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Acute leukemia is the most common cancer in childhood; in particular, acute
lymphoblastic leukemia (ALL) represents roughly up to 80% of all cases of acute
leukemias in children. Survival of children with ALL has dramatically improved over the
last few decades, and is now over 90% (versus 40% of adult patients) in developed
countries, except for in infants (i.e., children < 1 year), where no significant improvement
was registered. Philadelphia positive ALL (Ph+ALL) accounts for around 3% of cases of
childhood ALL, its incidence increasing with patient’s age. Before the era of tyrosine-
kinase inhibitors (TKIs), pediatric Ph+ALL showed a worse prognosis in comparison to
other forms of ALL, and was managed with intensive chemotherapy, followed, whenever
possible, by allogenic hematopoietic stem cell transplantation (HSCT) in first
morphological complete remission. TKIs have revolutionized the current clinical
approach, which involves combinations of imatinib plus standard chemotherapy that
can abrogate the negative prognostic impact conferred by the presence of BCR/ABL1
rearrangement, resulting in the probability of event-free survival (EFS) being significantly
better than that recorded in the pre-TKI era. Long-term follow-up confirms these data,
questioning the role of a real advantage offered by HSCT over intensive chemotherapy
plus TKI in all Ph+ALL pediatric patients. Imatinib was the first generation TKI and the
prototype of targeted therapy, but over the years second- (dasatinib, nilotinib, bosutinib)
and third-generation (ponatinib) TKIs showed a capacity to overcome resistance to
imatinib in Ph+ hematological neoplasms. Given the effectiveness of the first-in-class
TKI, imatinib, also the second-generation TKI dasatinib was incorporated in the treatment
regimens of Ph+ALL. In this manuscript, we will discuss the role of this drug in pediatric Ph+
ALL, analyzing the available data published to date.
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INTRODUCTION

Through the application of reliable prognostic factors and risk-
oriented treatment protocols, almost 85% of children with newly
diagnosed acute lymphoblastic leukemia (ALL) can be cured
today. The most common cause of treatment failure in pediatric
ALL remains disease relapse, which occurs in approximately 15%
of patients (1–8).

These improved patient outcomes in childhood ALL are due to
many factors, including a better knowledge of the molecular lesions
responsible for disease occurrence, monitoring of minimal residual
disease (MRD), which represents a surrogate biomarker of
leukemia cell sensitivity to chemotherapy, refined risk-adapted
chemotherapy treatment and better results in patients given
allogeneic hematopoietic stem cell transplantation (HSCT).

Despite these improvements in therapeutic management,
ALL continues to impact the mortality rate of cancer in
childhood. The outcome of refractory/relapsed ALL (r/rALL)
remains, even nowadays, unsatisfactory and treatment must be
diversified according to subsequent risk of treatment failure for
children experiencing leukemia recurrence (8, 9). Innovative and
flexible approaches need to be developed for timely treatment,
along with more specific and effective drugs. However, at the
same time, they need to be safely incorporated into the patient’s
treatment. Such agents are likely to provide the best
opportunities for improving the long-term survival and of the
patient’s quality of life after ALL recurrence.
PH+ ALL

The discovery and definition of specific genetic abnormalities
have increased knowledge of the biology of ALL. These have
become the mainstay of clinical practice by providing relevant
prognostic and predictive markers that influence treatment
strategy and patient outcome. Although a wide range of
genetic lesions have been discovered in childhood ALL, they
are only partially relevant for prognosis (10). Response to
treatment and prognosis of ALL can be strongly influenced by
cytogenetic and molecular markers that can be associated with
either good-risk or high-risk features. Among the cytogenetic/
molecular abnormalities associated with a less favorable
outcome, is the so-called Philadelphia chromosome, coming
from t(9;22)(q34;q11), which is an encoded BCR-ABL1 fusion
chimeric onco-protein with tyrosine kinase activity. The
Philadelphia chromosome was first reported as the leading
pathological alteration in chronic myeloid leukemia (CML).
Then, in 1970, it was also found in ALL (11).

Ph+ ALL is usually associated with poor prognosis in both
adulthood and childhood (12). It accounts for 3–4% of pediatric
ALL cases (almost exclusively of B-cell origin) and about 25% of
adult ALL cases (13). The incidence of Ph+ALL increases with age,
being higher in adolescents than in younger children (the BCR‐
ABL1 fusion gene is detected in approximately 5-15% of
adolescents). Before the era of TKIs, pediatric Ph+ ALL was
associated with a dismal prognosis and was managed with
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intensive chemotherapy, followed, when possible, by HSCT in
first remission (4). During recent decades, the availability of TKIs,
in the context of CML, where the Philadelphia chromosome was
first detected, had a dramatic impact on the management and
prognosis of this disease (14). The revolutionary advancements in
pharmacology provided by the advent of TKI led to the new
concept of a targeted and “personalized” treatment of
hematological neoplasms. ALL is not a unique disease, and its
treatment strategy can be guided by the genetic and mutational
landscape of the patient. The success of TKIs in CML has rapidly
translated into attempts to treating other malignancies carrying
the BCR-ABL1 fusion protein, including Ph+ ALL. Early
published data have shown that in a Ph+ ALL pediatric
population, imatinib combined with standard chemotherapy
could reverse the negative impact on prognosis conferred by the
presence of the BCR‐ABL1 fusion transcript, resulting in a
significant improvement in the probability of event-free survival
(EFS) (15, 16). Long-term follow-up confirmed these data,
questioning the role of HSCT in first complete remission as
compared to strategies based on the combination of intensive
chemotherapy and TKI in this category of patients (17). Imatinib
was the first generation TKI and remains the prototype of targeted
therapy, but, over the years, second- (dasatinib, nilotinib,
bosutinib) and third-generation (ponatinib) TKIs have shown a
capacity to overcome resistance to imatinib in Ph+ hematological
neoplasms (18). Given the effectiveness of the first-in-class TKI,
namely imatinib, the second-generation TKI dasatinib was also
incorporated into treatment regimens for Ph+ ALL.
TARGETING PROTEIN KINASES

The human genome can encode for approximately 538 known
protein kinases, whose activity maintains cellular function and
cellular regulation through intracellular signaling pathways that
are crucial for differentiation, survival, proliferation, metabolism,
and cell-to-cell contact (19). Therefore, it is not surprising that
protein kinases are one of the most relevant dysregulated
molecules in human cancers, with several pathways that could
lead to the proliferation of neoplastic cells in different types of
hematologic and non-hematologic malignancies (19).
Consequently, targeted therapy with small molecules and
inhibitors against the activity of abnormal kinases is a leading
method of treating hematological malignancies, and following
imatinib, a first-generation TKI was approved for CML in 2001.

The Philadelphia chromosome results in the fusion gene
BCR-ABL1 potentially existing in three principal isoforms.
This is because it comes from different breakpoints on
chromosome 22 in the BCR gene and encodes for three
principal isoforms of aberrant protein kinases (namely, p190,
p210, and p230) with distinct molecular mass (20). The
frequency pattern of distribution of these isoforms is slightly
different from CML to ALL and between adulthood and
childhood (21, 22). In about 90% of cases of childhood Ph+
ALL, t(9;22) mostly occurs in the minor breakpoint cluster
region and produces a constitutional activate tyrosin kinase
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protein (of 190 kDa, p190 BCR-ABL1). The remaining cases are
mainly represented by p210 isoforms (22).

Despite the different oncogenic activity in pre-clinical models
between p190 and p210, there is no significant difference in terms
of clinical outcome following chemotherapy in ALL patients
harboring either of the two isoforms (23, 24). Regardless of the
isoform, the chimeric BCR-ABL1 protein has direct effects on the
oncogenic process by the ABL1 dysregulated and abnormal
kinase activity that, in physiological conditions, is tightly
controlled by a regulatory N-terminal region (25, 26). The
chimeric BCR-ABL1 loses the regulatory region and, together
with the boosting of BCR activity, physiological ABL1 functions
are constitutionally activated. ABL1 is physiologically involved in
a number of functions derived by interactions with other
proteins. It is involved in the response of multiple extra and
intracellular stimuli, playing a key role in cellular function, like
cell-cycle or apoptosis (27). The final BCR-ABL1 mechanisms of
transformation, as extensively studied in CML, are probably an
altered cellular adhesion to stroma-cells and the matrix of bone
marrow, triggering constitutively active mitogenic pathways
together with inhibited apoptosis (28). As the majority of
human neoplasms need multiple genetic steps to occur and
determine the final neoplastic transformation, BCR-ABL1 is
not the unique genetic alteration present in ALL and is not the
unique neoplastic hit. However, given the effectiveness of TKIs in
controlling the disease, BCR-ABL1 is potentially the major drive
responsible for the abnormal proliferation of leukemia blasts in
Ph+ALL. Therefore, targeting this dysregulated kinase activity
represents a major treatment strategy for this leukemia.

Based on the mechanism of action, BCR-ABL1 kinase activity
inhibition could be obtained through two major strategies:
competitive inhibition and allosteric inhibition (29, 30). The first
mechanism is provided by those ATP-competitive inhibitors, such
as imatinib or dasatinib, whose binding site can be found in the
catalytic cleft between the N-terminal lobe and C-terminal lobe
kinase domain. These functional classes of molecules can be
distinguished in type I and type II competitive inhibitors if they
bind, respectively, to the activated/phosphorylated or inactivated/
unphosphorylated conformation of kinase domain (31, 32). These
inhibitors usually show scarce binding selectivity, which is
particularly evident in type I over type II, providing inhibition or
other kinases with consequently “off-target” side effects, like
cardiac, pulmonary, gastrointestinal, and, especially in children,
endocrine toxicity (33–36). The myristate binding domain or SH2-
domain, are regulatory sites whose biological function is to quit an
independent kinase activity, via different mechanisms (29).
Therefore, the second type of inhibitor can bind to the
regulatory sites that indirectly modulate the ATP-binding site
conformation and activity in an allosteric fashion, providing
highly selective kinase inhibition (37).
DASATINIB PHARMACOLOGY

When discussing the pharmacological properties of a TKI it is
relevant to compare it with the prototype of this class of
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compound, namely imatinib. Dasatinib is an oral TKI, whose
inhibitor activity is also directed to other protein kinases (38).
It differs from its precursor imatinib in several ways, involving
a potency of inhibition BCR/ABL wild-type expressing cells in
vitro greater than 300-fold, different activity profile on the
non-BCR/ABL kinases targeted, and the presence of other
specific anti-leukemic properties involving MAPK or BCL2
pathways (39). Regarding its higher inhibiting potency
compared to imatinib, it is believed that this is associated
with its ability to bind both activated and non-activated
conformation of the BCL-ABL kinase, as a type II
competitive inhibitor, compared to imatinib, whose target is
the activated isoform only (38, 39). Acting as a multiple protein
kinases inhibitor and not only a BCR-ABL-directed molecule,
dasatinib can offer multiple pharmacodynamic antineoplastic
effects. Therefore, an anti-leukemic action is also provided by
blockage of the Stat-5 downstream pathway of BCR-ABL and
SRC kinases family, which could reduce neoplastic
proliferation and stimulate apoptosis (40). It could also
interfere with p38 Map kinase of the MAPK family, which is
demonstrated to be essential for the anti-leukemic effect of
dasatinib (41).

In vitro data shows that dasatinib contributes to the anti-
leukemic effect of imatinib-resistant neoplastic cells, even if
some point mutations in BCR/ABL confer several degrees of
resistance to dasatinib, with the maximum resistance displayed
by T315I mutation, as also to the majority of available TKIs
(42, 43). Off-target effects involving other kinases and targets
are recognized as being responsible for some adverse events
(AE) of dasatinib administration. The activity of hematopoietic
cells is affected by the direct interaction of dasatinib with
the BTK and TEC kinases, resulting in an impaired B- and
T-cell development effect (44, 45). Pleural effusion, with
characteristic lymphocyte-rich fluid, is a relatively common
(20-35% of patients) AE reported with dasatinib treatment and
is also probably caused by a specific immune-mediated off-
target pharmacodynamic effect involving the PDGFR-beta
pathway (46, 47).

Dasatinib has been shown to penetrate the central nervous
system (CNS) at considerably higher levels, as confirmed also by
more recent studies (48, 49).
DASATINIB IN PEDIATRIC PH + ALL—
CLINICAL EXPERIENCES

Phase I Trial
Zwaan et al. conducted a phase I trial in pediatric patients
affected by imatinib-resistant or intolerant Ph+ CML, relapsed
and refractory Ph+ ALL and relapsed Ph+ AML (50), in which
dasatinib was administered in once-daily dose-escalation
(starting from 60 until 120 mg/m2).

The efficacy and safety were comparable to adult results, with
no response in Ph-negative relapsed/refractory ALL or AML. 60
mg/m^2 and 80 mg/m^2 once-daily were selected for phase II
trials in Ph+ ALL.
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Phase II Trial—COG AALL0622
Slayton et al. conducted a phase II trial (COG AALL0622) in
newly diagnosed children with Ph+ ALL, with dasatinib
replacing imatinib on day 15 of induction. It was administered
in combination with the same chemotherapy approach used in
COG AALL0031 (51). Endpoints were safety and feasibility in 1-
30-year-old patients. HSCT was recommended in high-risk/slow
responder patients, and also in patients with a matched-family-
donor independent from response. Standard-risk patients
lacking an HLA-matched donor were managed with a
combination of chemotherapy and dasatinib for 120 additional
weeks, while CNS positive patients underwent cranial
irradiation. Dasatinib plus chemotherapy showed good
tolerability and outcomes similar to imatinib in COG
AALL0031 (5-year OS 86% ± 5% overall, 87% ± 5% for high-
risk patients); 5-year rate (± SD) of CNS relapse was 15% ± 6%.
These findings confirm data obtained using imatinib and
chemotherapy, with the recommendation to reserve HSCT
only to slow responders, suggesting IKZF1 as a new biomarker
whose potential role should be further investigated.

COG AALL1131
The COG Trial (AALL1131) explored the role of dasatinib in
newly diagnosed, high-risk Ph-like B-ALL, harboring ABL-class
lesions (52). The authors identified new rearrangement partners
which could be potential targets. This needs to be better and
further explored in new trials aimed at detecting specific
alterations in this particular subset.

Phase II Trial—CA180-372
CA180-372 was an international phase 2 clinical trial, aiming to
explore the combination of continuous daily dasatinib (daily
dose of 60 mg/m^2 from day 15 of induction) plus EsPhALL
chemotherapy in pediatric Ph+ ALL (53). Minimal residual
disease (MRD) was evaluated at day 78, at the end of phase 1b,
by several methods (Ig/TCR PCR, flow cytometry, and BCR -
ABL1 RT-PCR). Patients who remained MRD positive at any
detectable level after three additional high-risk chemotherapy
blocks were candidates to receive HSCT in first complete
remission (CR1), while dasatinib maintenance was optional.
The other patients received a combination of dasatinib plus
chemotherapy for 2 years, with cranial irradiation limited to
CNS3 patients. This combination was safe and effective (in terms
of 3-year EFS) in pediatric Ph+ ALL patients, with 14% who
underwent HSCT in CR1, versus 80% in the EsPhALL trial.

Total XVI Study
Jeha et al. designed the Total XVI Study (54, 55), comparing the
outcome of Ph+ ALL in the pre-TKIs era versus TKIs-based
treatments. TKIs (including dasatinib) were administered,
starting from day +22 of induction therapy during all
treatment phases, showing significant results in terms of MRD
if compared with chemotherapy alone, in terms of 5-year EFS
(68.6 ± 19.2% and 31.6 ± 9.9%, respectively (P = .022),
confirming that the administration of TKIs in the early phases
of treatment improves the outcome of pediatric Ph+ ALL.
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DASATINIB VERSUS IMATINIB IN THE
TREATMENT OF PEDIATRIC
PHILADELPHIA CHROMOSOME–POSITIVE
ACUTE LYMPHOBLASTIC LEUKEMIA—A
RANDOMIZED CLINICAL TRIAL

Shen et al. (49), designed an open-label, phase 3, randomized
clinical trial, including 225 patients from 20 hospitals in China.
The trial examined whether dasatinib, at a daily dosage of 80 mg/
m2, is more effective than the first-generation inhibitor imatinib
mesylate, at a daily dosage of 300 mg/m2. It aimed to improve
event-free survival in children with Philadelphia chromosome–
positive ALL who had received intensive chemotherapy without
prophylactic cranial irradiation (the secondary outcomes were
relapse, death due to toxic effects, and overall survival).

The 4-year event-free survival and overall survival rates were
71.0% (95% CI, 56.2%-89.6%) and 88.4% (95% CI, 81.3%-
96.1%), respectively, in the dasatinib group and 48.9% (95%
CI, 32.0%-74.5%; P = .005, log-rank test) and 69.2% (95% CI,
55.6%-86.2%; P = .04, log-rank test), respectively, in the imatinib
group. The 4-year cumulative risk of any relapse was 19.8% (95%
CI, 4.2%-35.4%) in the dasatinib group and 34.4% (95% CI,
15.6%-53.2%) in the imatinib group (P = .01, Gray test), whereas
the 4-year cumulative risk of an isolated central nervous system
relapse was 2.7% (95% CI, 0.0%-8.1%), excellent control of
central nervous system leukemia without the use of
prophylactic cranial irradiation, in the dasatinib group and
8.4% (95% CI, 1.2%-15.6%) in the imatinib group (P = .06,
Gray test). There were no significant differences in the
frequency of severe toxic effects between the 2 treatment groups.

To date, this is the first clinical trial comparing the use of
dasatinib versus imatinib in pediatric Ph-positive ALL settings,
encouraging a switch in future studies.
CONSENSUS PAPER

In a consensus paper, major experts in Ph+ ALL agree that HSCT
remains the standard of care in adult patients. It outlined
improved outcomes, thanks to the use of TKIs in frontline
therapy, but with many patients still relapsing after the
allograft. TKIs-based maintenance post-HSCT can reduce
relapse risk and should be considered a valuable option (56).
Future studies addressing the same issue in a pediatric
population are needed, although some clinical experiences
support the positive role of the drug in this clinical setting (57).
DASATINIB AS A BRIDGE TO THE
SECOND ALLOGRAFT IN POST HSCT
RELAPSED PH+ALL

A case report showed a Ph+ALL patient with early relapse after
first HSCT, who was given dasatinib single agent treatment,
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achieving complete molecular remission, which persisted for 12
months after the second HSCT, with acceptable tolerability (58).

Another clinical case explored dasatinib in early relapsed Ph +
ALL post HSCT. In this patient, after complete molecular
response, dasatinib was used as a bridge to a second successful
transplant, also showing a very good safety profile (59).
NOVEL COMBINATIONS: THE NEXT
FUTURE OF DASATINIB-BASED
TREATMENT

A novel approach could be the combination of dasatinib plus
ABT-199/venetoclax, which is a BCL2 (protein B-cell
lymphoma 2) inhibitor. It showed improved antileukemic
efficacy with equivalent tolerability if compared to either of
the single agents in Ph+ ALL xenografted immunodeficient
mice (60). This combination showed high synergism in vitro,
with the decrease of cell viability and the induction of apoptosis
in Ph + ALL, and, thanks to multikinase inhibition, it
was shown to add the advantage of inducing Lck/Yes novel
tyrosine kinase (LYN)-mediated proapoptotic BCL-2-like
protein 11 (BIM) expression and inhibiting up-regulation of
antiapoptotic myeloid cell leukemia 1 (MCL-1), potentially
overcoming venetoclax resistance. These data are encouraging
and clinical trials exploring this interesting combination are
planned for the future.
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CONCLUSIONS

In recent years there has been important progress in the
management of pediatric ALL, thanks to risk-adapted
protocols and CNS prophylaxis, while the prognosis for those
with Ph+ALL remained unfavorable until the beginning of the
TKIs era.

The second-generation TKI dasatinib, an oral inhibitor of
chimeric BCR-ABL oncogenic kinase with multi-inhibitor
activity, showed improved outcomes if used in combination
with the standard chemotherapy approach. Moreover, in a
post-HSCT setting, it could have potential benefits in the
maintenance of this condition, but more solid data and further
studies are required.

Preliminary data about the combination with other
molecules, such as the BCL2-inhibitor venetoclax, are
promising and confirm the need for further exploration of
these combinations, which could form the backbone of new
risk-adapted/MRD-driven clinical trials in relapsed Ph+ALL.
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