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Autophagy and apoptosis are dynamic processes that determine the fate of cells, and
regulating these processes can treat cancer. GEFT is highly expressed in
rhabdomyosarcoma (RMS), which accelerates the tumorigenicity and metastasis of
RMS by activating Rac1/Cdc42 signaling, but the regulatory mechanisms of autophagy
and apoptosis are unclear. In our study, we found that the RMS tissues had high Rac1,
Cdc42, mTOR, and Bcl-2 expression levels and low Beclin1, LC3, and Bax expression
levels compared with the normal striated muscle tissues (P < 0.05). In addition,
multivariate analysis has proven that Rac1 is an independent prognostic factor (P <
0.05), and the high expression level of the Beclin1 protein was closely associated with the
tumor diameter of the RMS patients (P = 0.044), whereas the high expression level of the
LC3 protein was associated with the clinical stage of the RMS patients (P = 0.027).
Furthermore, GEFT overexpression could inhibit autophagy and apoptosis in RMS. A
Rac1/Cdc42 inhibitor was added, and the inhibition of autophagy and apoptosis
decreased. Rac1 and Cdc42 could regulate mTOR to inhibit autophagy and apoptosis
in RMS. Overall, these studies demonstrated that the GEFT–Rac1/Cdc42–mTOR
pathway can inhibit autophagy and apoptosis in RMS and provide evidence for
innovative treatments.

Keywords: autophagy, apoptosis, Rac1, Cdc42, mTOR
INTRODUCTION

Rhabdomyosarcoma (RMS) is a common malignant tumor in adolescents and children with soft
tissue tumors. It can be divided into alveolar RMS (ARMS), embryonic RMS (ERMS), and
polymorphic RMS (PRMS) (1). Despite current multimodal treatments, patients with recurrent
or metastatic disease still remain in poor condition, and new therapies are required to improve the
efficacy of RMS treatment (2). Regulating autophagy and promoting tumor cell death has recently
become a new approach to tumor treatment (3). Thus far, few studies have shown that the
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dysregulation of programmed cell death (apoptosis and
autophagy) is closely related to the metastasis and formation of
RMS (4, 5). Therefore, research on the mechanism of autophagy
and autophagy regulation may provide new strategies for the
treatment of RMS.

GEFT, a guanine nucleotide exchange factor that promote the
release of GDP bound to the GTPase, allowing the binding of a
GTP molecule (6), is highly expressed in muscles and is closely
related to tumorigenesis, invasion, and metastasis (7). Our
previous experiments have confirmed that GEFT is highly
expressed in RMS and associated with survival and prognosis
(8). In addition, GEFT leads to metastasis and tumorigenicity of
RMS by activating EMT induced by Rac1/Cdc42 signaling (9).
We have also identified that GEFT is regulated by the
microRNA-29 family to inhibit the formation and progression
of RMS (10) and is directly targeted by miR-874 to decrease the
proliferation, invasion, migration, and anti-apoptotic ability of
RMS (11). However, the potential pathways and functions of
GEFT in autophagy and apoptosis of RMS are unknown.

Rac1 is a widely expressed member of the GTPase family,
which plays an important role in many cancer-related signaling
processes. Rac1 can substantially inhibit the proliferation of
primary schwannoma cells by inducing apoptosis (12).
Deacetylmycoepoxydiene can drive Rac1 activation, promote
the production of reactive oxygen species, and simultaneously
induce autophagy and apoptosis in lung cancer (13). Rac1
prevents UV-induced keratinocyte apoptosis by regulating the
DNA damage response in skin cancer (14). Cdc42 is a small
GTPase associated with a variety of human cancers, and it is
related to cell cycle progression, migration/invasion, tumor
growth, and oncogenic transformation. One study has
suggested that Cdc42 may be a molecular regulator of the
autophagy response to the tumor microenvironment (15).

In addition, some studies have shown that mTOR can affect
autophagy and apoptosis in tumor cells through various
pathways (16, 17). YAP inhibits autophagy-associated
apoptosis in hepatocellular carcinoma through the Rac1–
mTOR pathway (18). Simvastatin enhances autophagy by
inhibiting the Rac1–mTOR signaling pathway in coronary
myocardial cells (19). However, only a few studies have been
reported on the effect of autophagy and apoptosis on the
expression or activity of RMS cells, and their role in the
progression of RMS is unclear. GANT-61 (GLI1/2 inhibitor)
can inhibit tumor cell proliferation and block tumor growth in
ARMS and ERMS animal models by inhibiting the Shh/AKT–
mTOR signaling axis (20). NVP-BEZ235 (PI3K/mTOR
inhibitor) and chloroquine can play a synergistic role in
inducing the apoptosis of ERMS cells (21).

Here, our study has demonstrated that Rac1, Cdc42, p-
mTOR, and Bcl-2 proteins are highly expressed in RMS
tissues, whereas Beclin1, LC3, and Bax are expressed at low
levels in RMS tissues. GEFT can inhibit the expression of
autophagy and apoptosis in RMS cell lines and transplanted
tumor tissues. Interestingly, Rac1, Cdc42, and an mTOR
inhibitor can also promote the autophagy and apoptosis of
overexpressed GEFT. Therefore, GEFT can inhibit autophagy
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and apoptosis in RMS by regulating the Rac1/Cdc42–mTOR
pathway, providing new insights into the pathogenesis of RMS
and developing new therapeutic strategies.
MATERIALS AND METHODS

Tissue Samples
A total of 62 formalin-fixed paraffin-embedded RMS and 20
normal striated muscle tissue samples were selected from the
archives of the Department of Pathology, the First Affiliated
Hospital of Shihezi University Medical College and the First
Affiliated Hospital of Xinjiang Medical University, China. All
participating patients submitted a written informed consent.
This study was conducted in accordance with the ethical
guidelines of the Helsinki Declaration and approved by the
Institutional Ethics Committee of the First Affiliated Hospital
of Shihezi University School of Medicine.

Tissue Microarrays
A representative paraffin-embedded tissue block was obtained
from the patients for the experiments. The original hematoxylin
and eosin sections were reviewed, and tissue microarrays were
established from the tumor-representative areas of the paraffin-
embedded tissue blocks. A representative area (3 mm in
diameter) was collected from each paraffin block and arranged
in a tissue array by using a ring drill. Finally, the tissue chip
(4 mm thick) was subjected to immunohistochemical staining.

Cell Culture and Transfection
Our study used two human RMS cells, including RH30 (ARMS)
and RD (ERMS) cell lines (Shanghai Fuxiang Biotechnology,
China). We selected RMS cells and RMS cells that overexpressed
GEFT constructed by lentivirus transfection. All the cells were
cultured in DMEM (GIBCO, USA), 10% FBS (BI, Israel), and
10% penicillin streptomycin (Solarbio, China) at 37°C and 5%
CO2. The cells were transfected with Lipofectamine 2000 (Life
Technologies, USA). 2×105 cells were inoculated into each hole
in the 6-well plate, and 1mg/ml polybrene was added when the
number of cells reached about 50-70%. The virus solution needed
for virus infection was absorbed according to the MOI value, and
the culture medium was changed after 16 hours, and the culture
medium was changed after 16 hours. 24 hours after infection, the
cells were screened with predetermined puromycin, and the
fluorescence expression was observed 72 hours after infection
for follow-up experiments.

Antibodies and Inhibitors
The main antibodies used for immunohistochemistry (IHC)
were as follows: mouse anti-Rac1 (Ab33186, 1:800; Abcam),
mouse anti-Cdc42 (Ab187643, 1:200; Abcam), rabbit anti-p-
mTOR (#2974, 1:250; Cst), rabbit anti-Beclin1 (Ab55878,
1:200; Abcam), rabbit anti-LC3A/B (#12741, 1:100; Cst),
mouse anti-Bax (Ab32503, 1:800; Abcam), rabbit anti-Bcl-2
(Ab112, 1:1000; Beyotime), and rabbit anti-caspase-3 (#9662,
1:1000; Cst).
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The main antibodies and inhibitors used for Western blot were
as follows. The primary antibodies were rabbit anti-GEFT
(Ab127690, 1:1000; Abcam), rabbit anti-mTOR (Ab32028,
1:1000; Abcam), rabbit anti-p-mTOR (#2974,1:1000; Cst), rabbit
anti-Beclin1 (Ab55878, 1:1000; Abcam), rabbit anti-LC3A/B
(#12741,1:1000; Cst), mouse anti-Bax (Ab32503, 1:1000;
Abcam), rabbit anti-Bcl-2 (Ab112, 1:1000; Beyotime), rabbit
anti-caspase-3 (#9662,1:1000; Cst), rabbit anti-cleaved-PARP
(#32064, 1:1000; Cst), and mouse anti-b-actin (IE9A3, 1:800;
China). The secondary antibody was peroxidase-conjugated goat
anti-mouse/rabbit IgG (ZB-2305, 1:10000; ZSGB). Rac1
Activation Assay Biochem KitTM (cytoskeleton, Cat. # BK035)
and Cdc42 Activation Assay Biochem KitTM (cytoskeleton, Cat. #
BK034) were used for analysis of Rac1 and Cdc42 activation.

The NSC23766 (S8031, 50 mM/mL, Selleck), ZCL278 (S7293,
100 mM/mL, Selleck) and Rapamycin (S1039, 100 mM/mL,
Selleck) were added to the cells and treated for 48 hours. CQ
(HY-17589A, 1.6 mM/mL, MCE), BafA-1 (HY-10058, 0.4 mM/mL,
MCE) were added to the cells and treated for 24 hours.
Rac1 Activation Assay Biochem KitTM (cytoskeleton, Cat. #
BK035) and Cdc42 Activation Assay Biochem KitTM
(cytoskeleton, Cat. # BK034) were used for analysis of Rac1 and
Cdc42 activation. All inhibitors were acquired commercially,
which were used in various cellular functional experiments and
WB experiments.

Immunohistochemical Staining
The sections were dewaxed and hydrated, and the antigen was
repaired. The slides and antibodies were incubated overnight in a
blocking solution at 4°C. On the second day of incubation, the
slides and primary antibodies were incubated with a secondary
antibody, instilled with DAB, and restaining with hematoxylin,
and finally dehydration. The tumor sections previously identified
as positive were included in each staining procedure to ensure
consistency in the immunohistochemical assessment.

Immunohistochemical Scoring
The criterion for identification was the determination of staining
in the tissues based on the immune response score proposed by
Remmele and Stegner (22). Tumors and normal striated muscle
were semi-quantitatively assessed in accordance with the
percentage of positive cells and the intensity of cytoplasmic
staining. The proportion of positive staining scores was as
follows: 0 (≤ 5%), 1 (6%–25%), 2 (26%–50%), and 3 (≥ 51%).
The intensity of staining was as follows: 0 (negative), 1 (buff), 2
(yellow), and 3 (brown). The dyeing index was calculated using
the following formula: dyeing index = dyeing intensity × dyeing
grade. Therefore, the staining results were classified as follows: −
(0), + (1–3), ++ (4–6), and +++ (7–9), where − indicates a
negative expression, and +, ++, and +++ represent positive
expression. All staining results were independently evaluated
by two pathologists who did not know the patients.

RNA Extraction and Quantitative
Real-Time PCR (qRT-PCR)
The total RNA was extracted from cultured cells or human
samples by using a paraffin wax RNA extraction kit (Omega Bio-
Frontiers in Oncology | www.frontiersin.org 3
Tek, USA). The total RNA was reverse transcribed into cDNA by
using the QuantiTect Reverse Transcription Kit (QIAGEN,
Germany). The qRT-PCR analysis was carried out using the
Quanti Fast TM SYBR Green PCR Kit (QIAGEN, Germany) and
7500 Real-Time Fluorescence PCR System (Applied Biosystems,
USA). The PCR primers were designed on the basis of the gene
sequences of human Rac1, Cdc42, and b-actin (Shenggong,
China). The sequences of the b-actin forward and reverse
primers were 5′-AGCACAGAGCCTCGCCTTTG-3′ and 5′-
ACATGCCGGAGCCGTTGT-3′, respectively. The sequences
of the Rac1 forward and reverse primers were 5′-CCG
GTGAATCTGGGCTTATG-3 ′ and 5 ′-CTCGGATCG
CTTCGTCAAAC-3′, respectively. The sequences of the Cdc42
forward and reverse primers were 5′-CAGGTGTGTGCTG
CTATGAACATC-3′ and 5′-GTAGGTGCAGGGCATTTGTC
ATTA-3′, respectively. The relative expression levels of Rac1,
Cdc42, and b-actin were normalized using the 2−DDCt method.

Western Blot
Protein concentration was determined through the BCA method
by using RIPA lysis buffer (Solarbio) in accordance with the
manufacturer’s requirements. An equal amount of protein
(20 mg) was applied to a 10% gel for electrophoresis and
transferred onto a PVDF membrane (Solarbio). The membrane
was transferred to a blocking solution for 2 h on a shaking bed at
room temperature, incubated with the primary antibody at 4°C
overnight, and then incubated with the secondary antibody
for 2 h at room temperature. Finally, the membrane was
visualized using the ECL Luminescence Assay Kit (Biyuntian
Biotechnology). Western blot density was assessed using the
ImageJ 1.46 software.

Co-Immunoprecipitation (Co-IP)
The transfected RMS cells were lysed in RIPA lysis buffer, and
the protein lysate was centrifuged. The target and IgG antibodies
were added in equal proportions in accordance with the antibody
instructions. After incubating the protein and antibody for 12 h,
agarose beads (50 µL) were added and shaken at 4°C for 12 h.
The agarose beads were collected, added to the loading buffer in
equal proportions, and boiled at 95°C for 5 min to break the
bond between the agarose beads and the protein. The
supernatant was collected and placed in a dry bath at 100°C,
boiled for 10 min, cooled to room temperature, and stored in a
freezer at −20°C until Western blot analysis.

Immunofluorescence
The cells with a concentration of 2×105 cells/ml were fixed in a
culture plate with 2% paraformaldehyde solution and washed
with PBS. Then, the cells were permeated with 2 mL of 0.2% –
0.5% Triton XMel 100 for 10 min and cleaned with PBS. After
sealing with 2% BSA for 30 min, an antibody (1:1000) was added
and incubated overnight in the dark. The next day, after washing
with PBS, the second antibody (1:10000) was added and
incubated for 45 min; 0.5 µg/mL of DAP was added for
staining for 10 min, and PBS was washed. Finally, the cells
were observed and photographed under a microscope.
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Monodansylcadaverine (MDC) Labeling
After the cells reached the logarithmic growth phase, the
concentration was adjusted to 2×105 cells/ml, the cultured cells
were centrifuged for 5 min and then washed with 300 mL of
1×wash buffer. 1× Wash buffer resuspension was added to the
cells, and the cell concentration was adjusted to 2×106 mL.
Ninety microliters of cell suspension were added with 10 mL of
MDC stain (Solarbio, China), stained at room temperature, and
stored in the dark for 45 min. Then, the cells were centrifuged,
and 100 mL of collection buffer was added to resuscitate cells. The
treated cells were dripped on the slide, and the cells were
observed and photographed under the fluorescence microscope
(the wave length of the excitation filter was 355 nm, and the
wavelength of the blocking filter was 512 nm).

Acridine Orange (AO) Staining
Adjust the concentration of well-growing cells to 2×105 cells/ml.
The culture medium of the treated RMS cells was taken out and
washed with 1×PBS. The cells were stained with 1 mg/mL
acridine orange and 1 mg/mL propidium iodide (Solarbio,
China), and then incubated in the dark for 15 minutes. The
stained cells were observed and photographed under
a microscope.

TUNEL Staining
The terminal deoxynucleotidyl transferase dUTP nick end
labelling (TUNEL) Apoptosis Detection Kit was obtained from
Shanghai Biyuntian Biotechnology. NSC23766 (50 mM/mL, Rac1
inhibitor), ZCL278 (100 mM/mL, Cdc42 inhibitor) and
Rapamycin (100 mM/mL, mTOR inhibitor) were added when
the cells grew to 50% confluency. After 48 h, the cells were fixed
with 500 mL of 4% paraformaldehyde (Solarbio) and incubated
with a highly permeable immunostaining liquid for 5 min at
room temperature. TUNEL detection solution (50 mL) was added
to each well, followed by incubation at 37°C for 1 h, after which
DAPI was added and then incubated for 5 min. The apoptotic
rate was determined under a fluorescence microscope, and
statistical analysis was performed.

Flow Cytometry Analysis of Apoptosis
The RH30 and RD cells were grown in cell culture flasks.
Adherent cells were detached using 0.025% trypsin and fixed
in 2% paraformaldehyde. These cells were washed in phosphate-
buffered solution, collected after centrifugation, and incubated in
PBS for 5 min on ice. The cell concentration was adjusted to
2×105 cells/ml, and the cells in each group were mixed with 5 ml
Annexin V–FITC/PI. The cells were Stained for 5-15 min and
detected within 1 hour. The analysis was performed using PAS
flow cytometry (PARTEC, Germany) and FlowJo 7.6 software.

Animal Studies
The animal study was approved by the Ethics Committee of the
first affiliated Hospital of Shihezi University Medical College.
Five-week-old male nude mice were randomly divided into four
groups: RH30 (RD) + GEFT group, RH30 (RD) + inhibitor
group. According to the standard scheme of QIAGEN, lentivirus
was used to construct RH30 and RD cells. Subcutaneous
Frontiers in Oncology | www.frontiersin.org 4
injection of 2×106 RH30 or RD cells was stably transfected
with a GEFT overexpression lentiviral vector. After the nude
mice formed a tumor, the nude mice in each group were weighed
every 2 days, and the size of the subcutaneous tumor was
measured. When the diameter of the tumor reached 0.5 cm,
NSC23766 (50 mg/kg) or ZCL278 (50 mg/kg) was added to the
RH30 (RD) - GEFT + NSC23766 group or RH30 (RD) - GEFT +
ZCL278 group, with 5 nude mice in each group. After 2 weeks of
inhibitor treatment, the nude mice were killed, and the tumors
were extracted. The tumor specimens were fixed in 4% neutral
formaldehyde solution for 24 h, and the sections were prepared
for Western blot. some transplanted tumor tissues were taken
from each nude mice for IHC staining.

Statistical Analysis
The data were expressed as the average ± standard deviation.
Statistical significance was assessed by comparing the means and
independent group t-tests. Statistical analysis was performed
using the Kaplan–Meier, c2 or Fisher’s exact test, log-rank
tests, and the Cox proportional hazard model. All experiments
were repeated at least three times. The data were analyzed
using SPSS 20.0 software. ***represents P < 0.001, **represents
P < 0.01, *represents P < 0.05. P < 0.05 was considered as
statistically significant.
RESULTS

Rac1, Cdc42, and p-mTOR Are Expressed
at High Levels in RMS Tissues, Whereas
Autophagy and Apoptosis-Related
Proteins Are Expressed at Low Levels in
RMS Tissues
Our previous studies have revealed that GEFT is highly expressed
in RMS and associated with disease stage and metastasis, which
promotes RMS cell survival, invasion, and migration by
activating the Rac1/Cdc42 pathway (8, 9). A total of 48 RMS
cases and 13 normal striated muscle tissue cases were assessed
using qRT-PCR to investigate the expression levels of Rac1 and
Cdc42 in RMS and explore whether Rac1 and Cdc42 were highly
expressed in RMS. The expression levels of Rac1 and Cdc42
mRNA in RMS (2.399 ± 6.52989 and 5.317 ± 16.0144,
respectively) were significantly higher than those in normal
muscle tissues (0.1262 ± 0.20052 and 0.033 ± 0.5756,
respectively; P < 0.001; Figures 1A, B). The protein expression
levels of Rac1 and Cdc42 were detected using IHC. The results
showed that the rate of Rac1 protein in RMS was 89% (55/62),
whereas the rate of Rac1 expression in the 20 normal muscle
tissue samples was 65% (13/20, Table 1). Compared with the
controls, the positive expression rate differences were statistically
significant (c2 = 4.446, P = 0.035; Figure 1C). The rate of Cdc42
protein expression in the RMS and normal control samples was
83% (19/23) and 55% (11/20), respectively (Table 2). A
significant difference in Cdc42 expression was observed
between the tumor and normal tissues (c2 = 3.866, P =
0.049; Figure 1D).
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The survival prognosis analysis of the Rac1 protein showed
that the survival rate of patients with high Rac1 expression levels
was significantly lower than that of patients with low Rac1
expression levels (P = 0.018, Figure 1E). The high expression
Frontiers in Oncology | www.frontiersin.org 5
level of the Rac1 protein was closely related to the tumor site of
the RMS patients (P = 0.025, Supplementary Table S1). The
expression level (P = 0.026), age (P = 0.033) and TNM stage (P =
0.014) of the Rac1 protein could influence the survival prognosis
TABLE 1 | Expression of Rac1 and p-mTOR protein in different types of RMS and normal muscle tissue.

Tissue type N Rac1(%) c2 P p-mTOR(%) c2 P

Negative Positive Negative Positive

RMS 62 7 (12.9) 55 (87.1) 4.446 0.035 14 (22.6) 48 (77.4) 5.492 0.019
ARMS 18 0 (0) 18 (100) 2 (11.1) 16 (88.9)
ERMS 29 6 (20.7) 23 (79.3) 7 (24.1) 22 (75.9)
PRMS 8 1 (12.5) 7 (87.5) 3 (37.5) 5 (62.5)
Other 7 5 (71.4) 2 (28.6) 2 (28.6) 5 (71.4)
Control 20 7 (35.0) 13 (65.0) 10 (50) 10 (50)
June 2021 | Volum
e 11 | Article 6
Others represent nonspecific types of RMS. Control represents normal muscle tissue.
A B

D

E F

G H

C

FIGURE 1 | Expression of Rac1, Cdc42, p-mTOR, and autophagy- and apoptosis-related molecules in RMS tissues. (A, B) Quantitative real-time PCR (qRT-PCR)
was used to detect the mRNA expression levels of Rac1 (A) and Cdc42 (B) in 48 RMS cases and 13 normal muscle tissue cases. (C, D) HE and IHC staining of
Rac1 (C) and Cdc42 (D) in normal and RMS tissues. (E) Kaplan–Meier analysis and log-rank test were applied to determine the relationship between Rac1 protein
expression and patient survival. (F) HE and IHC staining of p-mTOR in normal and RMS tissues. (G) IHC staining of Beclin1 and LC3 in normal and RMS tissues.
(H) IHC staining of Bax and Bcl-2 in normal and RMS tissues. A representative image is provided. ***P < 0.001.
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of RMS (Supplementary Table S2). Cdc42 and p-mTOR were
also studied, and no significant correlation was observed with
various clinicopathological parameters. Correlation analysis
showed that the protein expression of GEFT was positively
correlated with that of Rac1 (r = 1.000, P < 0.001), Cdc42 (r =
1.000, P < 0.001), p-mTOR (r = 0.548, P < 0.012), and Bcl-2 (r =
0.795, P = 0.001), but negatively correlated with LC3 protein
expression (r = -0.428, P = 0.05, Supplementary Table S3).

We continued to verify whether autophagy and apoptotic
molecules were involved in the occurrence of RMS. The rate of p-
mTOR protein expression in RMS and control was 77% (48/62)
and 50% (10/20), respectively (Table 1). A significant difference
in p-mTOR expression was observed between the tumor and
normal tissues (c2 = 5.492, P = 0.019; Figure 1F). The rate of
Beclin1 protein expression in RMS and normal muscle samples
was 73% (45/62) and 100% (20/20), respectively. The rate of LC3
protein-positive expression in RMS and normal muscle samples
was 69% (43/62) and 95% (19/20), respectively (Supplementary
Table S4). Compared with the controls, the Beclin1- and LC3-
positive expression rate differences were statistically significant
(c2 = 5.350, P = 0.021 and c2 = 4.092, P = 0.043; respectively,
Figure 1G). The high expression level of the Beclin1 protein was
closely associated with the tumor diameter of the RMS patients
(P = 0.044, Supplementary Table S5), whereas the high
expression level of the LC3 protein was associated with the
clinical stage of the RMS patients (P = 0.027, Supplementary
Table S6). The rate of Bax protein expression in RMS and
normal muscle samples was 53% (16/30) and 100% (15/15),
respectively. The rate of the Bcl-2 protein expression in RMS and
normal muscle samples was 93% (28/30) and 33% (5/15),
respectively (Supplementary Table S7). Compared with the
controls, the Bax and Bcl-2-positive expression rate differences
were statistically significant (c2 = 8.101, P = 0.004 and c2 =
15.469, P < 0.001, respectively, Figure 1H). Therefore, all the
mentioned results demonstrated that Rac1, Cdc42, p-mTOR,
and Bcl-2 were expressed at high levels in RMS tissues, whereas
Beclin1, LC3, and Bax were expressed at low levels in
RMS tissues.

GEFT Can Inhibit Autophagy and
Apoptosis in RMS Cells
In order to explore the relationship between GEFT and
autophagy and apoptosis, we chose to detect autophagy and
apoptosis in cells under the intervention of GEFT. The Western
blot results showed that the expression of autophagy-related
proteins, namely, Beclin1 and LC3 in RMS cells decreased after
Frontiers in Oncology | www.frontiersin.org 6
stable transformation of GEFT (P < 0.001 and P < 0.05). When
autophagy inhibitors, namely, CQ and BafA-1, were added, the
expression of Beclin1 and LC3 proteins decreased after stable
transformation of GEFT (P < 0.001 and P < 0.05; Figures 2A, B).
In addition, the Western blot results demonstrated that the
expression levels of apoptosis-related proteins, namely, Bax,
Caspase3, and Cleaved-PARP, decreased in RMS cells after the
stable conversion of GEFT, whereas the expression level of the
Active Rac1, Active Cdc42 and Bcl-2 proteins increased (P < 0.05
and P < 0.001, Figure 2C). The rate of apoptosis in RH30 and RD
cells after the stable GEFT transformation was reduced
compared with that of the control group (P < 0.001,
Figure 2D). The TUNEL results showed that apoptosis was
reduced after the overexpression of GEFT (Figure 2E). These
results suggested that the overexpression of GEFT may inhibit
autophagy and apoptosis in RMS cells.

Regulation of Rac1 and Cdc42 by GEFT
Can Inhibit Autophagy and Apoptosis in
RMS Cells
GEFT can promote the invasion and migration of RMS cells
through Rac1/Cdc42 (9). A Rac1 inhibitor (NSC27366) was
added to RMS cells and RMS cells stably transfected with
GEFT lentivirus to verify whether GEFT inhibits autophagy
and apoptosis through Rac1/Cdc42. The results showed that
the expression of Beclin1 and LC3 protein in the NSC23766
group was significantly higher than that in the normal untreated
group, and the expression levels of Beclin1 and LC3 protein in
the NSC23766 group also increased after adding CQ and BafA-1
(P < 0.05 and P < 0.001, Figures 3A, B). In addition,
immunofluorescence showed that the dot pattern of LC3
fluorescence was clearly observed in the NSC23766 group.
MDC staining showed that acidic vesicle organelles increased
in the NSC23766 group. AO staining showed that apoptotic
bodies increased after NSC23766 treatment (Figure 3C). The
TUNEL staining results showed that the apoptosis of Rac1
inhibitor-treated RMS cells increased compared with that of
the control group (P < 0.05, Figure 3D). The expression level of
Active Rac1, Bax, Caspase3, and Cleaved-PARP protein in the
NSC23766 group was significantly higher than that in the normal
untreated group, whereas the Bcl-2 protein in the NSC23766
group was significantly lower than that in the normal untreated
group (P < 0.05 and P < 0.001, Figure 3E). NSC27366 could
promote apoptosis in the RH30 and RD cells as shown in the
flow cytometry analysis. After adding CQ and BafA-1, the
apoptosis rate was lower than that of the NSC23766 group
TABLE 2 | Expression of Cdc42 protein in different types of RMS and normal muscle tissue.

Tissue type N Cdc42 c2 P

Negative Positive

RMS 23 4 (17.39) 19 (82.6) 3.866 0.049
ARMS 9 1 (11.11) 8 (88.9)
ERMS 10 2 (20) 8 (80.0)
PRMS 4 1 (25) 3 (75)
Control 20 9 (45) 11 (55)
June
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(P < 0.001, Figure 3F). Similarly, the same results were obtained
after performing the Western blot (P < 0.05 and P < 0.001,
Figures 4A, B, E), immunofluorescence, MDC and AO staining
(Figure 4C), TUNEL staining (P < 0.05, Figure 4D), and flow
cytometry analysis (P < 0.05 and P < 0.001, Figure 4F) after the
addition of a Cdc42 inhibitor (ZCL278). All obtained results
demonstrated that GEFT affected the autophagy and apoptosis of
RMS through Rac1/Cdc42 signaling.

Rac1/Cdc42 Can Regulate the Expression
of mTOR
Some studies have shown that Rac1 can form a complex with
mTOR to promote its transport to the plasma membrane (23).
During intrauterine growth restriction, Rac1 and Cdc42 were
positively correlated with mTOR (24). We added Rac1 and
Cdc42 inhibitors to detect the expression of mTOR and study
whether Rac1 and Cdc42 regulate mTOR in RMS. The results of
the Western blot showed that the inhibition of Rac1 (P < 0.05,
P < 0.01, and P < 0.001; Figure 5A) and Cdc42 (P < 0.05 and
P < 0.001, Figure 5B) could reduce the expression of mTOR and
p-mTOR. Furthermore, Co-IP was utilized to confirm whether
mTOR was sensitive to Rac1 or Cdc42 from the RMS cell lysate,
with the control IP performed with nonrelated IgG; the results
showed that this was the case, except for the control IgG IP
(Figure 5C). Reverse validation showed that the presence of
Frontiers in Oncology | www.frontiersin.org 7
mTOR was also detected in the Rac1/Cdc42 antibody co-
immunoprecipitated complex (Figures 5D, E).

GEFT Inhibits Autophagy and Apoptosis
Through mTOR in RMS Cells
In addition, in order to continue to explore whether mTOR is
involved in autophagy and apoptosis of RMS cells. A mTOR
inhibitor (Rapamycin) was added to RMS cells and RMS cells
stably transfected with GEFT lentivirus. The results showed that
the expression of Beclin1 and LC3 protein in the Rapamycin
group was significantly higher than that in the normal untreated
group, and the expression levels of Beclin1 and LC3 protein in
the Rapamycin group also increased after adding CQ and BafA-1
(P < 0.001 and P < 0.001, Figures 6A, B). In addition,
immunofluorescence showed that the dot pattern of LC3
fluorescence was clearly observed in the Rapamycin group.
MDC staining showed that acidic vesicle organelles increased
in the Rapamycin group. AO staining showed that apoptotic
bodies increased after Rapamycin treatment (Figure 6C). The
TUNEL staining results showed that the apoptosis of mTOR
inhibitor-treated RMS cells increased compared with that of the
control group (P < 0.05, Figure 6D). The expression of mTOR,
Bax, Caspase3, and Cleaved-PARP protein in the Rapamycin
group was significantly higher than that in the normal untreated
group, whereas the Bcl-2 protein in the Rapamycin group was
A B

D
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C

FIGURE 2 | GEFT affects the autophagy and apoptosis in RMS cells. (A) Western blotting was used to detect the expression of Beclin1 and LC3 protein in RH30
cells for control groups, control+CQ groups, transfected with GEFT, transfected with GEFT+CQ. (B) Western blotting was used to detect the expression levels of
Beclin1 and LC3 protein in RD cells for control groups, control+BafA-1 groups, transfected with GEFT groups, transfected with GEFT+ BafA-1 groups. (C) Western
blotting was used to detect the expression levels of GEFT, Bax, Bcl-2, Caspase-3, and Cleaved-PARP proteins in RH30 and RD cells transfected with the GEFT and
control groups. (D) Apoptosis of RH30 and RD cells transfected with GEFT and control group was detected by flow cytometry. (E) Apoptosis of RH30 and RD cells
transfected with the GEFT and control groups was detected by TUNEL. ***P < 0.001 and *P < 0.05.
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significantly lower than that in the normal untreated group (P <
0.001 and P < 0.001, Figure 6E). Rapamycin could significantly
promote apoptosis in the RH30 and RD cells as shown in the
flow cytometry analysis; after adding CQ and BafA-1, the
apoptosis rate was lower than that of the Rapamycin group
(P < 0.001, Figure 6F).

GEFT–Rac1/Cdc42–mTOR Inhibits
Autophagy and Apoptosis in the
Xenograft Model
Previous results revealed that GEFT–Rac1/Cdc42 accelerated tumor
growth in mice (9). Finally, we investigated whether GEFT–Rac1/
Frontiers in Oncology | www.frontiersin.org 8
Cdc42 could inhibit tumor autophagy and apoptosis in vivo. We
examined the tumor tissues of the RH30+GEFT, RH30+GEFT
+NSC23766 and RH30+GEFT+ZCL278 groups, respectively.
After inhibiting Rac1, the Beclin1, LC3, Caspase-3, Cleaved-PARP
and Bax proteins were upregulated, whereas the Active Rac1 and
Bcl-2 and p-mTOR proteins were downregulated compared with
the GEFT overexpression group (P < 0.05, P < 0.01, and P < 0.001;
Figure 7A). Simultaneously, after suppressing Cdc42, we found
similar results to those for Rac1 (P < 0.05, P < 0.01, and P <
0.001; Figure 7B).

Next, the expression of proteins in the xenograft tumors was
assessed using IHC. The results showed that compared with
A B

D

E

F

C

FIGURE 3 | GEFT can inhibit autophagy and apoptosis in RMS cells via Rac1. (A) Western blotting was used to detect the expression of Beclin1 and LC3 protein in
RH30 cells transfected with GEFT, GEFT+NSC23766, GEFT+CQ, and GEFT+CQ+NSC23766. (B) Western blotting was used to detect the expression of Beclin1
and LC3 protein in RD cells transfected with GEFT, GEFT+NSC23766, GEFT+BafA-1, and GEFT+BafA-1+NSC23766. (C) The representative images of RH30 and
RD cells transfected with GEFT and GEFT+NSC2376 were detected by immunofluorescence, MDC and AO staining. (D) The representative images of RH30 and RD
cells transfected with GEFT and GEFT+NSC2376 were detected by TUNEL staining. (E) Western blotting was used to detect the expression of GEFT, Total Rac1,
Active Rac1, Bax, Bcl-2, Caspase-3, and Cleaved-PARP protein in RH30 and RD cells transfected with GEFT and GEFT+NSC23766. (F) Flow cytometry was used
to detect the apoptosis of RH30 cells and GEFT-transfected RH30 cells in GEFT, GEFT+CQ, GEFT+NSC23766 and GEFT+NSC23766+CQ groups. Flow cytometry
was used to detect the apoptosis of RD cells and GEFT-transfected RD cells in GEFT, GEFT+BafA-1, GEFT+NSC23766 and GEFT+NSC23766+BafA-1 groups.
***P < 0.001, *P < 0.05.
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GEFT overexpression group, the addition of Rac1 and Cdc42
inhibitors could increase the expression of Beclin1, LC3, Caspase-
3 and Bax, and decreased the p-mTOR and Bcl-2 protein
expression (Supplementary Tables S8). The representative
p-mTOR, Beclin1, LC3, Bax, Caspase-3, and Bcl-2-stained
images are shown in Figure 8. The RD cell xenograft tumor
protein expression was also examined. The results were
approximately the same as for the abovementioned RH30 cell
xenograft results (Supplementary Table S9), the representative
p-mTOR, Beclin1, LC3, Bax, Caspase-3, and Bcl-2-stained
images are shown in Supplementary Figure S1. Overall, these
data demonstrated that the GEFT–Rac1/Cdc42–mTOR pathway
inhibited autophagy and apoptosis.
Frontiers in Oncology | www.frontiersin.org 9
DISCUSSION

Autophagy is an important factor in causing cancer, maintaining
tumor stem cells, and resisting malignant tumors. Beclin1
mediates autophagy initiation, and LC3 is a specific marker of
autophagy. mTOR regulates the lysosomal reformation and
termination of autophagy. In our studies, we confirmed that
Beclin1 and LC3 were expressed at high levels in RMS and that
mTOR was expressed at low levels in RMS. Beclin1 expression
has been shown to be significantly correlated with patient
survival in gastric cancer (25) and non-Hodgkin’s lymphoma
(26). LC3 expression is positively correlated with clinical stage in
oral squamous cell carcinoma (27). We compared multivariate
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FIGURE 4 | GEFT can inhibit autophagy and apoptosis in RMS cells via Cdc42. (A) Western blotting was used to detect the expression of Beclin1 and LC3 protein
in RH30 cells transfected with GEFT, GEFT+ZCL278, GEFT+CQ, and GEFT+CQ+ZCL278. (B) Western blotting was used to detect the expression of Beclin1 and
LC3 protein in RD cells transfected with GEFT, GEFT+ZCL278, GEFT+BafA-1, and GEFT+BafA-1+ZCL278. (C) The representative images of RH30 and RD cells
transfected with GEFT and GEFT+ZCL278 were detected by immunofluorescence, MDC and AO staining. (D) The apoptosis of RH30 and RD cells transfected with
GEFT and GEFT+ZCL278 was detected by TUNEL. (E) Western blotting was used to detect the expression of GEFT, Total Cdc42, Active Cdc42, Bax, Bcl-2,
Caspase-3, and Cleaved-PARP protein in RH30 and RD cells transfected with GEFT and GEFT+ZCL278. (F) Flow cytometry was used to detect the apoptosis of
RH30 cells and GEFT-transfected RH30 cells in GEFT, GEFT+CQ, GEFT+ZCL278 and GEFT+ZCL278+CQ groups. Flow cytometry was used to detect the
apoptosis of RD cells and GEFT-transfected RD cells in GEFT, GEFT+BafA-1, GEFT+ZCL278 and GEFT+ZCL278+BafA-1 groups. ***P < 0.001, *P < 0.05.
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pathological parameters with Beclin1 and LC3 protein
expression and found that tumor diameter was positively
correlated with Beclin1 protein expression, whereas the high
expression of LC3 protein was associated with the clinical stage
of the RMS patients.

Apoptosis is a complex and proactive process of cell death
controlled by multiple genes. Apoptosis is closely related to the
maintenance, atrophy, and inflammation of body’s normal
physiological activities. However, defects in apoptosis can lead
to an imbalance between cell proliferation and death in the body
and cause cancer (28). The Bcl-2 protein plays a central role as a
protector of apoptosis, helping cancer cells escape cell death (29).
Bax, a key regulator of the mitochondrial apoptotic pathway,
accumulates at different focal points on the mitochondrial
surface, undergoes conformational changes, and mediates the
release of cytochrome c, leading to cell death (30). In our study,
we found a high level of Bcl-2 expression and a low level of Bax
expression in RMS.

Studies have shown that apoptosis and autophagy possess the
same set of regulatory proteins and common upstream signaling
components (31, 32). Beclin1 interacts with the Bcl-2 family of
anti-apoptotic proteins through the BH3 domain (33), which is
well established as a proapoptotic protein (34). Caspase-
Frontiers in Oncology | www.frontiersin.org 10
mediated Beclin1 cleavage inhibits autophagy and promotes
S1-induced apoptosis of ovarian cancer cells (35). BMP4
promotes hepatocellular carcinoma proliferation through
JNK1-mediated autophagic activation of Bcl-2 phosphorylation
(36). ABT-737 induces autophagy through Bax-independent
mechanisms and disrupts the binding of Beclin1 to anti-
apoptotic Bcl-2 family members (37). In the present study, Bcl-
2, Bax, Beclin1, LC3, caspase-3, and Cleaved-PARP were selected
for autophagic and apoptotic experiments.

The present study found that Rac1/Cdc42 was highly
expressed in RMS, and the IHC results showed that the
protein expression was homogeneous in all tumor regions. The
autophagy- and apoptosis-related proteins in the RMS cells were
downregulated after GEFT overexpression, indicating that GEFT
had a positive effect on regulating autophagy and apoptosis.
Notably, autophagy- and apoptosis-associated proteins were
upregulated and homogeneous in cells overexpressing GEFT
after the inhibition of Rac1 and Cdc42. This result was
consistent with the inhibition of apoptosis by Rac1 and
Cdc42 (38).

Rac1 and Cdc42 are involved in myoblast transformation, and
they play an important role in muscle tumors (39). Rac1
inhibition is critical for autophagic flux during starvation and
A
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FIGURE 5 | mTOR can be regulated by Rac1/Cdc42. (A, B) The Rac1 (A) and Cdc42 (B) inhibitors were added to the RMS cells. p-mTOR and mTOR were
detected by Western blot, and b-actin was used as a control. (C) The Rac1 and Cdc42 antibodies were used to pull down mTOR by using the co-
immunoprecipitation assay. (D, E). Rac1 (D) and Cdc42 (E) were pulled down using the mTOR antibody, and the results were examined by Western blot.
***P < 0.001, **P < 0.01, *P < 0.05.
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other potential stimuli (40). Rac1 can compete with LC3 for
interaction with Armus, preventing it from properly recruiting
autophagosomes (41). We found that Beclin1 and LC3 protein
expression increased after Rac1 was inhibited in our study.
Studies have shown that the activation and expression of Rac1
affect the survival prognosis of many tumor diseases. The status
of Rac1-GTP was significantly related to increased mortality and
risk of recurrence from breast cancer (42). A high expression
level of Rac1 was related to disease-free survival and prolonged
survival in lung cancer patients (43). In our study, we revealed
Frontiers in Oncology | www.frontiersin.org 11
that the increased expression of Rac1 was related to the site of
tumorigenesis, which affected the survival prognosis of RMS
patients. In addition, our study has also confirmed that Cdc42
regulates autophagy.

Studies have shown that p-mTOR is overexpressed in various
tumors and is closely related to cancer metastasis and prognosis
(44, 45). mTOR plays a key role in regulating cancer cell
apoptosis and autophagy (38). mTOR regulates the transport
of amino acid transporters in human trophoblasts by mediating
Rac1 and Cdc42 (46). mTOR-mediated autophagy regulates the
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FIGURE 6 | Inhibiting mTOR-promoting autophagy and apoptosis in RMS cells of overexpressing GEFT. (A) Western blotting was used to detect the expression of Beclin1
and LC3 protein in RH30 cells transfected with GEFT, GEFT+Rapamycin, GEFT+CQ, and GEFT+CQ+ Rapamycin. (B) Western blotting was used to detect the expression
of Beclin1 and LC3 protein in RD cells transfected with GEFT, GEFT+Rapamycin, GEFT+BafA-1, and GEFT+BafA-1+Rapamycin. (C) The representative images of RH30
and RD cells transfected with GEFT and GEFT+Rapamycin were detected by immunofluorescence, MDC and AO staining. (D) The apoptosis of RH30 and RD cells
transfected with GEFT and GEFT+Rapamycin was detected by TUNEL. (E) Western blotting was used to detect the expression of mTOR, Bax, Bcl-2, Caspase-3, and
Cleaved-PARP protein in RH30 and RD cells transfected with GEFT and GEFT+ Rapamycin. (F) Flow cytometry was used to detect the apoptosis of RH30 cells and GEFT-
transfected RH30 cells in GEFT, GEFT+CQ, GEFT+ Rapamycin and GEFT+ Rapamycin +CQ groups. Flow cytometry was used to detect the apoptosis of RD cells and
GEFT-transfected RD cells in GEFT, GEFT+BafA-1, GEFT+Rapamycin and GEFT+ Rapamycin+BafA-1 groups. ***P < 0.001, *P < 0.05.
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apoptosis induced by diquat (47). Our experimental results
demonstrated that p-mTOR was highly expressed in RMS and
that the inhibition of mTOR in RMS cell lines promoted
apoptosis and autophagy, and this finding was consistent with
the idea that mTOR inhibited apoptosis and autophagy in renal
carcinoma (48). Rac1 binds directly to mTOR and mediates
mTORC2 and mTORC1 localization on specific membranes
(49). Rac1 can control cell growth through mTOR signaling
(50). S6K1 is activated by the Cdc42–mTOR pathway during
retinoic acid-dependent neural differentiation to promote cell
growth (51). In our study, mTOR and p-mTOR were reduced by
Western blot experiments with the addition of Rac1 and Cdc42
inhibitors. Moreover, Co-IP experiments demonstrated that the
presence of mTOR was detected in the co-immunoprecipitation
complex of Rac1 and Cdc42 antibodies. Our results verified that
mTOR may play a role through the Rac1/Cdc42–mTOR
signaling pathway.

NSC23766 is considered to be a specific inhibitor of Rac1.
NSC23766 effectively inhibits Rac1 binding and activation
through Rac-specific GEF Trio or Tiam1, and does not
Frontiers in Oncology | www.frontiersin.org 12
interfere with closely related Cdc42 or RhoA binding or
activation (52). ZCL278 has become a selective Cdc42 small
molecule regulator, which directly binds to Cdc42 and inhibits its
function (53). Rapamycin is a specific inhibitor of mTOR
protein, which binds to intracellular receptor FKBP-12 to form
a complex and then directly acts on the FRB domain of mTOR to
inhibit protein activity (54). In the past few years, Rapamycin has
been developed as a treatment for a variety of cancers.
Rapamycin combined with short-term radiotherapy can be
used in the treatment of rectal cancer (55). According to
another study, autophagy is closely related to mTOR signal
pathway inhibitors in the treatment of glomerulonephritis (56).
Rapamycin reduced T cell failure caused by bladder cancer, and
the prevalence of PD-1 expression of T cells decreased
significantly (57). In this experiment, NSC23766, ZCL278 and
Rapamycin can promote apoptosis and autophagy of RMS cells,
it can be used as a potential drug to kill RMS cells.

Our results suggest that GEFT modulates the Rac1/Cdc42-
mTOR pathway to inhibit autophagy and apoptosis in RMS. This
study describes the molecular mechanism of GEFT inhibiting
A
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FIGURE 7 | GEFT-mediated Rac1 and Cdc42 inhibit the expression levels of autophagy- and apoptosis-related proteins in transplanted tumor tissues.
(A, B) Western blot was used to detect the expression of Total Rac1, Active Rac1, Total Cdc42, Active Cdc42, p-mTOR, Beclin1, LC3, Bax, Bcl-2, caspase-3, and
cleaved-PARP in RH30 and RD cells transfected with the GEFT group after the addition of Rac1 (A, B) Cdc42 inhibitors. ***P < 0.001, **P < 0.01, *P < 0.05.
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autophagy and apoptosis in RMS; the expression of Rac1, Cdc42,
p-mTOR, Beclin1, LC3, Bax, and Bcl-2; and the relationship
among the clinical pathological parameters in RMS, which has
revealed and enriched the understanding of GEFT’s carcinogenic
mechanism (Figure 9). Understanding autophagy and apoptosis
in RMS can reveal new targets and pathways to improve the
treatment of drug-resistant tumors.
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FIGURE 9 | GEFT mechanism diagram in RMS. GEFT inhibits autophagy
and apoptosis through the Rac1/Cdc42–mTOR pathway.
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