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Significant advances in our understanding of the molecular genetics of pediatric and adult
brain tumors and the resulting rapid expansion of clinical molecular neuropathology have
led to improvements in diagnostic accuracy and identified new targets for therapy.
Moreover, there have been major improvements in all facets of clinical care, including
imaging, surgery, radiation and supportive care. In selected cohorts of patients, targeted
and immunotherapies have resulted in improved patient outcomes. Furthermore,
adaptations to clinical trial design have facilitated our study of new agents and other
therapeutic innovations. However, considerable work remains to be done towards
extending survival for all patients with primary brain tumors, especially children and
adults with diffuse midline gliomas harboring Histone H3 K27 mutations and adults with
isocitrate dehydrogenase (IDH) wild-type, O6 guanine DNA-methyltransferase gene
(MGMT) promoter unmethylated high grade gliomas. In addition to improvements in
therapy and care, access to the advances in technology, such as particle radiation or
biologic therapy, neuroimaging and molecular diagnostics in both developing and
developed countries is needed to improve the outcome of patients with brain tumors.
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INTRODUCTION

If one could infer by attendance at major neuro-oncology conferences and the representation of
pediatric and adult neuro-oncology at international oncology meetings, there has been an influx of
new investigators, interest and significant advances in biomedical research pertaining to improving
diagnosis, risk stratification, and treatment for children and adults with primary brain tumors.
However, research progress has not yet had the anticipated impact on patient outcomes despite the
promise. In the following article, we discuss several topics of current interest to the neuro-oncology
community to reflect the directions the field is taking.
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DIAGNOSTIC AND PROGNOSTIC
CONSIDERATIONS

The 2016 update to the World Health Organization (WHO)
Classification of Tumours of the Central Nervous System
brought important refinements, including but not limited to
molecular genetic subgroups of medulloblastoma and the
introduction of diffuse midline glioma with Histone H3 K27
mutations (1). With the advent and subsequent implementation
of platforms such as whole genome sequencing (2), single cell
nucleic acid sequencing (3–7), nanostring technology (8, 9) and
DNA methylation (10–12) profiling, some diagnostic categories
have been replaced, such as the former primitive neuroepithelial
tumor (PNET)grouping (13), whereas more common tumors
such as low grade gliomas and glioblastoma (GBM) in pediatric
and adult age groups are being split into subgroups specified by
molecular and genetic considerations (14–20). The Glioma
Longitudinal Analysis Consortium (GLASS) was established to
assess genomic, epigenomic and other molecular changes such as
tumor mutational burden and mutational signatures that occur
over time from initial diagnosis to tumor progression/recurrence,
including in response to chemotherapy and radiation (19, 21).
Although driver mutations were retained at recurrence, prior
therapies such as alkylating agents contributed to acquired
mutations, including a hypermutator phenotype. Furthermore,
selection of subclones with disease progression portended a
worse prognosis (19). Other consortia, including the
Consortium to Inform Molecular and Practical Approaches to
CNS tumor Taxonomy (cIMPACT-NOW) (22, 23) have been
organized to make further refinements that will be incorporated
into the next edition of the WHO Classification.

Going forward, the task will be to prospectively study these
subgroups in well designed clinical trials limited by smaller
numbers of patients with these specific diagnoses. Significant
pre-clinical and basic research is needed to identify actionable
therapeutic targets within these subgroups. Furthermore, once
appropriate therapies are identified, successful clinical trial
accrual will likely require international collaboration given the
limited patient numbers. However, many of these advanced
molecular diagnostic technologies are not accessible in the
developing world limiting the ability to both include these
regions in trials and appropriately apply new treatments to the
patients living there. Efforts to democratize molecular pathology
using more widely available assays may be necessary, even at the
cost of precision.

Other important advances include liquid biopsy for both
initial diagnosis and at the time of progression/recurrence, such
as for diffuse midline gliomas and to follow responses to therapy
(24, 25). This is an important concept given the potential
morbidity of repeated brain biopsy and the limitations of
conventional magnetic resonance imaging (MRI). Challenges
regarding the choice of cerebrospinal fluid (CSF), plasma, or
serum, the technological platforms to utilize and which specific
components (cell free DNA, RNA, microRNA, other noncoding
RNAs, exosomes, tumor-educated platelets, etc.) remain as very
active areas of investigation (26–28).
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Repeat biopsy or tumor resection can be beneficial to the
patient, including reduction of residual disease, assessment of
acquired mutational profile and/or identification of new
mutations (29). Timing of reoperation can influence the survival
benefit and this should be factored into both retrospective and
prospective studies (30). Reoperation may provide time to offer
salvage therapies, including stereotactic radiosurgery, and assess
their efficacy. However, the extent of re-resection is often limited by
patient choice, the neuroanatomic location of the tumor and other
considerations, such as risks of (further) neurological impairment,
venous thromboembolism and/or other complications. Moreover,
repeat biopsy may not provide sufficient tissue for full molecular
genetic studies. Yet, this new data may inform the selection of
available targeted therapies or enable the application of local
therapies, such as oncolytic viruses, at the time of reoperation.
The availability of additional genomic and epigenomic data
includes the mutational signature associated with temozolomide
and determination of tumor mutational burden (TMB). An
increased TMB is one factor that may render the patient suitable
for therapy with immune checkpoint inhibitors, discussed later in
this Perspectives article. Furthermore, reoperation can facilitate
eligibility to phase I/II clinical trials of novel targeted therapies or
assessment of drug delivery and target inhibition in phase 0 or
“window of opportunity” clinical trials (31).

Bioinformatic analyses of databases such as the Cancer
Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas
(CGGA) have yielded numerous studies identifying novel
prognostic and/or predictive biomarkers. However, many of
these studies lack functional or clinical validation studies or
have yet to be studied prospectively in clinical trials. Indeed,
many of the molecular subgroups identified from these datasets
reveal distinct biologies but are often defined by molecular
techniques, such as whole transcriptome profiling, that are not
readily applicable to the clinical setting.
NEUROIMAGING AND NEUROSURGERY

The use of chemoradiation and subsequently bevacizumab for adult
GBM underscored the importance of identifying pseudoprogression
and pseudoresponse, respectively. The Response Assessment in
Neuro-Oncology (RANO) criteria (32, 33) and more recently
iRANO (immunotherapy) (34) and RAPNO (pediatric) (35–37)
working groups have standardized response assessments by
neuroradiologists and other clinicians in the settings of both
clinical trials and in the neuro-oncology clinic. These assessments
have been particularly helpful in clinical trial design, but have less
utility for the individual patient as the criteria often involve
retrospective assignment of progression which is useful in
determining the status of a clinical trial endpoint, but often too
late to impact individual patient treatment.

The International Neuroimaging Data-sharing Initiative and
others aim to streamline processing of MRI and other
neuroimaging data across institutions following standard
operating procedures for multi-institutional data sharing.
These efforts are providing both neuroscientists and clinicians
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from less well-developed countries with access to advanced
neuroimaging bioinformatics infrastructure, which can assist
with diagnosis and assessment of responses to therapy (38–40).
Collaborating approaches to develop segmentation algorithms
(e.g. identifying areas of tumor or normal structures), such as the
Federated Tumor Segmentation (FeTS) initiative (41), permit
pooling of de-identified images and processing analysis tools to
vastly improve upon what is possible from a single institution.

Furthermore, radiomics and the application of machine
learning/artificial intelligence to diagnostic MRI scans has the
potential to identify early tumor recurrence/progression,
distinguish pseudoprogression from progression (42, 43) as
well as to identify imaging signatures that are relatively specific
to molecular subgroups of the more common diagnoses in adults
(GBM, oligodendroglial tumors, low grade gliomas) (44, 45) and
children (low grade gliomas, medulloblastoma, ependymoma,
diffuse midline gliomas) (46, 47). While several techniques have
been described, none have achieved widespread clinical
acceptance for routine use. There remains a significant
opportunity for those in the radiomics field to combine efforts
and define standard, validated approaches to primary brain
tumor imaging that can accurately predict tumor diagnosis as
well as tumor progression. Once such radiomic collaboration to
develop biomarkers of response is the Radiomics Signatures for
Precision Diagnostics (ReSPOND) consortium (48) which, like
the FeTS initiative, combines multiple institutional datasets to a
much larger pool of data of over 3300 patients. Nevertheless,
until these radiomic biomarkers achieve widespread clinical
utilization, we are reliant on RANO criteria along with
subjective clinical assessments.

Intraoperative MRI has the potential to increase the extent of
resection and improve the delivery of local therapy, particularly
when combined with direct intraoperative visualization
techniques such as 5-aminolevulinic acid (5-ALA) fluorescence
guided surgery (49, 50). Intraoperative stimulated Raman
histology provides a real-time histologic analysis of tissue in
under 60 seconds and can help direct the neurosurgeon, for
example, to pursue additional biopsies or continue a more
aggressive resection for a high-grade glioma (51, 52). Focused
ultrasound can focally disrupt the blood brain barrier and also
improve the provision of local therapies mediated by
microbubbles (53, 54). Development of improved radiotracers
for detection and/or therapy (theragnostic) of hypoxic, metabolic
or specific molecular signatures by combined PET-CT and PET-
MR systems is a very active area of preclinical and clinical study
for intra-axial and extra-axial tumors of the central nervous
system. For example, ongoing studies of 177Lu-DOTATATE in
meningioma have the potential to change the course of this
disease at recurrence (55, 56) (NCT03971461).
RADIATION ONCOLOGY

Proton Beam Therapy (PBT), where available, has become the
standard of care for some pediatric brain tumors, especially with
the demonstration of improved outcomes with respect to hearing
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loss, neuroendocrinology and especially neurocognition (57–61).
Craniospinal irradiation delivered via PBT has the advantages of
relative sparing of the esophagus, bladder and bowel. However,
although countries including the United Kingdom, Australia and
Canada are planning to develop PBT in one or more sites, many
developed countries currently lack dedicated proton therapy
centers, so children and adults often have to travel very long
distances to access this therapy (62). Furthermore, the place for
PBT in adults, apart from generally accepted indications such as
for chordomas, remains to be determined (63). There has been
an observed trend to use PBT for low-grade and high-grade
gliomas, the majority of which infiltrate into the surrounding
brain parenchyma. Further study is warranted. Other forms of
particle beam therapy, such as carbon ion therapy, are being
evaluated in several countries for patients with meningiomas and
gliomas and may have certain advantages over PBT, such as
lower oxygen dependence (64).

Linear accelerators (LINAC) combined with onboard
magnetic resonance imaging (MR/LINAC) units are increasing
the precision of various radiation therapy modalities with the
potential to reduce long-term sequelae. Moreover, these
instruments allow for daily adaptation of treatments due to
changes to tumor or normal anatomy or based on functional
imaging data.

In the clinic, there has been a rising lower age limit to offer
radiation to children and young adults with a brain tumor,
respectively. Deferring or obviating the need for cranial
irradiation in infants (less than 3 years) and young children (less
than 10 years) is a very important consideration given the
demonstrated impact of radiation on brain growth, development
and cognition which continues through adolescence to young
adulthood. However, it may be difficult to salvage patients with
recurrent/progressive disease with radiation when it is not included
in upfront therapies along with surgery and chemotherapy.
Whenever possible, clinical trials accompanied by comprehensive
neuropsychological and neurocognitive assessments are required
when assessing the impact of reduced, delayed or omitted
radiotherapy (65). For some patient populations, such as those
with brain metastases, where therapeutic interventions often have
limited impact on the patient’s survival but serve an important
palliative role, the use of functional, neurocognitive endpoints takes
on a greater significance (66). In trials of glioma patients where
intermediate endpoints of progression based are of limited benefit,
neurocognitive changes may serve as an early indicator of patient
survival (67).

Non-ionizing radiation, such as tumor treating fields
(TTFields), has shown a survival benefit for patients with
newly diagnosed GBM (68) and to be equivalent to salvage
chemotherapy for patients with recurrent GBM (69). Ongoing
trials to combine TTFields with standard and novel therapies are
being conducted in both adult and pediatric patients with brain
tumors. Despite these results, ongoing concerns raised
by some in neuro-oncology has limited its widespread
adoption (70). However, recent positive clinical trials in other
disease sites only highlight the role of TTFields in the oncologic
armamentarium (71).
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CHEMOTHERAPY, TARGETED AND
EPIGENETIC THERAPIES

The standard of care for newly diagnosed adults with
glioblastoma, especially those with MGMT promoter methylated
tumors, remains chemoradiation with temozolomide followed by
6 to 12 cycles of adjuvant temozolomide (72). However, the neuro-
oncology community is eagerly awaiting a significant advance,
especially for those with IDH wild-type MGMT promoter
unmethylated tumors. A recent meta-analysis assessed the
prognostic value of various MGMT promoter methylation tests
for predicting overall survival in temozolomide treated GBM
patients. Although both pyrosequencing and methylation
specific polymerase chain reaction were superior to
immunohistochemistry, determination of ideal thresholds and
which specific CpG sites to assess remain undetermined (73).

Furthermore, there is no consensus with respect to the
sequence and selection of chemotherapy and/or targeted
therapies for recurrent GBM. However, the recent introduction
of IDH inhibitors in advanced gliomas has demonstrated the
importance of identifying molecular subgroups that can benefit
from targeted therapies (74). The identification of less common
GBM molecular subgroups with fusions involving FGFR or the
TRK family of neurotrophin receptors has been another
promising advance leading to ongoing clinical trials using
fibroblastic growth factor receptor (FGFR) or tropomyosin
receptor kinase (TRK) inhibitors, respectively (75–77).
Similarly, the use of v-Raf murine sarcoma viral oncogene
homolog B (BRAF) inhibitors for tumors harboring BRAF
V600E mutations, including pediatric low grade gliomas,
gangliogliomas, pleiomorphic xanthoastrocytomas and
Langerhans Cell Histiocytosis, has extended survival for many
of these patients (78). A novel approach targeting protein
arginine methyltransferase 5 (PRMT5), including a brain-
penetrant PRMT5 inhibitor, has shown promise in preclinical
studies wherein a specific splicing signature in GBM may predict
responses to this drug class in vitro and in vivo (79).

The demonstration that pilocytic astrocytomas are driven by
MAPK signaling has resulted in the implementation of BRAF
and/or MEK inhibitors at the time of initial diagnosis or at
progression (78). However, similar to the treatment of recurrent
GBM in adults, the timing, sequence and/or duration of the use
of these targeted therapies in children requires further study in
carefully designed clinical trials, including separate cohorts for
patients with neurofibromatosis (NF) type 1. The effect of long-
term inhibition of MAPK signaling on normal growth and
development of the child remains undetermined. Furthermore,
there still remains a place for single agent or combination
chemotherapy for these relatively common pediatric brain tumors.

Advances in our understanding of the molecular genetics of
diffuse midline gliomas and high-grade gliomas in children have
identified the coopting of neurodevelopmental pathways by these
tumors and underscore the importance of harnessing epigenetic-
based therapies, including but not limited to selected HDAC,
bromodomain and other inhibitors (80–82). Posterior fossa type A
(PFA) ependymomas (83, 84) also demonstrate loss of Histone H3
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K27 trimethylation and may benefit from the implementation of
these treatments. Challenges are considerable, including tumor
specificity, and international cooperative groups are focused on
early phase clinical trials to identify promising agents to advance
to larger patient cohorts.
CLINICAL TRIAL DESIGN

As former diagnostic categories are parsed into subgroups based
upon molecular genetic and other diagnostic considerations, the
field of neuro-oncology continues to explore other types of
clinical trial design. These include basket trials where several
diagnostic entities sharing the same mutational profile or target
are grouped. Umbrella trials or master protocols allow larger
groups of patients, for example adult GBM, to be enrolled in
concurrent and/or sequential smaller phase II trials as part of one
very large study that can more efficiently assess the efficacy of
novel, often targeted therapies, either at diagnosis or at the time
of tumor progression. Adaptive, Bayesian and other innovative
clinical trial designs that optimize patient eligibility or use data
from prior clinical trials are essential to rapidly translate progress
from the basic laboratory to the clinic to improve patient
outcomes (85–87). The ongoing Adaptive Global Innovative
Learning Environment for Glioblastoma (GBM AGILE) trial
combines adaptive trial design with a registration expansion
cohort for rapid evaluation of candidate therapeutics and
regulatory approval while minimizing the required patient
sample size (88). A unique feature of GBM AGILE is the direct
incorporation of molecular classification (namely MGMT
promoter methylation status) into the trial and the potential
for incorporation of treatment-specific predictive molecular
biomarkers. This type of adaptive trial is a model which is
applicable across neuro-oncology.
IMMUNO-ONCOLOGY

It has been a very exciting time for innovative approaches using
several types of therapy that harness the immune system, either
alone, in combination or added to standard therapies using
chemotherapy or radiation therapy (89, 90). These approaches
include tumor vaccines (91), oncolytic viruses (92–96), immune
checkpoint inhibitors (97–99) and chimeric antigen receptor
(CAR) T-cells (100–103). Improved clinical outcomes using
immune checkpoint inhibitors in patients with biallelic mismatch
repair deficiency and high tumor mutation burdens (TMB) have
been reported (104). However, many pediatric and some adult
brain tumors have low TMB and are highly immunosuppressive.
Recent negative reports of phase III trials of immune checkpoint
inhibitors in GBM highlights this challenge (105, 106). Moreover,
the use of immunotherapies is complicated by the potential for
intracranial inflammation whichmay result in significant morbidity
or long-term complications. Treatment of inflammation using
standard corticosteroid therapy can further compound the tumor
immunosuppression and negate any benefit from immunotherapy.
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Other factors under active study include assessment of the immune
tumor microenvironment and how modulating the tumor
microenvironment may improve the efficacy of these
immunotherapies. Moreover, the influence of the variably intact
blood brain barrier and the unintended adverse consequences of
immunotherapy, such as brain edema, aseptic meningitis,
encephalitis, or peripheral neuropathies are also important
considerations as this very promising area of therapy is
further developed.
AWARENESS, EQUITY, DIVERSITY
AND INCLUSIVITY

In both developed and developing countries there are initiatives
to raise public awareness of brain tumors, including the
HeadSmart program in the United Kingdom (107). Access to
emerging diagnostic (genomic platforms, DNA methylation
profiling, advanced imaging) and therapeutic options (targeted
and immunotherapies, PBT) remains limited to some developed
Frontiers in Oncology | www.frontiersin.org 5
countries or specific tertiary/quaternary pediatric or
comprehensive cancer centers leading the vanguard in neuro-
oncology (108). Moreover, it will be challenging for health care
systems or third-party insurers in many countries to ensure
equitable access to these recent and emerging clinical advances.
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