributing to the photosensitive
characteristics of Ce6 and the dual CAT- and POD-like activities
simultaneously of Au2Pt nanozymes, this nanosystem not only
can relieve tumor hypoxia with O2 generation but also enhance
the efficiency of PDT and chemotherapy with the produced ∙OH
(112). Moreover, due to high-Z elements of Au and Pt, Au2Pt-
PEG-Ce6 can be possible imaging contrast agents of CT
(112, 113).

With single-atom Ru incorporated into the Mn3[Co(CN)6]2
MOF framework, followed by the biocompatible poly-
vinylpyrrolidone (PVP) polymer further encapsulating organic
ligand, metal ions, and photosensitized Ce6, the self-assembled
single-atom enzyme (OxgeMCC-rSAE) was constructed (114).
As Ru served as an endogenous oxygen-generating single-atom
catalytic site, OxgeMCC-rSAE can degrade H2O2 to generate
oxygen, which further enhances the generation of ROS,
ultimately enhancing PTT-induced cancer cell death (114).
Meanwhile, due to the higher loading of the photosensitizer
Ce6, the nanoparticles can selectively aggregate and be visualized
in the tumor area by MRI (114).
CONCLUSION AND PROSPECTS

Since the hallmark ferromagnetic nanoparticles proved to be of
use as POD natural enzymes in 2007, nanozymes have attracted
Frontiers in Oncology | www.frontiersin.org 9
unprecedented attention and applications, especially in
oncology. Although nanozymes have achieved excellent
progress in many areas, there are still many problems that
cannot be ignored. Currently, most of the present nanozymes
mainly focus on the activity of oxidoreductase and hydrolase
activities, but the other enzyme activities such as transferase and
lyase are still poorly understood. Therefore, it is necessary to
explore new nanozyme materials and study their catalytic
properties in depth. In addition, the catalytic mechanism of
nanozymes is diverse and regulated by various factors. Moreover,
different nanozymes may have a synergistic effect in the anti-
tumor process. Therefore, it is necessary to establish
completeness for different types of nanozyme catalytic systems.
The current catalytic efficiency of nanozymes makes it hard to
reach the level of natural enzyme in vivo, and their activities are
still limited due to the complicated TME. Besides, the poor
substrate selectivity of nanozymes persists. Modification of
certain specific molecules with nanozymes may solve the
problem and may improve the substrate specificity and target
the tumor more sensitively and specifically. In addition, studies
of nanozymes in tumor theranostics are still in the primary stage.
The inherent toxicity and clearance rate of the materials also
limit their wide applications. Moreover, various nanozymes have
their own unique advantages and shortcomings. Therefore,
constructing a nanosystem with good biocompatibility, high
targeting efficiency, and multiple functions would be a
crucial task.

With the continuous development of nanoscale science and
technology, nanozymes show superior versatility, operability,
and applicability, thus paving the way for new principles and
technologies in disease diagnosis and treatment as well as
efficient and precise new nanodrug applications in the
biomedical field (Table 1).
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