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Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive malignant

tumors in China, and its prognosis remains poor. Autophagy is an evolutionarily

conserved catabolic process involved in the occurrence and development of ESCC.

In this study, we described the expression profile of autophagy-related genes (ARGs)

in ESCC and developed a prognostic prediction model for ESCC patients based

on the expression pattern of ARGs. We used four ESCC cohorts, GSE53624 (119

samples) set as the discovery cohort, The Cancer Genome Atlas (TCGA) ESCC set

(95 samples) as the validation cohort, 155 ESCC cohort, and Oncomine cohort were

used to screen and verify differentially expressed ARGs. We identified 34 differentially

expressed genes out of 222 ARGs. In the discovery cohort, we divided ESCC patients

into three groups that showed significant differences in prognosis. Then, we analyzed

the prognosis of 34 differentially expressed ARGs. Three genes [poly (ADP-ribose)

polymerase 1 (PARP1), integrin alpha-6 (ITGA6), and Fas-associated death domain

(FADD)] were ultimately obtained through random forest feature selection and were

constructed as an ARG-related prognostic model. This model was further validated in

TCGA ESCC set. Cox regression analysis confirmed that the three-gene signature was

an independent prognostic factor for ESCC patients. This signature effectively stratified

patients in both discovery and validation cohorts by overall survival (P = 5.162E-8 and

P = 0.052, respectively). We also constructed a clinical nomogram with a concordance

index of 0.713 to predict the survival possibility of ESCC patients by integrating

clinical characteristics and the ARG signature. The calibration curves substantiated fine

concordance between nomogram prediction and actual observation. In conclusion, we

constructed a new ARG-related prognostic model, which shows the potential to improve

the ability of individualized prognosis prediction in ESCC.
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INTRODUCTION

Esophageal cancer is one of the most common malignant tumors
of the digestive system, with high morbidity and mortality (1).
It has two major histological types: esophageal adenocarcinoma
(EAC) and esophageal squamous cell carcinoma (ESCC) (2).
ESCC is the principal histological type in China, which has
the highest incidence and mortality compared with other
countries (3). Despite the technical developments in diagnosis
and treatment, this disease still tends to have a poor prognosis
(2, 4) due to late diagnosis and lack of effective targets. Better
understanding of the genetic and molecular disorders of the
disease is the key to early diagnosis, appropriate treatment, and
improved prognosis of patients with ESCC.

Autophagy is a critical and intricate homeostatic process in
cells that is involved in a variety of biological processes (5). When
exposed to various external stimuli, such as starvation, hypoxia,
and drug, the magnitude of autophagy may increase sharply to
provide nutrients and remove harmful substances (6). It suggests
that autophagy is subjected to highly orchestrated regulation,
including phosphoinositide 3-kinase (PI3K)/AKT/mammalian
target of rapamycin (mTOR), p53/damage-regulated autophagy
modulator (DRAM), Janus kinase (JAK)–signal transducer and
activator of transcription (STAT), RAS, and AMP-activated
protein kinase (AMPK)/calcium/calmodulin-dependent protein
kinase kinase (CaMKK) signaling pathways; some known
signaling pathways regulating critical cell cycle are all related to
autophagy (7).

Autophagy is generally regarded as a double-edged sword
in tumors (8). It may have the opposite effect depending on
the tumor type, clinical stage, genetic background, or treatment,
which either suppresses or promotes tumor development
(9). In general, autophagy can prevent carcinogenesis by
removing carcinogenic protein substrates, misfolded proteins,
and damaged organelles (8). However, in established cancer,
autophagy can meet the needs of tumor growth by recycling
macromolecules and organelles (10). At present, autophagy has
been gradually used in the diagnosis and treatment of tumors in
some studies. Its inhibitor chloroquine and hydroxychloroquine
have been used in clinical treatment (7). These drugs alone
or in combination have been used in clinical trials of some
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tumors, including melanoma, colorectal cancer, myeloma, and
renal cell carcinoma. The results show that autophagy inhibitors
have certain therapeutic potential (11–13). However, although
autophagy has been found to be associated with chemotherapy
resistance in esophageal squamous cell lines (14, 15), its roles and
clinical value have not been tested in patients with ESCC. Thus, it
is of great significance to find suitable molecular biomarkers with
autophagy as the core for prognosis prediction and treatment
of ESCC.

In this study, we aimed to explore autophagy-related genes
(ARGs) involved in ESCC progression. Gene expression data
from public databases Gene Expression Omnibus (GEO) were
used to classify subtypes of ESCC and established prognosis
risk model based on ARGs. The relationships between the
molecular subtypes and prognosis and clinical characteristics of
ESCC patients were further evaluated. The three-gene prognostic
risk model constructed with the differentially expressed ARGs
among ESCC can better evaluate the prognosis of ESCC samples.
Furthermore, TCGA gene expression data set was used to further
verify the well-performance of the prognostic risk model.

MATERIALS AND METHODS

Selection of Autophagy-Related Genes
The 222 ARGs were collected from Human Autophagy Database
(HADb; http://www.autophagy.lu/clustering/) in March 2019.
And 222 ARGs were listed in Supplementary Table 1.

Data Acquisition and Processing
The expression data of the GSE53624 dataset and clinical
characteristics of ESCC cohorts were obtained from the
GEO (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE53624). The expression data of TCGA ESCC RNA
sequencing (RNA-seq) dataset were downloaded from TCGA
website (https://portal.gdc.cancer.gov/) for the validation studies.
We used our own ESCC cohort containing 155 ESCC RNA-seq
data to screen the differentially expressed ARGs. In this cohort,
we performed RNA-seq on fresh tumor specimens and matched
adjacent normal tissues from 155 ESCC patients recruited
from Shanxi province, China. In addition, we also verified the
differentially expressed genes (DEGs) in 53 pairs of ESCC from
the Oncomine database (https://www.oncomine.org).

RNA Sequencing and Gene Expression
Analysis
Total RNA was extracted from frozen samples using the TRIzol
reagent (Life Technologies, Carlsbad, CA, USA), and DNA
was digested by DNase I following the instructions of the
manufacturer. RNA quantity and quality were evaluated by
NanoDrop spectrophotometer (Thermo Scientific, USA). Here,
1% gel electrophoresis was used to determine the RNA integrity.
Enriched mRNA with Oligo (dT) were broken into fragments
for the preparation of cDNA libraries. The cDNA libraries were
quality inspection qualified with the Agilent 2100 Bioanalyzer
and ABI Step One Plus Real-Time PCR System, then sequenced
on Illumina HiSeq X Ten.
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Over 50M raw reads were sequenced for each sample.
Raw reads were trimmed by Skewer (v0.2.2) (16) to remove
adapter sequences and then aligned against reference genome
(GRCh37/hg19) by STAR (v2.4.2a) (17). RSEM (1.2.29) (18) was
used to perform expression abundance quantification based on
the uniquely mapped reads. Gene annotation GENCODE v19
was used in the above process.

Screening of Differentially Expressed
Autophagy-Related Genes
Student’s t-test, receiver operating characteristic (ROC), and
GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r) were used to
screen the DEGs between ESCC and normal tissue. Genes
with area under the ROC curve (AUC) ≥0.85, q < 0.0001,
|log2(FC)| ≥ 0.5 were selected as the significantly differentially
expressed ARGs.

First-Round Validation

We used the 155-ESCC dataset to verify the differentially
expressed identified ARGs. EdgeR package in R statistical
software was applied to estimate differentially expressed ARGs
between ESCC and normal samples (q < 0.0001 and log2(FC)
≥0.5 or ≤-0.5).

Second-Round Validation

The first-round validated ARGs were further verified using the
Oncomine database (https://www.oncomine.org/resource/main.
html). Very strict thresholds were applied, P ≤ 0.0001, log2(FC)
≥0.5 or ≤-0.5.

Cluster to Identify Subtypes
We used 34 identified differentially ARGs to cluster analysis.
Ward.D2 algorithm was used to cluster the ESCC samples. And
then we used pheatmap of R to draw cluster heatmap, annotated
by clinical features, including Age, Stage, Lymph nodemetastasis,
Location, Drinking, Smoking, and Gender.

Construction of a Prognostic Gene
Signature Based on Autophagy-Related
Genes
Univariate Cox regression analyses were performed to select the
ARGs whose expression profiles were significantly associated
with ESCC patient’s overall survival (OS) (P < 0.1). And then
we further used the random survival forest algorithm to rank
the importance of prognostic ARGs. R package random survival
forest was used to screen the prognostic genes. We set the
number of Monte Carlo iterations to 100 and the number
of steps forward to 5 and identified the genes whose relative
importance as characteristic genes was >0.3. Finally, we carried
out a multivariate Cox regression analysis and constructed a risk
scoring model:

Risk Score =
∑n

k−1

(

Expk ∗ eHRk
)

N is the number of prognostic ARGs, Expk is the expression value
of the ARGs, and eHR

k
is the estimated regression coefficient of

genes in the multivariate Cox regression analysis.

Functional Enrichment Analysis
We performed a series of gene functional enrichment analyses
with DEGs, including Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG). The Database
for Annotation, Visualization, and Integrated Discovery [DAVID
(19); https://david.ncifcrf.gov/] was used to identify enriched GO
and KEGG terms. And we used GOplot package of R to visualize
the results of enrichment analysis.

Development of the Nomogram
Significant factors of univariate analysis (Age, Stage, and Risk
score) were used to construct a nomogram by the survival and
the rms package for R. And we used the concordance index (C-
index) to assess the model performance for predicting prognosis.
Following that, calibration curves were plotted to evaluate the
concordance between actual and predicted survival.

Statistical Analysis
All statistics were executed using the R software (Version
4.0.2; https://www.R-project.org) and SPSS software (Version
22.0; https://www.ibm.com/analytics/spss-statistics-software).
Student’s t-test was used to compare the expression between
tumor and normal samples. Fisher exact test was used to
check the association of risk scores with clinical characteristics.
Kaplan–Meier (KM) curves were plotted and a log-rank test
and univariate Cox proportional hazard regression analysis were
used to check the significant difference in OS. Univariate and
multivariate Cox proportional hazard regression analysis was
also performed to assess the association between risk score or
clinical characteristics and OS. The ROC analysis was used to
examine the sensitivity and specificity. An AUC served as an
indicator of prognostic accuracy. A P < 0.05 or 0.1 was set as
statistically significant.

RESULTS

Differentially Expressed
Autophagy-Related Genes in Esophageal
Squamous Cell Carcinoma
We used ESCC dataset GSE53624, which contains 222 ARGs
(Supplementary Table 1, collected from HADb) from 119
ESCC and paired normal esophageal tissues to determine the
differentially expressed ARGs. The overall flowchart of this
study is shown in Figure 1A. Expression of 42 ARGs was
found to more effectively discriminate ESCC from normal
esophagus with AUC ≥ 0.85, q < 0.0001, |log2(FC)| ≥

0.5 (Supplementary Table 2), including 17 upregulated ARGs
(Figure 1B) and 25 downregulated ARGs (Figure 1C).

Analysis and Validation of the Differentially
Expressed Autophagy-Related Genes in
the 155 Esophageal Squamous Cell
Carcinoma Dataset and Oncomine Dataset
We then validated the 42 differentially expressed ARGs in
an ESCC RNA-seq dataset, which contains 155 ESCC and
paired normal esophagus. Here, 34 overlapping ARGs showed
the significant differential expression with q < 0.0001 and

Frontiers in Oncology | www.frontiersin.org 3 July 2021 | Volume 11 | Article 650891

https://www.ncbi.nlm.nih.gov/geo/geo2r
https://www.oncomine.org/resource/main.html
https://www.oncomine.org/resource/main.html
https://david.ncifcrf.gov/
https://www.R-project.org
https://www.ibm.com/analytics/spss-statistics-software
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Cui et al. ARGs Prognostic Signature in ESCC

FIGURE 1 | The overall flowchart and significantly differentially expressed autophagy-related genes (ARGs) in esophageal squamous cell carcinoma (ESCC). (A)

Procedure for the selection and validation of the prognostic risk model in ESCC. DEGs, differentially expressed genes. (B,C) The expression patterns of 42 ARGs in

ESCC and paired normal samples. Blue box represents tumor, and green box represents normal. (B) Upregulated ARGs. (C) Downregulated ARGs.

log2(FC) ≥0.5 or ≤-0.5 (Supplementary Table 3), and the
trend of ARG differential expression in the two groups
was consistent, including 16 upregulated genes [EIF2AK2,
BIRC5, HSP90AB1, BID, integrin alpha-6 (ITGA6), GAA, TP63,
ITGB4, poly (ADP-ribose) polymerase 1 (PARP1), ITGA3,
ATIC, Fas-associated death domain (FADD), PELP1, DDIT3,
PIK3R4, SPNS1] and 18 downregulated genes (CAPNS1,
FOXO3, SESN2, PARK2, GNAI3, SH3GLB1, ATG9B, ULK3,
PINK1, ERO1L, CHMP2B, TP53INP2, RAB11A, NRG2, ERBB2,
MAPK3, RAB5A, and HSPB8). We further verified the
differential expression trend of these genes in ESCCs of the
Oncomine database (Supplementary Table 3).

Functional Annotation of the 34
Differentially Expressed
Autophagy-Related Genes
Functional enrichment analysis of the 34 differentially expressed
ARGs offered the biological understanding of these genes.

According to the results of DAVID, the top enriched GO
terms for cellular components were cytosol, membrane,

mitochondrion, protein complex, cytoplasmic vesicle, integrin

complex, late endosome, extracellular exosome, cell–cell
adherens junction, cytoplasm, and autophagosome. For the
molecular function, genes were mostly enriched in terms of

protein binding, identical protein binding, and cadherin binding
involved in cell–cell adhesion (Supplementary Figure 1). KEGG
pathways enrichment analysis for the 34 differentially expressed
ARGs showed that these genes were notably associated with
pathways in cancer, focal adhesion, and PI3K–AKT signaling
pathway (Supplementary Figure 2A). The heatmap of the
relationship between ARGs and pathways was also displayed
(Supplementary Figure 2B), including the focal adhesion and
PI3K–AKT signaling pathway, which is consistent with previous
studies (20–27).

Molecular Typing Based on
Autophagy-Related Genes
Molecular subtypes were identified using the cluster method
Ward.D2 based on 34 selected differentially expressed ARGs, and
the optimal clustering number of 3 was selected (Figure 2A). We
analyzed the prognosis of these three groups. The results showed
that Cluster1 had a relatively better survival followed by Cluster3,
whereas Cluster2 had the worst prognosis (Figure 2B; P = 0.02).
The relationships between the subtypes and clinicopathological
parameters (Age, Gender, Smoking, Drinking, Location, Grade,
Stage, and Lymph node metastasis) of ESCC patients were
summarized in Supplementary Table 4. We observed significant
correlations between subtypes and Drinking (P= 0.01), Location
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FIGURE 2 | Cluster of differentially expressed autophagy-related genes (ARGs) and Kaplan–Meier (KM) survival plot in the discovery cohort (GSE53624). (A) The

heatmap of 34 ARGs. Left: Annotation of cluster and clinical features. The color represents logFC of differential expression. LN, lymph node. (B) Survival curve and

Kaplan–Meier analysis of esophageal squamous cell carcinoma (ESCC) patients by the cluster. OS, overall survival. (C,D) The ratio of tumor to normal expression of

up- and down-ARGs in Cluster1–3; the ordinate shows the ratio of tumor to normal after normalization of expression.

(P = 0.092), Grade (P = 0.009), Stage (P = 0.01), and Lymph
node metastasis (P = 0.076). Compared to Cluster1, patients in
Cluster2 and Cluster3 had higher grade and stage. In Cluster3,

the proportion of patients with alcohol drinking was relatively

higher. The tumor location of Cluster1 and Cluster3 was more

in the middle, while Cluster2 was more in the middle and lower
sections of the esophagus.

Further, we compared the differentially expressed ARGs

among these three groups. For most genes of 34 ARGs, the degree

of upregulated ARGs in Cluster2 was significantly higher than

the other two groups, and the degree of downregulated ARGs

in Cluster2 and Cluster3 was significantly higher than Cluster1

(Figures 2C,D). This result may suggest that the changes of

autophagy activities are related to the prognosis of ESCC patients.

Construction of a Prognostic Risk Model
Based on These 34 Autophagy-Related
Genes
To identify a prognostic risk model, we analyzed the relationship
between the expression of 34 ARGs and the prognosis of ESCC
patients in the discovery cohort GSE53624 and selected 17
ARGs with significant P-value of univariate Cox regression
(Figure 3A) as candidate genes. We used random forests for
feature selection. The relationship between error rate and
number of taxonomic trees was used to reveal genes with relative

importance>0.3 as the finalmodel (Figures 3B,C).We identified
three genes, FADD, PARP1, and ITGA6 in this model (Table 1,
Supplementary Figure 3). The important order of the out-of-
bag scores for the three genes is displayed in Figure 3C. A
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FIGURE 3 | Random forest analysis of prognosis-related autophagy-related genes (ARGs) in the discovery cohort (GSE53624). (A) Forest plot of ARGs with

esophageal squamous cell carcinoma (ESCC) survival, univariate Cox regression. (B) Relationship between the error rate and the number of classification trees. (C)

Out-of-bag importance values for the predictors.

TABLE 1 | Three genes significantly associated with overall survival in the

discovery cohort (GSE53624).

Symbol HR P Importance Relative imp

ENSG00000168040 FADD 2.169 0.001242 0.0143 1

ENSG00000091409 ITGA6 1.539 0.078457 0.0057 0.3987

ENSG00000143799 PARP1 1.884 0.007979 0.0049 0.3438

FADD, Fas-associated death domain; HR, hazard ratio; Imp, importance; ITGA6, integrin

alpha-6; PARP1, poly (ADP-ribose) polymerase 1.

three-gene prognostic risk model was established by multivariate
COX regression analysis. The equation is as follows:

Risk Score = 0.184 ∗ expFADD+ 0.562 ∗ expPARP1

+ 0.199 ∗ expITGA6

The risk score of each sample was calculated, ROC curve was
constructed according to the value of risk and survival of patients,
and the samples were divided into high-risk group and low-
risk group with the maximum of Youden index. The prognosis
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of the high-risk and low-risk groups were significantly different
(P = 5.162E-8; Figure 4B). High expression of FADD, PARP1,
and ITGA6 was associated with high risk (Figures 4A,C).

Furthermore, we analyzed the prognosis of risk groups
and their relationship with cluster, which was constructed by
differentially expressed ARGs (Supplementary Table 5). The
results show that high-risk patients were enriched in Cluster2
and Cluster3, and the high-risk patients accounted for the highest
proportion in Cluster2, which had the worst prognosis (P =

6.511E-07; Supplementary Table 5, Supplementary Figure 4).
There was no correlation between other clinical factors and risk
groups (Supplementary Table 5).

Verification of the Robustness of the
Three-Gene Signature Model in The
Cancer Genome Atlas Esophageal
Squamous Cell Carcinoma Dataset
To verify the robustness of the three-gene signature model, we
calculated a risk score for each sample in another validation
cohort TCGA ESCC dataset. We used the same method to
divide the 95 samples into high-risk and low-risk groups in
discovery cohort GSE53624. The prognosis of the low-risk
group was significantly better than that of the high-risk group
(P = 0.052; Figure 5B, Supplementary Table 6). As shown in
Figure 5, TCGA data revealed that the relationship between
the expression of the three genes and risk score is also
consistent with the GSE53624. Thus, the three-gene signature
model we constructed was effective to predict prognosis for
ESCC patients.

Risk Model and Clinical Characteristic
Analysis
To assess the independence of the three-gene signature model
in clinical application, we used univariate and multivariate
Cox regression to analyze hazard ratio (HR), 95% confidence
interval (CI), and P-values. We systematically analyzed the
clinical information from the patients as recorded in ESCC,
including their Age, Gender, Location, Smoking, Drinking,
Grade, Stage, as well as our three-gene signature (Figure 6,
Supplementary Table 7). In ESCC, univariate Cox regression
analysis revealed that the risk score group (HR = 3.617,
95% CI = 2.212–5.914, P = 3.008E-07), Age (P = 0.024),
Stage (HR = 2.19, 95% CI = 1.339–3.582, P = 0.002), and
Lymph node metastasis (HR = 2.159, 95% CI = 1.319–3.534,
P = 0.002) had clinical independence. And the corresponding
multivariate Cox regression analysis found that the Risk score
group (HR = 2.955, 95% CI = 1.761–4.961, P = 4.100E-
05), Age (P = 0.03), and Stage (HR = 1.849, 95% CI =

1.096–3.12, P = 0.021) had clinical independence. Importantly,
the validation data (TCGA cohort) also confirmed these
findings (HR = 1.971, 95% CI = 0.982–3.955, P = 0.056
for univariate Cox regression analysis; HR = 2.67, 95% CI =
1.25–5.704, P = 0.011 for multivariate Cox regression analysis;
Supplementary Table 8, Supplementary Figure 5A), suggesting

that our three-gene signature model may serve as an independent
prognostic index for clinical application.

Then, we constructed a nomogram model, as shown in
Figure 7A. The univariate analysis was performed among nine
variables to verify the prognostic variables with the data from
the discovery cohort. Of the nine variables, a total of four
variables were prognostic predictors for OS (including Age,
Stage, Lymph node metastasis, and Risk score; P < 0.05). Three
significant factors including Age, Stage (it is associated with
Lymph node metastasis), and Risk score in the univariable
analysis were enrolled into themultivariable analysis based on the
Cox regression. A nomogram that incorporated the mentioned
three prognostic factors was established. The prediction accuracy
of the nomogram was assessed by C-index, and the results
showed that the C-index was 0.713. To read the nomogram, draw
a vertical line up to the top row of points to specify points for each
variable. Then, the total points for a patient can be added up, and
one can obtain the probability of 1-, 3-, and 5-year OS by drawing
a vertical line from the total points row. Figure 7B showed the
1-, 3-, and 5-year nomogram model and the ideal model, and the
results showed that the nomogrammodel was basically consistent
with those of the ideal model. The nomogram was validated in
the validation cohort, and 1- and 3-year calibration curves were
presented in Supplementary Figure 5B. These results indicated
that the accuracy of our model is relatively high.

Analysis of Pathway Differences Enriched
in the High-Risk and Low-Risk Groups
Pathway enrichment analysis of the DEGs in the high-risk
group and the low-risk group showed that Metabolic pathways,
Pathways in cancer, Protein digestion and absorption, Human
papillomavirus infection, ECM–receptor interaction, and Cell
cycle were enriched in both high-risk and low-risk groups. And
results revealed that the high-risk may be related to the activity
of PI3K–AKT signaling pathway and calcium signaling pathway,
etc. (Figure 8). Besides, the activity of DNA replication and
Fatty acid degradation may be related to low-risk (Figure 8).
The suppression of the PI3K/AKT/mTOR signaling pathway
can induce autophagy, which in turn saves tumor cells from
the harm of epidermal growth factor receptor (EGFR)-tyrosine
kinase inhibitors (TKIs) (20). Therefore, the PI3K–AKT pathway
inhibitors may have potential targeting effect on patients in the
high-risk group.

DISCUSSION

Cancers are highly heterogeneous diseases in that survival
times vary substantially among patients with similar TNM
stages. With the diagnosis and treatment at earlier stage,
traditional clinicopathological indicators such as Tumor size,
TNM stage, and Vascular invasion have proven inadequate
for predicting individual prognosis (28). Since autophagy may
play an important role in the development, progression, and
therapeutic response of ESCC individually, the screening of
prognostic molecular markers based on ARGs may reflect the
biological characteristics of ESCC, which is of great significance
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FIGURE 4 | Relation between the three-gene signature and cancer risk in the discovery cohort (GSE53624). (A) Risk score, survival time, survival state, and

expression of the three ARGs in esophageal squamous cell carcinoma (ESCC) patients of GSE53624. (B) Kaplan–Meier analysis of ESCC patients grouped by risk

score; log-rank Mantel–Cox test was used to compare survival curves. (C) Box plot of expression of three ARGs grouped by risk score, and the independent-sample

Student t-test was used as the comparison method between the high- and low-risk groups. RS, risk score; Exp, expression. **P < 0.01.

for individualized prevention and treatment. To capture the
genes necessary for ESCC from the perspective of autophagy, we
screened ARGs and identified key prognostic ARGs, all of which
may provide additional potential therapeutic targets. We further
used the complementary value of molecular and clinical features
and showed that combined analysis can provide a more accurate
estimation of OS in ESCC. This comprehensive study of two
factors contributes to our new understanding of ESCC biology
and depicts potential therapeutic interventions.

In recent research, polygenic prognosis prediction models
have been highlighted in clinical practice. For example, Oncotype
DX, which provides a breast cancer recurrence score based
on 21 genes (29–31), and Coloprin, which provides a colon
cancer recurrence score based on 18 genes (32–34). These studies
have shown that polygenic prognosis prediction models based

on gene expression profiles are efficacious and promising to
diagnosis, appropriate treatment, and improved prognosis of
patients with cancer. Furthermore, Tian et al. (35) identified
a six-gene signature, Zhao et al. (36) identified a three-gene
signature, and Wang et al. (28) identified a six-gene signature.
These signatures are proofs that the model composed of a small
number of genes still has a high prediction efficiency of prognosis.
In addition, there are some studies that identified signatures
based on differentially expressed ARGs, 22-gene signature in
non-small-cell lung cancer (NSCLC; 8) and three-gene signature
in bladder cancer [BC; (37)]. These showed us that the model
screened based on specific functions also has good efficiency and
has good clinical application prospect. Based on these conditions,
we screened three ARGs and constructed a polygenic prognosis
prediction model and verified its predictive ability.
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FIGURE 5 | Performance of the three-gene signature model in the validation cohort [The Cancer Genome Atlas (TCGA) data]. (A) Risk score, survival time, survival

state, and expression of the three ARGs in esophageal squamous cell carcinoma (ESCC) patients of TCGA. (B) Kaplan–Meier analysis of ESCC patients grouped by

risk score; log-rank Mantel–Cox test was used to compare survival curves. (C) Box plot of expression of three ARGs grouped by risk score, and the

independent-sample Student t-test was used as the comparison method between the high- and low-risk groups. RS, risk score; Exp, expression. **P < 0.01.

The three genes in our signature include PARP1, ITGA6,
FADD as risk factors. PARP1 is a 113-kDa nuclear polymerase
that modifies substrates (38). At present, it has been shown
that PARP1 plays a role in the repair of DNA damage (39–41).
PARP1-mediated autophagy is a key pathway for TKI resistance
in NSCLC cells that participates in the resistance to TKIs (42).
PARP1 may be an independent prognostic marker in ESCC,
and PARP1 inhibition can induce cell cycle arrest at the G2/M
phase through the ATM–Chk2–CDC25C pathway (38). ITGA6
is a member of the integrins family. Many integrins contribute
to tumor progression, and ITGA6 has been implicated in breast
cancer progression (43–45). In ESCC, it has been reported
that expression of ITGA6 is highly upregulated and plays an
important role in the proliferation and invasion (46). FADD
is an adaptor molecule that interacts with various cell surface
receptors and mediates cell apoptotic signals (47). In recent
studies, FADD has been used as a potential autophagy-related
prognostic marker in lung squamous cell carcinoma and head
and neck squamous cell carcinoma (48, 49). The copy number

amplification and upregulation of FADD were also found in
ESCC, and its expression was significantly correlated with the
survival of ESCC (50). Based on the PARP1–ITGA6–FADD
three-gene model, ESCC patients were divided into high-
risk group and low-risk group. Compared with single-gene
prognosis analysis, this grouping method has more significant
difference in prognosis. In addition, through KEGG enrichment
analysis, we found that PI3K–AKT pathway was significantly
enriched in the high-risk group. It has been proven that
PI3K/AKT/mTOR-mediated autophagy played pivotal roles in
the occurrence, development, and drug resistance of tumors.
Autophagy mediated by PI3K–AKT–mTOR pathway can
improve the drug sensitivity of tumor cells and avoid drug
resistance (51). Therefore, ESCC patients in this high-risk
group may benefit more from the targeted drugs. Through
targeting PI3K–AKT–mTOR-mediated autophagy, many
drugs can more accurately and specifically regulate autophagy
activity of tumor cells, so as to achieve better antitumor
therapeutic efficacy.

Frontiers in Oncology | www.frontiersin.org 9 July 2021 | Volume 11 | Article 650891

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Cui et al. ARGs Prognostic Signature in ESCC

FIGURE 6 | Forest plot of univariate and multivariate Cox regression analyses in the discovery cohort (GSE53624).

FIGURE 7 | Nomogram of Cox regression model in the discovery cohort (GSE53624). (A) The nomogram for predicting overall survival (OS). (B) The calibration plots

for predicting 1-, 3-, and 5-year OS.
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FIGURE 8 | Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched in the high- and low-risk groups in the discovery cohort (GSE53624). The outer

circle shows a scatter plot for each term of the log2(FC) of the assigned genes. Red circles display upregulation, and the blue ones display downregulation. Left,

high-risk. Right, low-risk.

Lastly, we developed a nomogram to predict individuals’
clinical outcomes. A nomogram is a stable and reliable tool
to quantitatively measure risk on an individual basis by
combining delineated risk factors, which has been used for
autophagy prognoses (8). A nomogram generates a statistical
predictive model presented in a graph, conferring points to each
factor such as Stage, Grade, Age, and Gender in the clinical
setting. By integrating all the factors, the model provides a
predictive assessment for individuals. Apart from traditional
clinicopathological features, the risk score based on genes can
also be included in the predictive nomogram to better predict
clinical results (52–54). Mo et al. (53) built a nomogram to
predict survival in colorectal cancer with the inclusion of a
prognostic score calculated from autophagy genes. Liu et al.
(8) built a nomogram in non-small-cell lung cancer including
a 22-autophagy gene signature that can well predict 3- and 5-
year survival possibilities. In many cases, the combination of
autophagy genes and prognostic factors has better prognosis
than using a single factor. Moreover, we also used a calibration
curve, the nomogram adopting both the gene signature and
conventional prognostic factors that can accurately predict 3- and
5-year survival probabilities.

Although we have identified potential candidate genes and
constructed a prognostic model using bioinformatics technology
with ESCC samples, our study has several limitations. First,
due to the lack of large public ESCC transcriptomic data, the
sample size included in this study was not enough, which may
affect the efficacy of our prognostic model. Second, although
we have verified our findings in different cohorts, it would be
better to confirm these results via independent experiments,
such as immunohistochemistry in another cohort. Therefore,
further genetic and experimental studies with larger samples and
experimental validation are needed.

In conclusion, we divided ESCC patients into three clusters
based on ARGs, and these clusters were related to stage
and prognosis. Furthermore, we identified a prognostic three-
autophagy gene signature base on GEO and TCGA ESCC
cohorts. This three-gene model was an independent predictor of
prognosis. And we used gene signature and clinicopathological
features to build a nomogram that can accurately predict a 1-, 3-,
and 5-year survival probability for individual ESCC patients. This
finding suggests that the three-ARG signature may help facilitate
personalized treatment.
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