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Acute myeloid leukemia (AML) is an aggressive heterogeneous blood cancer derived from
hematopoietic stem cells. Tumor-stromal interactions in AML are of importance for
disease development and therapy resistance, and bone marrow stroma seem like an
attractive therapeutic target. Of particular interest is colony stimulating factor 1 receptor
(CSF1R, M-CSFR, c-FMS, CD115) and its role in regulating plasticity of tumor-associated
macrophages. We discuss first the potential of CSF1R-targeted therapy as an attractive
concept with regards to the tumor microenvironment in the bone marrow niche. A second
therapy approach, supported by preclinical research, also suggests that CSF1R-targeted
therapy may increase the beneficial effect of conventional and novel therapeutics.
Experimental evidence positioning inhibitors of CSF1R as treatment should, together
with data from preclinical and early phase clinical trials, facilitate translation and clinical
development of CSF1R-targeted therapy for AML.

Keywords: colony stimulating factor 1 receptor, tumor-stroma, signal transduction, biomarkers, acute myeloid
leukemia, targeted therapy, therapy development
INTRODUCTION

Acute myeloid leukemia (AML) is the most common aggressive blood cancer in adults with a
median age at diagnosis of 71 years and with an overall incidence of approximately 4/100.000. In
patients older than 70 the incidence is 17/100 000 (1). The 5-year survival rate for AML was less
than 20% (2) before a wave of FDA-approved novel agents (introduced from 2017) were
incorporated into standard treatment regimens and entered late-stage development in therapy
combinations (3, 4). Even with these recent improvements, there have been few therapy
developments that address tumor-host interactions. It is foreseen that AML will continue to
represent a therapeutic challenge requiring novel treatment modalities (5).

AML is characterized by disruptive hematopoiesis through block in myeloid differentiation and
enhanced proliferation leading to accumulation of non-differentiated myeloid cells/myeloblasts in
bone marrow and peripheral blood (6). AML is diagnosed when myeloblast count comprise at least
20% of the bone marrow (7). Normal blood production is interrupted, and a typical AML patient
may present low numbers of functionally intact granulocytes, platelets, and erythrocytes. Symptoms
often include fatigue, shortness of breath, easy bruising, and frequent infections.

AML is a heterogeneous disease comprising both recurrent and rare chromosomal translocations
and mutations. Next generation sequencing (NGS) analyses of leukemic samples have contributed to
reveal the genetic landscape of AML, showing an enormous mutational diversity and identifying over
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30 recurrent mutations (7–10). In some subsets of AML,
molecular diagnostics can suggest the therapies most likely to
give a favorable outcome such as expression of cell surface marker
CD33 or mutations in specific genes such as FLT3/IDH1/IDH2 (8,
11, 12). Among the most frequent mutations in AML are those
affecting nucleophosmin 1 (NPM1) which is possible to target
experimentally, as recently demonstrated (13–16). Similarly,
mutations in TP53 are associated with chemo-resistance and
therapies aimed at restoring P53 function are in development (17).

It has been postulated that the process of leukemogenesis is
initiated by relatively few steps, and a “two hit” model of AML
development has been proposed, in which class 1 and class 2
mutations can suffice for AML initiation (18). This theory has
mostly been supported by the analyses of large AML sample
cohorts (10, 19). Observations indicate that AML is a disease that
starts with a single clone that acquires novel mutations over time,
thereby further contributing to tumor heterogeneity and early
relapse (20–22).

The acquisition of somatic mutations is a relatively common
event in most cell types and increases with age (23, 24). Certain
mutations occur in hematopoietic stem cells (HSC) and gain a
competitive advantage, resulting in “clonal hematopoiesis” that
could lead to expansion of a clonal population of blood cells (25).
Clonal hematopoiesis is predisposing individuals to
hematological disease (26, 27) but studies have discovered that
clonal hematopoiesis-harboring mutations in AML-associated
genes like DNMT3A and TET2 are ubiquitous in the elderly
population between 50 and 70 (28). Although prevalence of
clonal hematopoietic mutations is very common, progression to
hematological malignancy is extremely rare. A recent
investigation found no significant association between clonal
hematopoiesis and long-term risk of developing AML between
cases and controls (29). Future research should rely on methods
to distinguish between high-risk and low-risk clonal mutations
for development of aggressive disease. This imperative should
gain interest in sequencing-based non-invasive screening and in
future tailored therapy guided by cytogenetics and
mutational profile.

The AML therapies implemented from 2017 filled a nearly 40-
year paucity in drug development (12). These new agents include
lipid formulated chemotherapy, antibodies directed against AML
cells, Bcl-2 family inhibitors, metabolic enzyme inhibitors of
IDH1/2, and tyrosine kinase inhibitors. Although developing
targeted therapy presents challenges, the accumulated knowledge
about AML will continue to translate into novel treatment
approaches that improve patient outcomes (30). In fact,
treatment based on molecular diagnostics should increase
overall survival of AML above the glass ceiling of 50% long-
term survival currently observed in younger and fit patients (7,
31). The recent therapeutic landscape of AML does not include
stroma-targeting therapy, although intensive induction
chemotherapy and consolidating allogeneic stem cell
transplantation eradicate most of the host stromal environment.
At the same time, it appears clear that broad acting kinase
inhibitors like midostaurine and gilteritinib (predominantly
inhibitor of FLT3, AXL) may affect stromal function (32).
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Colony Stimulating Factor 1 receptor (CSF1R) is a
particularly interesting target since its expression and signaling
is prominent in the supportive stromal compartment. The use of
enzymatic inhibitors and blocking antibodies of CSF1R
represents two novel approaches that addresses tumor-stroma
interactions in an attractive way.
CSF1R BIOLOGY

CSF1R (M-CSFR, c-FMS, CD115, c-fms proto-oncogene,
McDonough feline sarcoma oncogene) is a cell surface
glycoprotein encoded by the CSF1R gene located on the distal
end of the long arm chromosome 5 (5q32) (Figure 1) (33).
CSF1R is a class III receptor tyrosine kinase and member of the
platelet-derived growth factor (PDGF) receptor family along
with FLT3, c-KIT, and PDGF-a and -b receptors (34). In
comparison, CSF2R (GM-CSFR, CD116) belongs to class 1
hematopoietic receptor systems and CSF3R (G-CSFR, CD-114)
is related to the cytokine (hematopoietin) receptor family (35).
CSF1R is expressed primarily on mononuclear phagocytes,
namely monocytes, macrophages, and dendritic cells where its
activation is crucial for their growth and differentiation during
immune responses. CSF1R is involved in promoting the
physiological properties of monocytes and macrophages which
entail cytotoxicity, phagocytosis, and chemotaxis through the
release of cytokines and chemokines. CSF1R is also found on a
diversity of cells of the body such as Langerhans cells of the skin,
Paneth cells in the small intestine, osteoclasts, brain microglia,
cells in the female reproductive tract, and at low levels on
hematopoietic stem cells (36).

CSF1R is a cell surface protein with an extracellular
glycosylated domain comprising five immunoglobulin (Ig)-like
domains (D1-D5), a transmembrane domain and a cytoplasmic
kinase domain (Figure 2). The intracellular portion of the
receptor is composed of eight tyrosine phosphorylation sites
situated on the juxtamembrane section, the kinase insert, the
major kinase domain, and distal kinase domain (37). In the
inactive state, CSF1R presents an autoinhibitory conformation
(38). The two activating ligands; CSF1/M-CSF and the more
recently identified interleukin 34 (IL34) differ slightly in
structure but show undistinguishable downstream signaling
pathways according to Boulakirba et al. (39). However, they
discovered differences in cytokine/chemokine production when
CSF1- or IL34-differentiated monocytes are polarized into
different phenotypes. This suggest that macrophages derived
from either ligand may behave differently and thus exert
different polarization potential. Another study found that CSF1
and IL34 have different spatiotemporal expression but serve
complementary roles in regulating the development and
maintenance of macrophages (40). Binding of CSF1 or IL34 to
CSF1R induces non-covalent dimerization of the receptor chains
and transphosphorylation of tyrosine residues (41). The first
tyrosine to be phosphorylated is Tyr561 which is necessary for
full receptor activation (42). The phosphorylated residues
function as docking sites for several different proteins that
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subsequently activate signaling molecules. Among them are
members of the Src family kinases, phospholipase Cg2,
phosphatidylinositol 3-kinase (PI3K), and suppressor of
cytokine signalling-1 (SOCS1) (43). Following the different
downstream signal transduction pathways, the resulting gene
expression mechanisms promote proliferation, differentiation,
and survival of the cell (44). Studies analyzing the effects of
CSF1R-mutations in macrophages suggest that the PI3K/Akt
pathway has a pivotal role in ensuring CSF1-mediated survival of
macrophages (40). Macrophage proliferation is primarily
associated with the two pathways through PI3K and MEK, but
multiple ERK tyrosine kinases may also be involved. Studies have
shown that macrophage differentiation is mediated through the
PLC-ϒ2 pathway activated by phosphorylation of Tyr-721 and
Tyr-807 in CSF1R (40). Knowledge about CSF1R biology and its
role in cancer is evolving rapidly, especially regarding the
supportive tumor microenvironment.
CSF1R AND THE MICROENVIRONMENT

Bone marrow stromal cells facilitate growth of normal
hematopoietic and leukemic cells through the continuous
Frontiers in Oncology | www.frontiersin.org 3
production of growth factors. In AML, malignant cells are
thought to polarize the surrounding stroma through a
cytokine-regulated mechanism facilitating a stroma-mediated
protection of AML. This complex process involves several
cytokines, chemokines, growth factors, receptors, and adhesion
molecules (45). This can be seen in vitro by increased AML cell
proliferation and protection from drug-induced apoptosis when
these cells are in direct or indirect contact with the human
stromal cell line HS-5 (46–48). Thus, targeting the niche and the
interaction between leukemic cells and their environment appear
promising for AML treatment.

The bone marrow microenvironment (BME) in AML plays
an important role by contributing to both leukemic development
and therapy resistance. Situated in the BME we find the bone
marrow niche; a controlled perivascular and endosteal space
where hematopoietic stem cells (HSC) are regulated and
maintained by the surrounding stroma (Figure 3) (49, 50).
The surrounding stroma that affects HSC consists of
mesenchymal stromal cells, osteoblasts, endothelial cells,
macrophages, and CXCL12-abundant reticular cells in addition
to neurons and glial cells (51–56). CSF1R signaling is present in
several cellular subpopulations that regulate hematopoiesis and
homeostasis. Detectable expression of CSF1R is found mainly on
FIGURE 1 | Genomic structure of the CSF1R locus in human and protein structure. The CSF1R locus is located at the distal end of the q arm in chromosome 5
(5q32). With 60 kb length, CSF1R gene is composed by 22 exons. Transcription between the first exon and exon 22 is exclusively regulated by a trophoblast-
specific promoter. In other tissues (such as macrophages), transcription takes place only between exon 2 and exon 22. The transcript produced is predicted to be
3.9 kb long. This product will translate in a 972-aminoacid protein with a molecular weight of 108 kDa. The N-terminal extracellular domain is composed by five
immunoglobulin domains (512 aa), which contain the ligand binding region. The hydrophobic transmembrane domain is 25 amino acids long. The intracellular domain
contains the tyrosine residues that will be phosphorylated upon receptor stimulation (435 aa).
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macrophages, osteoclasts, and at low levels on HSC (44).
Interestingly, recent studies have revealed CSF1R-expression
on leukemic stem cells (LSC) (10), which share phenotypical
and functional similarities with HSC. LSC have the capacity to
produce a cellular hierarchy of leukemic progenitors as well as
remodeling the bone marrow niche, reshaping it into an
environment conducive to support leukemic expansion. Thus,
the leukemia niche is created where cells are not subject to the
same signals as normal HSC and consequently contributes
towards malignant progression. More specifically, angiogenesis
increases and stromal cells acquire supportive features for the
leukemic cell population (57). Failure to eradicate LSC following
chemotherapy often contributes to early relapse (58–60).
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Another important component that characterizes the AML
bone marrow niche includes the interaction between leukemic
and endothelial cells. For example, AML cells can intravasate
into the vasculature and fuse with endothelial cells thereby
creating a favorable vasculature for expansive cell proliferation
(61, 62). The level of proangiogenic vascular endothelial growth
factor (VEGF) is high in AML patients, and high levels of VEGF
and can also lead to increased secretion of granulocyte-
macrophage colony stimulating factor (GM-CSF) which is
known to stimulate cell growth in AML (63). Fibroblasts also
participate in AML development, and studies have found several
functional cancer-associated fibroblasts (CAF) in AML patient
samples (64). Evidently, all components of the AML bone
FIGURE 2 | CSF1R downstream signaling in myeloid cells. The binding region of CSF-1 or IL-34 to CSF1R is contained in the second and third domain (D2 and D3)
of the extracellular region, D4 mediates homotypic interactions. Upon binding to the ligand, CSF1R dimerizes inducing tyrosine phosphorylation that will lead to
activation of downstream signaling pathways. This will promote proliferation, survival, and differentiation of the cell. The intracellular region, apart from the tyrosine
residues, contains an ATP-binding domain as well as catalytic domains where substrates bind (Kin). When activation takes place, these domains will fold to
phosphorylate signaling mediators.
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marrow niche interact with leukemic cells and affect their
proliferation, differentiation, adhesion, quiescence, migration,
and clonal expansion (45). These interactions between
leukemic cells and the BME can determine the fate of leukemic
cells following chemotherapy, which and ultimately has
implications for residual disease and early relapse (65).

For most intermediate and high-risk AML patients, allogeneic
stem cell transplantation is the only curative therapy available (7).
Depending on intensity of the transplant conditioning therapy, the
bone marrow stroma is more or less damaged by the stem cell
transplant process, but donor stem cell engraftment is difficult if the
radiation-resistant recipient resident macrophages are eradicated. In
an attempt to elucidate this process in vivo, mice were inserted with
a CSF1R-eGFP construct used as a myeloid reporter gene, where
GFP is under the control of the CSF1R promoter. After the stem cell
niche was exposed to lethal radiation, subsequent analysis of the
niche was performed following lethal irradiation and autologous
hematopoietic stem cell transplantation (66). Recipient CD169+
CSF1R-eGFP resident macrophage number in bonemarrow aligned
with the persistent engraftment of long-term reconstituting HSC
within bone marrow, illustrating the complex properties of
macrophages in stem cell niches of the bone marrow.
Frontiers in Oncology | www.frontiersin.org 5
CSF1R AND TUMOR-ASSOCIATED
MACROPHAGES

Macrophages are myeloid cells derived from monocytes (67)
present in the tumor micromilieu of the bone marrow (68). The
major regulators of macrophage proliferation and survival are
the growth factors M-CSF/CSF1 and IL34. These play an
autocrine/paracrine role in various solid tumors, attracting and
differentiating incoming monocytes into tissue resident
macrophages in the tumor microenvironment (69–71).
Monocytes and macrophages have come to the attention of
cancer researchers because of their plasticity and influence on
malignant progression as well as their role in cancer-related
inflammation (72–76). Increasing evidence demonstrates a
correlation between macrophage density within the tumor
micromilieu and malignant progression carrying a poor
prognosis (77–80).

Macrophages are thought to be polarized by various cytokines
towards pro-inflammatory or anti-inflammatory behavior,
which means that they exert either influence on tumor
development (81). In endometrial and breast cancer,
macrophages undergo cancer-specific reprogramming which
FIGURE 3 | Pathophysiology of AML in the bone marrow. The bone marrow is a tissue organized to protect cell proliferation. Under normal conditions (left),
the multipotent hematopoietic stem cells (HSCs) will give rise to the myeloid and the lymphoid lineages. Myeloid lineage transcription factors regulate the
expression of CSF1R, already present in macrophage precursors. The stromal environment is composed by osteoblasts, osteoclasts, adipocytes,
macrophages, mesenchymal cells, and vessels that will allow this differentiation process to take place. When there is a dysregulation of proliferation and
apoptosis in myeloid precursors, hematologic malignancies such as AML may appear. In AML (right), proliferation and survival rely on the bone
marrow stromal cells signals. These signals are strongly mediated by the CSF1R which is expressed in certain cell types (shown in the figure), contributing to
paracrine communication.
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significantly alters their distribution and function (71). In
general , i t is thought that a complex bidirectional
communication between the macrophages and the tumor
ultimately forge the anti-inflammatory, immune regulatory
myeloid cells into tumor-associated macrophages (TAM).

To describe macrophage activity, a functional classification of
macrophages into M1 and M2 has been proposed, where M1 are
pro-inflammatory and tumoricidal, and M2 are anti-
inflammatory and immune regulatory. M1 macrophages are
differentiated by another growth factor; granulocyte-
macrophage colony stimulating factor (GM-CSF, or CSF2) and
other pro-inflammatory agents (82). This simple dichotomy
excludes the spectra of diverse phenotypes within the tumor
microenvi ronment (82 , 83) . In response to loca l
microenvironmental cues, TAM display an impressive
adaptability that elicit functions supporting tumor growth and
resistance to therapy (84). Convincing experimental and clinical
evidence has shown that macrophages promote cancer initiation,
angiogenesis, migration, and invasion suggesting that specialized
subpopulations of macrophages may be important therapeutic
targets (85).

Our knowledge of the roles of macrophages and their
functions in the development of AML is still limited, although
a recent in vivo study showed correspondence between
macrophage infiltration and overall survival (53). Further,
AML cells have also been shown to polarize macrophages and
orchestrate the invasion of monocytes into bone marrow of mice,
suggesting that AML and surrounding stroma affect monocytic
infiltration and transformation into a tumor supportive
phenotype. Altogether, the complex interplay between TAM
and malignant cells further provides rationale for targeting
CSF1R in AML as the receptor is essential for macrophage
differentiation and survival.
CSF1R MUTATION AND EXPRESSION

Recent analyses employing whole-exome and whole-genome
sequencing [from the collaborative Beat AML research
program and the Cancer Genome Atlas Program’s (TCGA)
study on AML] did not detect significant mutational events in
CSF1R (10, 19). When we searched for genetic alterations in
CSF1R in the accessible databases TCGA (86, 87) and COMSIC
(88) we found that 0.9% of all patients (n = 2,034) had CSF1R
deletions in one allele. Yet, CSF1R mutations found at codon 301
(L301S) and 969 (Y969F) have earlier been identified in some
patients with AML (89). Interestingly, mutations at codon 301
are believed to contribute to constitutive activation of the
receptor, while the tyrosine residue at codon 969 have shown
to be involved in negative regulatory activity (90). However, the
total incidence of mutations in codon 969 was 12.7% and only
1.8% in codon 301. These studies date back to 1990 and included
a samples size of 110 patients with myelodysplastic syndromes
and AML. Furthermore, studies have revealed that a carboxy-
terminal truncation and the two point-mutations (L301S and
A374X) in the extracellular D4 domain are crucial for activation
Frontiers in Oncology | www.frontiersin.org 6
of the oncogene (91, 92). In addition, another oncogenic
derivative with two translocations and a constitutively active
CSF1R fusion protein joined to the carboxy-terminal 399 amino
acids is reported in megakaryoblastic AML (FAB classification
M7) (93). Conclusively, as recent sequencing analyses did not
reveal any significant mutational events in a large sample of AML
patients, CSF1R mutations do not appear to be relevant as a
target in AML.

Nevertheless, inappropriate expression of CSF1R has been
associated with several malignancies, including breast cancer,
prostate cancer, ovarian cancer, leukemias, and Hodgkin’s
lymphoma (67, 84). More importantly, analysis of CSF1R
expression levels in AML patient samples found a correlation
between high levels of CSF1R expression and shorter overall
survival (94).

Moreover, it has been demonstrated that the runt-related
transcription factor 1 (RUNX1), which plays a critical role in the
development of AML, is involved in CSF1R transcriptional
regulation. RUNX1 plays a key role in the regulation of growth
and survival of macrophages by controlling CSF1R gene
expression and, in turn, RUNX1 expression is repressed in
CSF1-stimulated cells (95). Specifically, RUNX1 regulates
expression of RUNX3, CSF1R, and CEBPA genes (96). RUNX1
has also been shown to be a key mediator (directly or indirectly)
of tumorigenesis. In BRAF inhibition resistant melanomas, for
example, RUNX1 has been shown to autocrinally upregulate
expression of CSF1R which possibly contribute to growth and
invasion (97). In contrast, RUNX1 loss-of-function mutations in
hematopoietic stem progenitor cells (HSPC) reduce rates of
apoptosis and increase stress resistance with a consequent
selective advantage over normal HSPC (98). Also; a recent
investigation showed correlation between inversion of
chromosome 16 and CSF1R overexpression in AMl blasts (99).

Further research is needed to determine if specific genetic
subsets of AML influence CSF1R expression.

We hypothesize that dysregulation of CSF1R expression
through other mutations may benefit from CSF1R inhibitors.
PRECLINICAL ACTIVITY OF CSF1R
INHIBITORS

The complex interaction between leukemic blasts and the
surrounding stroma could be exploited therapeutically, as
novel treatment in combination with standard treatment
regiments. Inhibition of CSF1R has been proposed to be an
effective target for blocking monocytes and TAM that infiltrate
the tumor stroma and support tumor growth (100). Several
companies have produced small molecule inhibitors of CSF1R
kinase activity; and most of these have been claimed to be highly
specific (44, 100). However, given the high level of conservation
of the tyrosine kinase domains of the type III protein tyrosine
kinases (CSF1R, Fms-like tyrosine kinase-3, KIT, platelet-derived
growth factor receptor), it would be difficult to predict off-target
impacts in vivo, based on the in vitro data.
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Edwards and co-workers have recently performed an ex vivo
functional screen of patient-derived leukemic cells from the
“Beat AML consortium,” with the goal of identifying new
therapeutic targets (94, 101). Interestingly, small-interfering
RNA (siRNA) tyrosine kinome screen identified CSF1R to
significantly reduce cell viability in primary AML patient
samples. Sensitivity towards CSF1R inhibition (reduced cell
viability ex vivo) was found in 23% of patient samples. The
CSF1R-inhibitor GW-2580 showed high degree of specificity
compared with other class III receptor tyrosine kinases and was
selected to be CSF1R inhibitor activity in all subsequent
experiments. Screening of 315 AML patient samples for
sensitivity towards GW-2580 revealed a wide range of
responses ranging from highly sensitive to non-sensitive.
Nevertheless, GW-2580 significantly induced apoptosis in
patient samples but not in samples from healthy donors.
Analysis of the patient samples that had undergone inhibitor
screening from the “Beat AML” patient cohort revealed a
significant association between resistant samples and poor
prognostic markers. Cytogenetic abnormalities included
complex karyotypes, inversion 3, monosomy 5/deletion 5q, the
gene mutations TP53, NRAS, KRAS, and genetic adverse
prognostic risk group correlated with increased CSF1R
inhibitor sensitivity. The authors concluded that the samples
resistant towards CSF1R inhibitors were potentially non-
sensitive towards all forms of treatment, which could explain
its ineffectiveness.

Examinations of CSF1R expression patterns by flow
cytometry and mass cytometry (CyTOF) of samples from AML
patients and healthy donors revealed overall expression of
CSF1R in AML samples is found on a subpopulation of CD14-
expressing monocytes which seem to diminish after exposure to
CSF1R inhibitors, while negligible expression of CSF1R was
found on a small portion of leukemic blasts (94). In solid
tumors, cells expressing CSF1R almost exclusively defines a
population of tumor infiltrating macrophages. However,
because AML can arise from macrophage-lineage precursor
cells, it can be challenging to determine the origin of
supportive CSF1R-expressing cells, and to know whether they
are infiltrating monocytes/macrophages or tumor derived.

Analyses of CSF1R ligand stimulation suggest that receptor
signaling occurs through a ligand-dependent mechanism, and
CSF1R inhibitors eliminate CSF1R-expressing supportive cells in
Frontiers in Oncology | www.frontiersin.org 7
AML (94). Furthermore, CSF1R-expressing cells protect AML
cells through paracrine cytokine secretion of hepatocyte growth
factor (HGF) and CSF1 and that utilizing CSF1R inhibitors may
be an effective treatment in a subpopulation of AML patients
(94, 101).

It has been hypothesized that using CSF1R inhibitors is most
effective in the early stages of the disease (101), which presents an
ongoing issue in clinical development as Phase 1 clinical trials
usually enroll relapsed/refractory (R/R) AML patients. Increased
clinical response in de novo disease compared to late-stage cancer
is common for many malignancies but studying these patterns
requires comprehensive clinical trials. For instance, it took nearly
a decade to complete the Phase III registration trial for the first
FLT3 targeted treatment in otherwise healthy patients with de
novoAML (102). Therefore, we expect it will take time to develop
CSF1R inhibitors for early stage and first line AML.
CLINICAL DEVELOPMENT OF CSF1R
INHIBITORS

A wide variety of clinical trials have used different treatment
strategies to target CSF1R (Table 1). Ongoing studies aim to
decipher the safety profile and the clinical activity of CSF1R
inhibitors alone and in combination in various malignant
diseases. Some of these studies have been previously reviewed
by Cannarile et al. (100), describing different approaches for
targeting CSF1R in different cancer types. The FDA has recently
approved the oral small-molecule CSF1R inhibitor pexidartinib
(PLX3397/PLX10801) as monotherapy for the CSF1-driven non-
malignant diffuse-type Tenosynovial Giant Cell Tumor (dt-
GCT) (103). Pexidartinib also has inhibitory activity against
FLT3 and cKIT, two commonly mutated genes in AML.
Results of a phase I/II open-label clinical study of pexidartinib
in relapsed/refractory (R/R) FLT3-ITD-mutated AML have
recently been published (NCT01349049) (104). In this study,
90 patients were treated either in dose escalation or in dose
expansion with the aim of assessing safety and tolerability of
pexidarnitib, and the maximum tolerated dose (MTD) was not
reached. The overall response rate (ORR) was 21%, probably due
to patients having received multiple lines of therapy. Although
this study focused on treating R/R FLT3-ITD+ AML, it also
considered the possibility of targeting CSF1R with pexidartinib
TABLE 1 | Summary of CSF1R targeted therapies for leukemias in clinical trials (2020).

Compound Class Target Clinical phase Status ClinicalTrials.gov
identifier

Sponsor

Pexidartinib (PLX3397/
PLX10801)

Small
molecule

CSF1R, FLT3,
cKIT

I/II Completed
[44]

NCT01349049 Daiichi Sankyo, Inc.

I/II Ongoing NCT02390752 National Cancer Institute
(NCI)

JNJ-40346527 Small
molecule

CSF1R II Terminated NCT03557970 OHSU Knight Cancer Institute

NMS-03592088 Small
molecule

CSF1R, FLT3,
cKIT

I/II Ongoing NCT03922100 Nerviano Medical Sciences

Emactuzumab (RG7155) mAb CSF1R I Ongoing NCT02323191 Hoffmann-La Roche
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in patients with wild type FLT3. This study reported tolerability
and an antileukemic effect of pexidartinib in highly pretreated R/
R AML. Another ongoing study with similar objectives is a Phase
I/II trial of pexidartinib in children and young adults with R/R
leukemias (AML or ALL) or solid tumors is currently under
investigation (105). The results of this trial will help to decipher
safety profiles of CSF1R inhibition in the younger population.

Other CSF1R inhibitors have also been considered for
treatment of R/R AML. One example is the selective small
molecule CSF1R inhibitor JNJ-40346527, for which preclinical
studies have shown interesting immunomodulatory effects in
murine models of Crohn’s Disease (106). Although this
component’s safety and efficacy have been tested previously in
patients with rheumatoid arthritis and advanced Hodgkin’s
Lymphoma (107, 108), it has yet to be studied in patients with
R/R AML. A phase II open-label clinical trial with the aim of
studying efficacy of JNJ-40346527 in patients with R/R AML had
to be terminated due to insufficient patient enrolment,
unfortunately. The reasons for poor enrolment are unknown,
however, it might be increasingly difficult to secure accrual in
trials with monotherapy in an aggressive disease like AML (109).

A different approach for treating R/R AML is the ongoing
open-label phase I/II, first-in-human clinical trial assessing the
clinical activity of the combined FLT3, KIT, and CSF1R inhibitor
NMS-03592088 (110). This multi-center non-randomized study
aims to assess the safety, tolerability, pharmacokinetics, and
pharmacodynamics of NMS-03592088 in patients with R/R
AML or chronic myelomonocytic leukemia (CMML) (111). Like
pexidartinib, the three targets FLT3, KIT, and CSF1R of NMS-
03592088 are connected to the molecular physiopathology of
AML, being relevant mediators to target for treatment strategies.

In addition to small-molecule therapeutics, monoclonal
antibodies (mAbs) are also being considered as valid options
for targeting CSF1R. The most promising example of anti-CSF1R
therapy is emactuzumab (RG7155) given as monotherapy for dt-
GCT (112). A Phase I clinical trial with emactuzumab in
combination with the chemotherapeutic agent paclitaxel in
solid tumors reduced TAM at the optimal biological dose
(OBD) (113). The efficacy of this monoclonal antibody is yet
to be tested in AML, but more clinical data from studies
investigating the behavior of emactuzumab (NCT02323191)
will give us further knowledge about this agent.
DISCUSSION

Clinical development of CSF1R inhibitors for AML treatment is
in its early development. The activity of some CSF1R inhibitors is
modest and more studies are needed to understand the
therapeutic potential of these inhibitors. It is important to
understand the possible negative side-effects of on-target
toxicities like macrophage depletion outside the tumor (114).
Similarly, central nervous side effects like fatigue should be
considered when investigating CSF1R-targeted therapies for
AML (115, 116). A recent study discovered that pexidartinib
affects CNS microglia but also has long-term effects in the
Frontiers in Oncology | www.frontiersin.org 8
myeloid and lymphoid compartments of the bone marrow,
spleen, and blood (117). The long-term effects on circulating
and tissue macrophages have implications for future
development of CSF1R inhibition as treatment, because
peripheral monocytes repopulate the central nervous system.
AML is a highly heterogenic disease with specific therapies, and
CSF1R inhibition may represent a more universal approach that
targets the stroma. Although single agent sensitivity to CSF1R
inhibitor is observed in AML, monotherapy will most likely not
be sufficient for efficient AML treatment (94, 101). We suggest a
combined approach for targeting the leukemia cells directly as
well as the surrounding stroma. For other tumor types, various
combinations with CSF1R-mediated TAM depletion are
currently under clinical investigation (114). A strategy that
may be attractive uses CSF1R inhibitors in combination with a
CXCR2 antagonist (118). Kumar and coworkers employed
CSF1R inhibition to disrupt chemokine secretion by cancer
associated fibroblasts (CAF) abolishing recruitment of pro-
tumor granulocytic myeloid-derived suppressor cells (MDSCs).
In addition, combining CSF1R inhibitors with a CXCR2
antagonist blocked the infiltration of these cells and showed
strong anti-tumor effect (118). CSF1R-targeting agents in
combination with checkpoint blockade inhibitors, other
targeted therapies, anti-angiogenic therapies, chemotherapy,
and adoptive T-cell transfer approaches are all currently
undergoing clinical investigations (114). Though several
inhibitors are targeting leukemic cells directly by inhibiting
FLT3 and TAM by inhibiting CSF1R, we speculate that these
inhibitors may be beneficial to use in a carefully designed
sequences wi th immunotherapeut ic s l ike immune
checkpoint inhibitors.
CONCLUDING REMARKS

The supportive microenvironment in the bone marrow of AML
patients significantly contributes to early relapse and death and is
a major challenge for successful treatment. The contribution of
tumor-associated macrophages (TAM) to malignant progression
in AML is substantial, involving bidirectional communication
between leukemic cells and TAM. Targeting CSF1R-expressing
TAMmay be an effective treatment for depleting supportive cells
and kill leukemic cells (112, 119). Limited evidence has
demonstrated that CSF1R-inhibition has been a beneficial
approach for a subset of AML patients (94). At present, the
most effective therapy for AML is combinations and sequences of
anti-leukemic therapeutics, for example, the recent combination
of venetoclax plus hypometylating agents or the sequence of
intensive chemotherapy followed by allogeneic stem cell
transplantation (120, 121). We suggest a novel approach for
eliminating leukemic cells directly and attacking the leukemia-
supporting surrounding stroma by inhibiting CSF1R signaling.
Future work needs to address the optimal CSF1R targeting
combinations and sequences that secure the most clinical
benefit for AML patients.
March 2021 | Volume 11 | Article 654817
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