AUTHOR=Mosquera Orgueira Adrián , Peleteiro Raíndo Andrés , Cid López Miguel , Díaz Arias José Ángel , González Pérez Marta Sonia , Antelo Rodríguez Beatriz , Alonso Vence Natalia , Bao Pérez Laura , Ferreiro Ferro Roi , Albors Ferreiro Manuel , Abuín Blanco Aitor , Fontanes Trabazo Emilia , Cerchione Claudio , Martinnelli Giovanni , Montesinos Fernández Pau , Mateo Pérez Encinas Manuel , Luis Bello López José TITLE=Personalized Survival Prediction of Patients With Acute Myeloblastic Leukemia Using Gene Expression Profiling JOURNAL=Frontiers in Oncology VOLUME=11 YEAR=2021 URL=https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2021.657191 DOI=10.3389/fonc.2021.657191 ISSN=2234-943X ABSTRACT=
Acute Myeloid Leukemia (AML) is a heterogeneous neoplasm characterized by cytogenetic and molecular alterations that drive patient prognosis. Currently established risk stratification guidelines show a moderate predictive accuracy, and newer tools that integrate multiple molecular variables have proven to provide better results. In this report, we aimed to create a new machine learning model of AML survival using gene expression data. We used gene expression data from two publicly available cohorts in order to create and validate a random forest predictor of survival, which we named ST-123. The most important variables in the model were age and the expression of