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Purpose: This study was to investigate the role of different radiomics models with
enhanced computed tomography (CT) scan in differentiating low from high grade renal
clear cell carcinomas.

Materials and Methods: CT data of 190 cases with pathologically confirmed renal cell
carcinomas were collected and divided into the training set and testing set according to
different time periods, with 122 cases in the training set and 68 cases in the testing set.
The region of interest (ROI) was delineated layer by layer.

Results: A total of 402 radiomics features were extracted for analysis. Six of the radiomic
parameters were deemed very valuable by univariate analysis, rank sum test, LASSO
cross validation and correlation analysis. From these six features, multivariate logistic
regression model, support vector machine (SVM), and decision tree model were
established for analysis. The performance of each model was evaluated by AUC value
on the ROC curve and decision curve analysis (DCA). Among the three prediction models,
the SVMmodel showed a high predictive efficiency. The AUC values of the training set and
the testing set were 0.84 and 0.83, respectively, which were significantly higher than those
of the decision tree model and the multivariate logistic regression model. The DCA
revealed a better predictive performance in the SVM model that possessed the highest
degree of coincidence.

Conclusion: Radiomics analysis using the SVM radiomics model has highly efficiency in
discriminating high- and low-grade clear cell renal cell carcinomas.

Keywords: renal clear cell carcinoma, enhanced computed tomography, imaging histology, logistic
regression, radiomics
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INTRODUCTION

Clear cell renal cell carcinoma (ccRCC) accounts for 70% of
renal cancers (1). Since the long-term survival of clear cell
carcinoma patients correlates negatively to the Fuhrman
grading (2–4), it is crucial to accurately grade clear cell
carcinoma of the kidney as early as possible. Grading ccRCC
through aspiration biopsy is controversial as the operation itself
carries risk of metastatic spread (5, 6). Previous studies on RCC
were mostly based on analysis of images of conventional
computed tomography (CT) (7–9), which was often interfered
by human factors and lack of quantification. Through precise
quantitative analysis of medical images, radiomics provides
researchers an effective way to detect biological characteristic
changes caused by tumor microenvironment (10–12). Classic CT
information or CT-based radiomics has been applied to establish
predictive models for ccRCC grade. In three logistic regression
models of radiomics based on non-texture features, texture
fraction and non-texture feature combined with texture
fraction for identifying high- and low-grade ccRCCs (13), the
area under the operating curve (AUC) values in the three models
were 0.826, 0.878, and 0.843 for the training set and 0.671, 0.771,
and 0.780 for the testing set, respectively. Some image features
like tumor size (TS) and permeability surface-area product (PS)
were helpful in differentiating high- from low-grade ccRCCs
based on conventional CT studies, with the AUC of TS and PS of
0.7 (14). The sensitivity and specificity were 0.8 and 0.6 for TS
and 0.7 and 0.8 for PS, respectively. Moreover, gene fragments
and radiomics can be combined to establish a two-group model
for differentiating ccRCC from non-clear cell RCC (non-ccRCC),
with the AUC of the training set and testing set being 0.969 and
0.900, respectively (15). Some studies confirmed that necrosis
can independently predict the biological invasiveness of ccRCCs
(16, 17). Moreover, only the logistic regression model was
utilized in most of these studies lacking comparison between
different predictive modeling methods. Therefore, in this study,
three models including logistic regression, decision tree and
support vector machine (SVM) were established and compared
for ccRCC grading performance.
MATERIALS AND METHODS

Patients
This retrospective study was approved by the Ethics Review
Committee of Affiliated Hospital of Hebei University with all
patients given their signed informed consent. All methods were
performed in accordance with the relevant guidelines and
regulations. Patients with ccRCC were enrolled between
January, 2017 and December, 2018 in our hospital. Inclusion
criteria were a single lesion with clear grades of RCC and
preoperative enhanced CT images in the cortical phase with
fast-in and fast-out enhancement (cortical phase showed the
clearest). Exclusion criteria were: (I) carcinomar metastasis, (II)
cystic changes in the lesion of carcinoma, (III) necrosis volume
>80% of the maximal lesion volume, and (IV) poor image
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quality. In accord with these criteria, 42 unqualified samples
were excluded, and 190 eligible samples were included. In this
study, I-II grade ccRCC was defined as low-grade renal clear cell
carcinoma, and III-IV grade ccRCC was defined as high-grade
renal carcinoma (18) (Figure 1). Among the qualified 190
patients with ccRCC, 133 cases were of grade I-II ccRCC and
57 cases were of grade III-IV ccRCC, including 98 males and 92
females with an age range of 27–88 years (mean 58.30 ± 8.70)
(Table 1). Their maximal diameters of the carcinoma ranged 2-
12 cm (mean 5.6 ± 4.4) from post-operative pathological exams.

CT Image Acquisition
Abdominal plain and enhancement CT scans were performed
with a 64-row CT scanner (GE Discovery HD 750, GE Health
Care, Chicago, IL, USA). Contrast agent was iodophor alcohol, a
non-ionic iodine contrast agent. The post-injection scanning
time points were 30-35s, 50-60s and 180s, covering the
medullary phase and renal pelvis stage. Scanning parameters
were as follows: cortical phase, pitch: 0.984:1, layer thickness:
5 mm, field of view: 40 cm×40 cm, matrix: 512×512, tube voltage:
100-120 kV, tube current: 134-409 mA, window width: 250-450
HU, and window position: 30-50 HU.

Volumes of Interest (VOIs) Segmentation
The cortical phase images of enhanced CT from 190 subjects
were imported into the ITK-SNAP software (19), and the region
of interest (ROI) was delineated by one radiologist with 8 years of
working experience and checked by another radiologist with 10
years of working experience.

Radiomics Feature Extraction
and Selection
The radiomics features were extracted from the original and
filtered images with the AK software (Artificial Intelligence Kit
V3.0.0.R, GE Healthcare, China). A total of 402 features were
obtained, including 42 histogram features, 144 gray-level co-
occurrence matrices features (GLCM), 180 gray-level run length
matrices features (GLRM), 11 gray-level zone matrices features
(GLSZM), 15 shape-based features, and 10 Haralick features. The
feature selection procedure was as follows: Firstly, the data of
patients from January 2017 to April 2018 were included in the
training set, and the data of patients from April 2018 to December
2018 were included in the testing set, with the data of 122 patients
in the training set (with 81 cases of I-II ccRCC and 41 cases of III-
IV ccRCC) and 68 patients in the testing set (with 52 cases of I-II
ccRCC and 16 cases of III-IV ccRCC). Secondly, the data were
preprocessed, including replacing missing values with the median
value and standardizing the Z-score of features in all data.
Thirdly, the extracted features were analyzed by one-way
ANOVA and Wilcox rank-sum test, with the significant P value
set at less than 0.05. Then, the least absolute shrinkage and
selection operator (LASSO) method, which has been shown to
be suitable for high dimensional data analysis (13), were used for
further feature screening. The LASSO method selects features
using a tuning parameter (Lambda), with some coefficients in the
covariance can be shrunk to zero when the cross-validation error
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is the smallest. All the feature selection procedure performed on
the training set and applied on the testing set. The finally selected
features were used to construct models.
RADIOMIC MODEL BUILDING AND
VALIDATION

The ROC curves of each model in the training set (data of 122
patients) and testing set (68 patients) were calculated with all
available patients and the AUC values were derived (Figure 3).
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The predictive performances of three models (logistic regression,
decision tree, and SVM) were compared for analysis. The
decision curve analysis (DCA) was conducted to evaluate the
clinical usefulness of the models for ccRCC prediction. DCA
quantified the net benefits at different threshold probabilities in
the training and testing set (Figure 4).

Statistical Analysis
Statistical analysis was performed with the R software (version:
3.6.3, www.r-project.org). The Chi-square test was used to
evaluate the distribution difference in high and low-grade cc
RCCs. The LASSO, SVM, and decision tree model were
conducted based on ‘glmnet’, ‘e1071’, and ‘rpart’ packages,
respectively. The receiver operating characteristics (ROC)
curve analysis was performed to determine the AUC, accuracy,
specificity and sensitivity for evaluating the performance of the
model. The significance was set at P < 0.05.
RESULTS

The six most valuable features selected by LASSO for radiomics
modelling were GLCMEntropy, GreyLevelNonuniformity,
ShortRunEmphasis, LongRunLowGreyLevelEmphasis,
ShortRunLowGreyLevelEmphasis, and IntensityVariability. The
LASSO regression was shown in Figure 2. The specific
parameters and feature extraction used in the six most valuable
features were demonstrated in Table 2. These features were used
FIGURE 1 | Clear cell renal cell carcinomas (ccRCC) with different grades. (A) Grade I ccRCC (arrow) was demonstrated. (B) Grade II ccRCC was shown (arrow).
(C) Grade III ccRCC was revealed (arrow). (D) Grade IV ccRCC (arrow) was displayed.
TABLE 1 | Demography of patients in two sets.

Variables Training set Testing set

Case no. 122(64%) 68 (36%)
Sex
Male 66(54%) 33(49%)
Female 56(46%) 35(51%)

Age mean (range, y) 55.6(28-85) 56.1(31-87)
< 60 59(48%) 35(51%)
≧60 33(49%) 63(52%)

Subtype
Low-grade ccRCC 81(66%) 52(76%)
High-grade ccRCC 41(34%) 16(24%)

Tumor size (cm, mean ± SD)
Low-grade ccRCC 6.48 ± 3.46 6.57 ± 3.31
High-grade ccRCC 7.21 ± 3.13 8.31 ± 3.31
Low grade, grades I-II; High-grade, grades III-IV; SD, standard deviation.
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to establish three models of logistic regression, decision tree and
SVM in the training set with 122 patients. Each model was
trained and assessed using the repeated ten-fold cross-validation
method in the training set. Performance of differentiating high
grade from low grade ccRCC was evaluated with the testing set
(68 patients) (Figure 3).

The AUC values in the training set and testing sets are
respectively 0.63 (95% CI 0.53-0.73) and 0.64 (95% CI 0.48-0.8)
with the logistic regression model, 0.84 (95% CI 0.76-0.92) and 0.83
(95% CI 0.69-0.96) with SVM model, and finally, 0.69 (95% CI
0.60-0.78) and 0.72 (95% CI 0.56-0.87) with the decision tree
model. The cutoff value of each model was obtained from the
Youden index from the ROC curve, with the value being 0.366,
0.38, and 0.276, respectively, in the logistic regression, SVM, and
decision tree for the test set. The results presented in Tables 3 and 4
showed that the SVM model had achieved the best performance.

DCA was conducted to evaluate clinical usefulness of the
models in prediction by quantifying the net benefits (relative
benefits), at different threshold probabilities in both sets
(Figure 4). The SVM model had the best performance in
prediction of low- and high- grade renal cell carcinoma. In the
DCA analysis (Figure 4), the SVM model was shown to obtain
the highest benefit in the range of 0.34-0.49 which contained the
Frontiers in Oncology | www.frontiersin.org 4
cutoff value 0.38 for the SVM model. The “benefit” was relative
and indicated the efficiency of the models in the test set.

The prediction performance of the three models for low and
high grade RCC was verified and compared (Figures 5–7). There
was no significant (P=0.054) difference in the high and low-grade
distribution of ccRCCs between the training and testing sets.

In verification of the logistic regression model (Figure 5), the
true negative rate (specificity) for predicting grade I-II ccRCC
was 60.5% (49/81) in the training and 53.7% (22/41) in the
testing set, and the true positive rate (sensitivity) for predicting
grade III-IV ccRCC was 65.4% (34/52) in the training and 75%
(12/16) in the testing set. In verification of the SVM model
(Figure 6), the true negative rate (specificity) was 76.5% (62/81)
for predicting grade I-II ccRCC in the training and 85.4% (35/41)
in the testing set, and the true positive rate (sensitivity) was
84.6% (44/52) in the training set. The testing set also exhibited a
true negative rate of 75% (12/16) for predicting grade III-IV
ccRCC. In verification of the decision tree model (Figure 7), the
true negative rate (specificity) was 77.8% (63/81) for predicting
grade I-II ccRCC with the true positive rate (sensitivity) of 55.8%
(29/52) in the training set. For the testing set, the true negative
rate was 82.9% (34/41) for predicting grade I-II ccRCC and
62.5% (10/16) for predicting grade III-IV ccRCC.
A B

FIGURE 2 | Feature selection with the LASSO method. (A) The tuning parameter (l) changes in the LASSO model. The binomial deviance curve was generated with
the log (l). The minimum criteria for five-fold cross-validation were applied. The best l = 0.0212 was obtained at the minimal binomial deviance. (B) The LASSO
coefficient profile plot with different log (l) was shown. The vertical red line was the best l with 6 selected radiomic features.
TABLE 2 | Specific parameters and feature extraction in six features.

ID Class Type Offset Direction

1 GLCM Entropy 7 Angle90
2 RLM GreyLevelNonuniformity 7 All (3D)
3 RLM ShortRunEmphasis 7 Angle0
4 RLM LongRunLowGreyLevelEmphasis 7 Angle0
5 RLM ShortRunLowGreyLevelEmphasis 4 All (3D)
6 Histogram IntensityVariability – –
May 2021 | Volume 11 | Artic
le 659969
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The AUC, accuracy, specificity, and sensitivity were used to
evaluate the performance of the model (Tables 1 and 2).
Through comprehensive comparison of the AUC value,
specificity, sensitivity of the three models, the best prediction
efficiency, observed in the sSVM model, was therefore selected
for prediction purpose in this study. The SVM model had the
greatest accuracy (0.797 and 0.825), sensitivity (0.846 and 0.825)
and specificity (0.742 and 0.750) in both the training and testing
set compared with the logistic regression model (0.624 and 0.596,
0.654 and 0.750, 0.605 and 0.537, respectively) and the decision
tree model (0.692 and 0.772, 0.558 and 0.625, 0.778 and
0.829, respectively).
DISCUSSION

The present study was aimed at the differentiation of high- from
low-grade ccRCCs, because pathological grades highly correlate
with ccRCC metastasis and prognosis (20). ccRCC has different
Frontiers in Oncology | www.frontiersin.org 5
clinical prognoses at different grades, and early identification of
pathological grade of ccRCCs is valuable for timely clinical
treatment and patient health.

Radiomics analysis is to extract a multitude of features form
medical images to analyze size, shape, and texture, with useful
spatial information on pixel or voxel distribution and modes.
The recent advancements in the study of ccRCCs were based on
imaging histology except for its grading (21). In the modeling
and identification of high- and low-grade ccRCCs, previous
studies (22, 23) used in vivo diffusion-weighted imaging (DWI)
and imaging histology to achieve the AUC value of 0.8, whereas
an AUC value of 0.73 was reached by the Renometric score based
on CT imaging in identification of high-level RCCs (23). The
AUC values for SVMmodel in the training and testing sets in our
study were 0.84 and 0.83, respectively, higher than 0.8 or 0.73 of
methods described earlier.

Ding et al. (13) applied radiomics to establish three logistic
regression models to identify high and low-grade ccRCCs,
achieving the AUC values in the training sets of the three
TABLE 3 | ROC curve analysis of three models in the training set.

Parameter Logistic (Train) SVM (Train) Decision Tree (Train)

AUC 0.632 (CI: 0.533–0.730) 0.840 (CI: 0.653–0.758) 0.688 (CI: 0.601–0.775)
Accuracy 0.624 (CI: 0.530–0.707) 0.797 (CI: 0.719–0.862) 0.692 (CI: 0.606–0.769)
Sensitivity 0.654 (CI: 0.462–0.788) 0.846 (CI: 0.558–0.942) 0.558 (CI: 0.385–0.681)
Specificity 0.605 (CI: 0.272–0.741) 0.742 (CI: 0.284–0.852) 0.778 (CI: 0.575–0.904)
May 2021 | Volu
ROC, Receiver operating characteristic; AUC, area under the operating curve; CI, confidence interval.
FIGURE 3 | The receiver operating characteristics (ROC) curve analysis was performed for three models of logistic regression, support vector machine and decision
tree in the training set and testing set.
TABLE 4 | ROC curve analysis of three models in the testing set.

Parameter Logistic regression Support vector machine Decision Tree

AUC 0.639 (CI: 0.476–0.802) 0.826 (CI: 0.688–0.964) 0.717 (CI: 0.564–0.871)
Accuracy 0.596 (CI: 0.458–0.724) 0.825 (CI: 0.701–0.913) 0.772 (CI: 0.642–0.873)
Sensitivity 0.750 (CI: 0.436–0.938) 0.750 (CI: 0.438–0.938) 0.625 (CI: 0.320–0.812)
Specificity 0.537 (CI: 0.195–0.756) 0.854 (CI: 0.341–0.976) 0.829 (CI: 0.400–0.951)
ROC, Receiver operating characteristic; AUC, area under the operating curve; CI, confidence interval.
me 11 | Article 659969
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models of 0.826, 0.878, 0.843 compared with the AUC values in
the testing sets of 0.671, 0.771 and 0.780, respectively. Although
the results in training set were better, the scores in testing set
were not as satisfactory probably due to a trend of over-fitting. In
addition, Ding et al. extracted the texture features from the
maximal diameter level of the mass and collected less
heterogeneous information of the mass (13). Compared with
the study by Ding et al, our SVM-based model performed better,
with our SVM-based AUC in the training and testing set being
0.84 and 0.83, respectively. Shu et al. (24) established three
radiomic models based on renal CT enhancement images in
the cortical and parenchymal phases, including cortical phase
Frontiers in Oncology | www.frontiersin.org 6
model, parenchymal phase model, and in combination. The
corresponding accuracy, AUC value, sensitivity and specificity
were 0.719, 0.766, 0.818 and 0.822) for the cortical phase model,
0.738, 0.602, 0.693 and 0.677 for the parenchymal phase
model, and 0.777, 0.838, 0.838 and 0.839 for the combined
model. Comparing these results to the study with 3D texture
analysis based model by Shu et al. (24), our results have better
accuracy, AUC value, and sensitivity. Although the model
produced by Shu et al. (24) possessed slightly higher specificity
with the combined multi-period model outperforming the one-
period model, their study used full data to build the model
without using independent test data to validate their results.
FIGURE 4 | Decision curve analysis (DCA) was conducted to evaluate the clinical usefulness of the models in prediction by quantifying the net benefits at different
threshold probabilities in the training and testing set. The SVM model had the best performance in prediction of low- and high-grade renal cell carcinoma. Logistic,
logistic regression model; SVM, support vector machine model; Decision tree, decision tree model.
FIGURE 5 | Verification and comparison of the logistic regression model in predicting low and high grade renal cell carcinoma in the training and testing set. In the
training set, the true negative rate (specificity) for predicting grade I-II clear cell renal cell carcinoma (ccRCC) was 60.5% (49/81), and the true positive rate (sensitivity)
for predicting grade III-IV ccRCC was 65.4% (34/52). In the testing set, the true negative rate was 53.7% (22/41) for predicting grade I-II ccRCC and 75% (12/16) for
predicting grade III-IV.
May 2021 | Volume 11 | Article 659969
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Radiomics-based grading models demonstrated better
performance than the model based on conventional CT
parameters. Chen et al. (14) pointed out that tumor size (TS) and
permeability surface-area products (PS) were helpful in distinguishing
the high and low grade clear cell renal cancers, with the AUC of both
TS and PS being 0.7 and the sensitivity and specificity being 0.8 and
0.6 for TS and 0.7 and 0.8) for PS. The grading performance in our
study was also better than this study (15).

Heterogeneity is an important feature of malignant tumors
and is closely related to their biological behavior. CT enhanced
imaging can be used to effectively evaluate tumor heterogeneity
(25). After studying low enhancement on multiphase contrast-
enhanced CT images for predicting presence of high tumor grade
Frontiers in Oncology | www.frontiersin.org 7
of ccRCC (26), Miles et al. found that low tumor enhancement in
the cortico-medullary phases was an independent predictor of
high tumor grade, which may be useful in clinical care of patients
with nonsurgical approaches. It is speculated that the higher the
grade of renal clear cell carcinoma, the more abundant the small
capillaries (27), which is supported by another study by Li et al
(15). In addition, necrosis is highly correlated with heterogeneity
of tumors, which is of great significance (28). In this study (28),
various processing techniques including voxel normalization and
various filtering processes were used to extract a variety of high
and low order features, including gray matrix and 3D
morphological features. Finally, LASSO cross-processing was
used to select the most valuable six histological features.
FIGURE 6 | Verification and comparison of the support vector machine model in predicting low and high grade renal cell carcinoma in the training and testing set. In the
training set, the true negative rate (specificity) was 76.5% (62/81) for predicting grade I-II clear cell renal cell carcinoma (ccRCC), and the true positive rate (sensitivity) was
84.6% (44/52). In the testing set, the true negative rate was 85.4% (35/41) for predicting grade I-II ccRCC and 75% (12/16) for predicting grade III-IV ccRCC.
FIGURE 7 | Verification and comparison of the decision tree model in predicting low and high grade renal cell carcinoma in the training and testing set. In the
training set, the true negative rate (specificity) was 77.8% (63/81) for predicting grade I-II clear cell renal cell carcinoma (ccRCC), and the true positive rate (sensitivity)
was 55.8% (29/52). In the testing set, the true negative rate was 82.9% (34/41) for predicting grade I-II ccRCC and 62.5% (10/16) for predicting grade III-IV ccRCC.
May 2021 | Volume 11 | Article 659969
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After looking into a variety of common first-order features
that reflect tumor heterogeneity, such as average gray level,
kurtosis and entropy, Feng et al. proposed that entropy is an
independent and excellent radiomic feature to describe a degree
of disorder in images (29). In terms of lesion density distribution,
larger entropy values suggest more randomness while smaller
entropy values indicate uniformity. Thus, high-grade tumors
with relatively large liquefaction necrosis volume have reduced
the entropy detectable as a radiomic feature and were
consequently excluded from our study. In our study, we only
studied the primary renal cell carcinoma rather than metastatic
carcinomas from other resources. However, if the renal
cancerous lesions of the primary renal cell carcinoma
contained large-area necrosis or cystic changes, they would be
excluded from the study, because necrosis contained inactive
tissue and cystic changes contained liquid materials. Solid mass
should be retained as much as possible. The radiomics captured
tissues primarily with active and biological behavior, namely
solid mass tissues. Cystic degeneration and necrosis are similar in
nature, and the doping of these changes in the samples may
lower the evaluation efficiency of the results.

In our study, GLCM_entropy, Greylevel_Nonuniformity, and
Intensity_Variability of the six features reflect the degree of
random gray distribution in ROI, which is usually used to
demonstrate the tumor heterogeneity. ShortRun_Emphasis and
ShortRunLowGreyLevel_Emphasis are used to show the fine
texture of the tumor, whereas LongRunLowGreyLevel_Emphasis
is used to reflect the coarse texture within the tumor. The SVM
model in our study used the RBF kernel with C value 1 and gamma
0.001. The SVM is a nonlinear model which can get greater and
better results than the linear model. The SVMmodel may be used
for machine learning with small samples, for improving
generalization and solving higher-dimensional problems as well
as for avoiding structural selection in neural networks. There are
some limitations in our study. Firstly, the overall sample size was
relatively small. Secondly, patient data was not comprehensively
collected, with the construction of models having excluded
diagnostic elements from biochemistry, immunohistochemistry
and genetic studies. Thirdly, when the VOI was delineated, the
Frontiers in Oncology | www.frontiersin.org 8
accuracy of the delineated lesions was reduced, due to unclear
margins of some tumor masses or the influences by partial volume
effect. Fourthly, the current single-center study lacked
independent validation and evaluation from external
professionals. Although our scanning parameters and
reconstruction methods had been standardized, they should
have been fixed with multicenter studies, thus necessitating a
unified measurement standard for obtaining necessary
information. Lastly, this study was limited to its retrospective
nature and involvement with only Chinese ethnicity.

In summary, the current study uses radiomics analysis to
differentiate the grade of ccRCC, and the support vector
machine-based model exhibits the best performance for
differentiating high- and low-grade ccRCC when compared to
the logistic regression model and the decision tree model.
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